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Abstract A mild and metal-free procedure is reported for the aerobic
oxidation of substituted toluenes to carboxylic acids by using CBr4 as
initiator under irradiation from a 400 nm blue light-emitting diode.
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Aerobic oxidation of toluene and substituted toluenes is
one of the most important and most fundamental transfor-
mations in organic synthesis,1 because of the importance
and versatility of the corresponding carboxylic acids in the
fine-chemical industry.2 Although this transformation has
found broad applications, it still suffers from some limita-
tions, such as the use of metal catalysts, the need for harsh
reaction conditions, and poor selectively.3 In recent years, a
great deal of research effort has been devoted to the devel-
opment of metal-free procedures for aerobic oxidation of
substituted toluenes to carboxylic acids as alternatives to
the conventional protocols.4 Among these, photochemical
reactions provide an alternative to classical reactions under
thermal control, avoiding the need for harsh reaction con-
ditions and improving the selectively (Scheme 1). Itoh and
co-workers developed an aerobic oxidation of substituted
toluenes by UV irradiation in the presence of LiBr or HBr.5
They also improved the reaction by employing a CBr4–PPh3
system as bromine source under visible-light irradiation.6
Here, we report a simpler aerobic oxidation of substituted
toluenes under visible-light irradiation with CBr4 as an ini-
tiator without the assistance of PPh3.

We commenced our studies by investigating the aerobic
oxidation of toluene (1a). In our initial attempt, only a trace
amount of benzoic acid was detected under visible-light ir-
radiation by a general-purpose fluorescent lamp or a 460

nm light-emitting diode (LED) (Table 1, entries 1 and 2).
Notably, an 8% yield of benzaldehyde was obtained when a
460 nm LED was used. Inspired by these results, we decided

Scheme 1  Photoinduced aerobic oxidation of substituted toluenes to 
carboxylic acids
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Table 1  Optimization of the Reaction Conditionsa

Entry Catalyst Light source Yieldb (%) of 2a Yield (%) of 3

1 CBr4 fluorescent lamp trace trace

2 CBr4 460 nm LED trace  8

3 CBr4 440 nm LED 38 26

4 CBr4 400 nm LED 70 21

5c CBr4 400 nm LED 98 (96)d  2

6e – 400 nm LED –  –

7 CCl4 400 nm LED –  –
a Reaction conditions: toluene 1a (0.5 mmol), catalyst (10 mol%), MeCN (10 
mL), 60 W 400 nm LED, O2 balloon, rt, 24 h.
b GC yields with 1,4-dioxaneas internal standard.
c 48 h.
d Isolated yield.
e No catalyst.
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to test LEDs with a shorter wavelength. To our delight, by
using a 440 nm LED, the desired benzoic acid (2a) and
benzaldehyde (3) were formed in yields of 38 and 26%, re-
spectively (entry 3). A further reduction in the wavelength
of the light to 400 nm increased the yield of benzoic acid
(2a) to 70% (entry 4). Moreover, prolonging the reaction
time to 48 hours increased the yield to 96% (entry 5). Con-
trol experiments suggested that CBr4 was essential for a
successful aerobic oxidation of toluene (entry 6), as struc-
turally similar CCl4 gave no reaction (entry 7).

With the optimized reaction conditions in hand,7 we
next investigated the scope of the scope (Scheme 2). A di-
verse array of methylarenes with a variety of functional
groups (tert-butyl, methoxy, fluoro, chloro, bromo, iodo, ni-
tro, nitrile, bromomethyl, or acyl) were tolerated in this re-
action. Generally, para-substituted methylarenes, which
gave products 2a–k in yields of 72–96%, were more effec-
tive substrates than their meta- or ortho-substituted ana-
logues, which gave products 2l–q in yields of 41–68%. Nota-
bly, whereas the methyl group of 4-(bromomethyl)toluene
(1j) was smoothly oxidized, the bromomethyl group was
unaffected by the reaction conditions, possibly due to the
steric effect of the neighboring bromine atom. The terminal
methyl group of a propionyl group was also tolerated to af-
ford the corresponding product 2r in good yield. Further-
more, we found that 4-methylbenzophenone could be oxi-
dized to the acid 2s, but with modest efficiency (63% yield).

The disubstituted methylarenes 1t and 1u also performed
well in this reaction. Perhaps most importantly, this trans-
formation is not limited to substituted toluenes; for exam-
ple, 1-bromo-2-methylnaphthalene readily underwent this
aerobic oxidation to give acid 2v in 53% yield. However,
none of the reactions was scaled to above 0.5 mmol because
of concerns regarding the formation of potentially explo-
sive peroxide and hydroperoxide intermediates.7

The aerobic oxidation of toluene was then monitored
over a period of 48 hours. GC analysis showed that benzal-
dehyde was the main product during the first ten hours, but
this was later consumed to form benzoic acid (Figure 1).

Figure 1  Monitoring the aerobic oxidation of toluene

To gain more insights into the reaction pathway for the
aerobic oxidation, we treated benzaldehyde with O2 under
various conditions (Table 2). The reaction of benzaldehyde
under the optimized reaction conditions gave a 97% conver-
sion into 2a, demonstrating its competency as an interme-
diate (Table 2, entry 1). Control experiments revealed that
the reaction efficiency was reduced significantly in the ab-
sence of visible-light irradiation (entries 2 and 3). In con-
trast, the reaction under visible-light irradiation in the ab-
sence of CBr4 was moderately successful (entry 4), suggest-
ing that the interaction between light and CBr4 might
promote the photoinduced oxidation. Notably, no acyl bro-
mide was detected when the reaction was conducted in the
presence of 4 Å molecular sieves (entry 5), indicating that
acyl bromides might be not involved as intermediates.6 The
decrease in the yield might be due to the opacity of the
solution caused by the addition of the molecular sieves.

Based on these experiments and on previous results, a
plausible mechanism is proposed in Scheme 3. Under irra-
diation and/or activation by a charge-transfer (CT) complex
of toluene with CBr4,8 homolysis of CBr4 gives a tribro-
momethyl radical and a bromo radical. The reaction of tolu-
ene with the bromo radical gives a benzyl radical (I) and
initiates a chain oxidation process.9 The reaction of the ben-
zyl radical (I) with dioxygen yields benzyl hydroperoxide

Scheme 2  Scope of the reaction. Reagents and conditions: 1 (0.5 
mmol), CBr4 (10 mol%), MeCN (10 mL), 60 W 400 nm LED, O2 balloon, 
rt, 60 h. Isolated yields are reported.
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(II), which is then transformed into benzaldehyde (3).9b Fi-
nally, benzaldehyde (3) is further oxidized to benzoic acid
(2) on prolonging the reaction time.10

Scheme 3  Plausible mechanism

In conclusion, we have developed a simple and effective
method for the photoinduced aerobic oxidation of substi-
tuted toluenes to benzoic acids under mild metal-free con-
ditions. The method uses easily handled CBr4 as the only
initiator and a 400 nm LED as a source of visible light. The
transformation exhibits a broad scope and good functional-
group compatibility.
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Table 2  Control Experiments

Entry Catalyst Light Yieldb (%)

1 CBr4 400 nm 97

2 CBr4 –  5

3 – –  1

4 – 400 nm 23

5c CBr4 400 nm 64
a Reaction conditions: PhCHO (3; 0.5 mmol), CBr4 (10 mol%), MeCN (10 
mL), 60 W 400 nm LED, O2 balloon, rt, 48 h.
b GC yields with 1,4-dioxane as internal standard.
c 4 Å molecular sieves added.
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