Regiospecific Synthesis of 3,5-Bis(bromomethyl)benzoic Acid, A Cysteine Crosslinking Agent

Marisa Engel, Clyde W. Burris, Cheryl A. Slate and Bruce W. Erickson*

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, U.S.A.

(Received in USA 2 June 1993; accepted 20 July 1993)

Abstract : Bridging two molecules of an organic thiol with the 3,5-dimethylenebenzoic acid (Dmb) group produces a rigid five-carbon Dmb crosslink that is stable to disulfide reducing agents. Radical bromination of 3,5-dimethylbenzoic acid or its succinimido ester gave four α -brominated products. So NMR-pure 3,5-bis(bromomethyl)benzoic acid (Br₂Dmb) was regiospecifically synthesized in 38% overall yield by a four-step route from 1,3,5-benzenetricarboxylic acid. S-Alkylation of cysteine methyl ester, a model thiol, with Br₂Dmb provided the 2:1 adduct (Cys-OCH₃)₂Dmb in 79% yield. Subsequent N-protection with di(*tert*-butyl) dicarbonate gave (Boc-Cys-OCH₃)₂Dmb in 60% overall yield from cysteine methyl ester. This protected diamino acid is suitable for assembly of two Dmb-crosslinked peptide chains.

Two molecules of a peptide thiol are readily crosslinked through air oxidation by formation of a disulfide bond. The resulting crosslink is readily broken by a mild reducing agent (2-mercaptoethanol, dithiothreitol, tributylphosphine). Engineering of novel protein structures through organic synthesis would benefit from a method of joining two molecules of a peptide thiol by a covalent S-to-S crosslink that is stable to reagents that reduce disulfide bonds.¹ The 3,5-dimethylenebenzoic acid (Dmb) group is such a crosslink. It can join two sulfur atoms by a rigid chain of five carbon atoms (S-C α '-C³-C⁴'-C⁵-C α '-S). The distance between the two C α ' atoms of the Dmb group is 5.0 Å. The Dmb crosslink is stable to disulfide reducing agents.

A convenient reagent for introducing a Dmb crosslink is 3,5-bis(bromomethyl)benzoic acid (Br₂Dmb). This symmetric carboxylic acid bears two reactive benzylic bromide groups. Br₂Dmb could be used to crosslink two molecules of a peptide thiol through S-alkylation. The two Cys C^{α} atoms of the resulting Cys₂Dmb moiety are separated by 13 Å when the chain of nine intervening atoms (C^{α}-C^{β}-S-C^{α'}-C^{3'}-C^{4'}-C^{5'}-C^{α'}-S-C^{β}-C^{α'}) is in the fully extended conformation. Previously, Br₂Dmb and its acid chloride have been used as intermediates in the synthesis of a 3,5-bis(methoxymethyl)benzamido porphyrin.² In addition, we have used Br₂Dmb methyl ester in the synthesis of two new symmetric aromatic diamino acids, 3,5-bis(aminomethyl)benzoic acid.³

RESULTS AND DISCUSSION

Radical Bromination. Coupling of 3,5-dimethylbenzoic acid (1a) and N-hydroxysuccinimide (HOSu) with N,N'-dicyclohexylcarbodiimide (DCC) in tetrahydrofuran (THF) afforded the ester succinimido 3,5-dimethylbenzoate⁴ (1b) in 55% yield. α -Bromination of active ester 1b with two equivalents of N-bromosuccinimide (NBS) and a catalytic amount of dibenzoyl peroxide in hot CH₂Cl₂ produced a mixture of four brominated esters: the α -monobromide 2b, the desired α, α' -dibromide 3b, the α, α -dibromide 4b, and the α, α, α' -tribromide 5b (Fig. 1).

Radical bromination often generates multiple brominated products.^{5,6} Electron-withdrawing groups on the benzene ring decrease yields and increase reaction times for α -bromination.⁵ The ratio of the symmetric dibromide **3b** to the unsymmetric dibromide **4b** is higher for solvents of higher refractive index.⁶ Based on

Fig. 1. Formation of four α -brominated products on radical bromination of 3,5-dimethylbenzoic acid (1a) or its succinimido ester (1b).

		Solvent		Product (mol %) ^a				
Reagent	Equiv		Conditions	1 b	2 b	3b	4 b	5 b
NBS	0.5	CCl ₄	reflux, <1 h	19	60	12	7	2
NBS	2.0	CH ₂ Cl ₂	hv, room temp, 4 d	10	50	25	10	5
Br ₂	2.0	CH ₂ Cl ₂	hv, reflux	4	50	29	9	7
NBS	2.0	CCl ₄	reflux, <1 h	0	15	32	21	32
NBS	2.1	CH ₂ Cl ₂	hv, reflux, <1 h	0	19	49	13	19
NBS	2.0	CH_2Cl_2	hv; dark, 2 d; hv, 1.5 h	0	28	55	10	7
NBS	2.0	CH ₂ Cl ₂	hv, reflux, <1 h	0	20	59	10	11

 Table 1. Radical Bromination of Succinimido 3,5-Dimethylbenzoate: Effect of

 Reaction Conditions on Product Yields

^a Molar percentages for the recovered ester 1b and the four α -brominated esters 2b-5b (Fig. 1) were measured by determining the relative intensities of the CH and CH₂ singlets in the NMR spectrum of the reaction mixture.

these studies, we examined several solvents and reaction conditions for radical bromination of ester 1b (Table 1). The composition of each product mixture was measured by proton NMR spectrometry (Table 2). The highest analytical yield (59 mol%) observed for the desired symmetric dibromo ester (succinimido 3,5-bis(bromomethyl)benzoate, Br₂Dmb-OSu, **3b**) was obtained by photoinitiated bromination of a solution of ester 1b in CH₂Cl₂ at reflux.

Table 2. Proton NMR Data for Succinimido 3,5-Dimethylbenzoate and Four of Its α -Brominated Derivatives

	Chemical shift (δ , ppm)							
Compound	Code	C ² H	C ⁴ H	C6H	CαH	$C^{\alpha}H_2$	C ^α H ₃	(CH ₂) ₂
parent ester	1b	7.75	7.30	7.75	-	-	2.38	2.91
α -monobromide	2 b	7.95	7.52	7.89	-	4.48	2.43	2.92
α,α'-dibromide	3b	8.08	7.75	8.08	-	4.50	-	2.93
α,α-dibromide	4 b	a	а	a	6.63	-	2.47	2.93
α, α, α' -tribromide	5 b	a	a	а	6.65	4.52	-	2.93

^a Not determined.

Fig. 2. A regiospecific four-step synthesis of 3,5-bis(bromomethyl)benzoic acid (3a) from 1,3,5-benzenetricarboxylic acid (6)

In our hands, NBS bromination of the corresponding acid, 3,5-dimethylbenzoic acid (1a), gave similar mixtures of the four brominated acids 2a-5a (data not shown). Young and Chang² reported that they obtained the acid 3a in 38% yield by NBS bromination of acid 1a followed by recrystallization from methanol/CH₂Cl₂. But they did not mention the amounts of the by-products 2a, 4a, and 5a present in their samples of 3a before or after crystallization or the melting point of their crystalline sample of 3a.

We attempted to separate the succeinimido ester 1b and its brominated products 2b-5b by several different methods. The esters were eluted in the order 1b, 2b, 3b, 4b, and 5b from a silica column washed with 12:5:3 (v/v) hexane/ethyl acetate/CH₂Cl₂. Even when as little as 100 mg of this product mixture was loaded onto a long silica column (1 m x 2 cm), the desired α, α' -dibromo ester 3b was not obtained in pure form. Finally, three successive crystallizations of the product mixture from ethyl acetate/hexane provided the symmetric dibromo ester 3b as a solid that was 97% pure by NMR spectrometry but was isolated in only 5% yield.

Regiospecific Synthesis. We avoided the formation of this mixture of bromomethyl compounds by devising and executing a regiospecific four-step synthesis of Br₂Dmb from 1,3,5-benzenetricarboxylic acid (6). As shown in Fig. 2, the key step was formation of dimethyl ester 8 by monodemethylation of trimethyl ester 7.

Esterification of triacid 6 proceeded better when using CCl_4 instead of CH_2Cl_2 as the co-solvent because CCl_4 selectively dissolved the final product, trimethyl 1,3,5-benzenetricarboxylate (7). Triacid 6 was only

partially soluble in the CCl₄/methanol solvent mixture but dissolved as the reaction proceeded. When the reaction was performed on a 50-mmol scale, esterification was driven to completion by removing water through rotary evaporation. NMR-pure trimethyl ester 7 was isolated in 96% yield.

Attempted monodemethylation of triester 7 with $N_{1}N_{2}$ -dimethylhydrazine⁷ gave an impure product in low yield. Therefore, saponification at room temperature with one equivalent of sodium hydroxide was examined in several different solvents. The use of methanol gave the desired 3,5-bis(methoxycarbonyl)benzoic acid (8) as the major product as determined by TLC. Since CCl₄ readily dissolved triester 7 but not the desired diester 8, most of the unreacted triester 7 was removed by trituration with CCl₄. The recovered triester 7 was recycled. Finally, flash chromatography of the triturated solid on silica gel furnished NMR-pure diester 8 in 90% net isolated yield.

Diester 8 was reduced to 3,5-bis(hydroxymethyl)benzoic acid (9) with 1 M lithium triethylborohydride in THF (Super Hydride). The borate intermediate was not cleaved when the reaction was quenched with 3 N HCl, probably because the triethylborate forms a complex with dihydroxy acid 9. When the reaction was quenched with 10% acetic acid, however, the volatile triethylborate/THF complex could be removed by rotary evaporation. The remaining mixture of lithium 3,5-bis(hydroxymethyl)benzoate and lithium acetate was dissolved in water and separated by anion-exchange chromatography. Elution with formic acid gave NMR-pure dihydroxy acid 9 in 71% isolated yield.

Dihydroxy acid 9 was transformed into 3,5-bis(bromomethyl)benzoic acid (Br₂Dmb, 3a) by reaction with phosphorus tribromide in 5:1 (v/v) diethyl ether/THF. THF was needed to dissolve the dihydroxy acid. When only THF was used, a major by-product was 4-bromo-1-butanol, which was formed by attack of PBr₃ on THF. Recrystallization from ethyl acetate/hexane furnished NMR-pure dibromo acid 3a, which was obtained in 62% isolated yield. Specifically, the resulting Br₂Dmb contained none of the α -bromo acids 2a, 4a, and 5a as measured by proton NMR spectrometry. This regiospecific synthesis of the symmetric α, α' -dibromo acid 3a from triacid 1a proceeded in 38% overall yield over four steps.

Thiol Crosslinking. S-Alkylation of a model organic thiol, cysteine methyl ester (Cys-OCH₃), with Br_2Dmb was carried out in an organic solvent in the presence of a tertiary amine. A solution of Cys-OCH₃, Br_2Dmb , and N,N-diisopropylethylamine (DIEA) in (CD₃)₂SO was monitored by proton NMR spectrometry

(CysOCH₃)₂Dmb

Fig. 3. Course of the S-alkylation of cysteine methyl ester (2.8 equiv) by Br₂Dmb (2.0 equiv) in DIEA (2.8 equiv) and $(CD_3)_2SO$. The reaction mixture was monitored by proton NMR spectrometry to determine the molar percentages of Br₂Dmb (squares), an intermediate (circles), and (Cys-OCH₃)₂Dmb (triangles) versus time.

(Fig. 3). Between 10 min and 130 min, about half of the aromatic components was a single intermediate between Br_2Dmb and $(Cys-OCH_3)_2Dmb$, presumably the 1:1 adduct $(Br,Cys-OCH_3)Dmb$. After 24 h the desired 2:1 adduct, $(Cys-OCH_3)_2Dmb$, was formed in 89% analytical yield and was isolated in 79% preparative yield. Thus the presence of the unprotected amino group of Cys-OCH₃ is compatible with these conditions for crosslinking with Br_2Dmb . S-Alkylation proceeded even faster when more DIEA was present to neutralize the HBr generated during the reaction. For example, increasing the amount of DIEA from 2.8 equiv to 4.8 equiv provided (Cys-OCH₃)₂Dmb in 75% analytical yield after S-alkylation for only 50 min.

Once two molecules of Cys-OCH₃ were crosslinked with Br_2Dmb , subsequent addition of di(*tert*-butyl) dicarbonate (Boc₂O, where Boc is *tert*-butyloxycarbonyl) and more DIEA to the reaction vessel successfully blocked both amino groups of (Cys-OCH₃)₂Dmb with the Boc protecting group. The net one-pot conversion of Cys-OCH₃ into (Boc-Cys-OCH₃)₂Dmb by successive treatment with Br_2Dmb and Boc_2O proceeded in 60% isolated yield.

The protected diamino acid (Boc-Cys-OCH₃)₂Dmb is suitable for use in the solid-phase assembly of two peptide chains joined by the five-atom Dmb crosslink. For example, through standard procedures⁸ of solid-phase peptide synthesis, after the free carboxyl group of (Boc-Cys-OCH₃)₂Dmb is covalently attached to a solid support, the two Boc groups could be removed, the two protonated amino groups could be neutralized, and the two free amino groups could be coupled with a suitable Boc-amino acid to give (Boc-aminoacyl-Cys-OCH₃)₂Dmb sites. By repetition of this three-step synthetic cycle, a series of amino acid residues could be sequentially added to each of the two peptide chains growing from the crosslinked Cys residues of (Cys-OCH₃)₂Dmb to furnish (peptidyl-Cys-OCH₃)₂Dmb after cleavage from the solid support. We have used this assembly strategy with a related diamino acid during solid-phase assembly of a potential β -barrel protein.⁹ Briefly, the protected diamino acid (Boc-Bal)₂Bab-Bal, where Bal is 3-aminopropionic acid and Bab is 3,5-bis(aminoethyl)benzoic acid,³ was covalently attached to a solid support. Then the two identical 32-residue peptide chains of betabellin 7 were simultaneously assembled by stepwise addition of 31 Boc-amino acids to the two amino groups of the peptide chains growing from the crosslinked Bal residues.⁹ Finally, we have proposed that a receptor-adhesive modular protein containing two identical 39-residue peptide chains that form an α -helical coiled coil might be covalently joined through a Dmb crosslink.¹

EXPERIMENTAL PROCEDURES

¹H NMR spectra were recorded on a Bruker AC200 or a Varian XL400 spectrometer. Monoisotopic mass ratios (M_r) were determined on a VG Model 70/SEQ hybrid tandem mass spectrometer. Melting points were measured in glass capillaries and are uncorrected.

Succinimido 3,5-Dimethylbenzoate (1b). A solution of 3,5-dimethylbenzoic acid (1a, 11.14 g, 74 mmol) and N-hydroxysuccinimide (8.53 g, 74 mmol) in freshly distilled THF (100 mL) was stirred in an ice bath as DCC (15.28 g, 74 mmol) was added. After the reaction mixture was stirred overnight at 7 °C, the dicyclohexylurea was removed by filtration and THF was removed from the filtrate by rotary evaporation. The pale yellow solid was recrystallized twice from 2-propanol to give NMR-pure ester 1b (10.16 g, 56% yield) as a white solid: mp 149-151°C; wt% calcd (found) for $C_{13}H_{13}NO_4$, C 63.15 (63.05), H 5.30 (5.33), N 5.66 (5.63); ¹H NMR (CDCl₃) δ 2.38 (s, 6 H, CH₃), 2.91 (s, 4 H, CH₂), 7.30 (s, 1 H, C⁴H), and 7.75 ppm (s, 2 H, C²H and C⁶H).

Succinimido 3,5-Bis(bromomethyl)benzoate (3b). A mixture of ester 1b (2.48 g, 10 mmol), NBS (3.74 g, 21 mmol), and dibenzoyl peroxide (42 mg) in CH₂Cl₂ (55 mL) was heated at reflux and irradiated with a UV lamp placed 5 cm from the reaction flask. After 5 min the turbid solution turned orange and clear. After the solution was irradiated for 1 h at reflux, the solution turned yellow. The organic layer was washed three times with water and was dried over anhydrous sodium sulfate, and CH₂Cl₂ was removed by rotary evaporation. The pale yellow solid was recrystallized three times from ethyl acetate/hexane to yield the α, α' -dibromo ester 3b as a white crystalline solid (0.2 g, 5% yield) that was 97% pure by NMR: mp 171-172 °C; wt% calcd (found) for C₁₃H₁₁Br₂NO₄, C 38.80 (38.62), H 2.76 (2.75), Br 39.05 (39.34), N 3.48 (3.42); ¹H NMR (CDCl₃) δ 4.50 (s, 4 H, CH₂Br), 7.75 (br s, 1 H, C⁴H), and 8.08 ppm (d, 2 H, C²H and C⁶H).

Trimethyl 1,3,5-Benzenetricarboxylate (7). A solution of 1,3,5-benzenetricarboxylic acid (6, 10.5 g, 50 mmol) in CCl₄ (320 mL), methanol (80 mL), and 18 N sulfuric acid (0.5 mL) was heated at reflux until esterification was complete as measured by TLC in 95:5:0.1 (v/v) CH₂Cl₂/methanol/acetic acid. After the solvents were removed by rotary evaporation, the solid was dissolved in ethyl acetate (250 mL). The organic layer was washed with saturated sodium bicarbonate solution (100 mL) and the aqueous layer was extracted with ethyl acetate (100 mL). The combined organic layers were dried over anhydrous sodium sulfate and the solvent was evaporated to give NMR-pure triester 7 (12.1 g, 96% yield) as a white solid: mp 141-143 °C; wt% calcd (found) for C₁₂H₁₂O₆, C 57.14 (57.20), H 4.80 (4.82); M_r calcd (found) for (C₁₂H₁₂O₆)⁺, 252.0625 (252.0633); ¹H NMR (CDCl₃) δ 3.98 (s, 9 H, OCH₃), and 8.86 ppm (s, 3 H, C₆H₃).

3,5-Bis(methoxycarbonyl)benzoic Acid (8). Trimethyl 1,3,5-benzenetricarboxylate (7, 2.52 g, 10 mmol) was dissolved in methanol (200 mL) and 0.95 N sodium hydroxide (10.5 mL, 10 mmol) by stirring at room temperature for 1 h. Stirring was continued for another 16 h at pH 7-8. After removal of solvents by rotary evaporation, the residual solid was dissolved in ethyl acetate (100 mL) and the solution was washed with 0.6 N HCl and was dried over anhydrous sodium sulfate. Solvent was removed by rotary

evaporation and the solid was triturated with CCl₄ (75 mL) and filtered. Flash chromatography of the remaining solid (2.26 g) on silica gel with 19:1 (v/v) CHCl₃/methanol furnished the diester 8 (2.14 g, 90% yield) as a white solid: mp 149.5-150.5 °C; wt% calcd (found) for $C_{11}H_{10}O_6$, C 55.46 (55.20), H 4.23 (4.31); M_r calcd (found) for ($C_{11}H_{10}O_6$)⁺, 238.0476 (238.0473); ¹H NMR (CD₃OD) δ 3.97 (s, 6 H, OCH₃), 8.74 (t, 1 H, C⁴H), and 8.77 ppm (d, 2 H, C²H and C⁶H).

3,5-Bis(hydroxymethyl)benzoic Acid (9). A solution of 3,5-bis(methoxycarbonyl)benzoic acid (8, 1.34 g, 5.6 mmol) in freshly distilled THF (20 mL) was added dropwise to 1.0 M lithium triethylborohydride in THF (29 mL, 29 mmol, Super Hydride, Aldrich Chemical Co.). The colorless solution turned yellow and then deep red and gas was evolved. After being stirred at room temperature overnight, the solution contained no starting acid 8 as measured by TLC in 800:200:1 (v/v) CHCl₃/methanol/acetic acid. Aqueous 10% acetic acid was added until the solution turned colorless. The triethylborate-THF complex was removed by rotary evaporation. The resulting rubbery solid was redissolved in water and passed through an anion-exchange column (AG 50x5, formate form, BioRad Laboratories). Lithium acetate was eluted with water and then the desired acid 9 was eluted with 1.0 M formic acid. Fractions containing acid 9 as measured by TLC were combined and freed of solvent by rotary evaporation to furnish NMR-pure dihydroxy acid 9 (0.73 g, 71% yield) as a white solid: mp 171-173 °C; wt% calcd (found) for C₉H₁₀O₄, C 59.33 (59.26), H 5.53 (5.54); M_r calcd (found) for (C₉H₁₀O₄)⁺, 182.0578 (182.0576); ¹H NMR (CD₃OD) δ 4.65 (s, 4 H, CH₂), 7.56 (br s, 1 H, C⁴H), and 8.92 ppm (d, 2 H, C²H and C⁶H) in agreement with Young and Chang.²

3,5-Bis(bromomethyl)benzoic Acid (3a, Br₂Dmb). A solution of 3,5-bis(hydroxymethyl)benzoic acid (9, 0.50 g, 2.7 mmol) in diethyl ether (25 mL), THF (5 mL), and PBr₃ (0.027 mL, 2.84 mmol) was stirred at room temperature for 3 h until no starting acid was present as measured by TLC. Water (25 mL) was added, the organic phase was washed with water (2 x 25 mL), and the combined aqueous phase was extracted with ether (2 x 25 mL). The combined organic phase was dried over anhydrous sodium sulfate and freed of solvent by rotary evaporation. The residual white solid was crystallized from ethyl acetate/hexane to furnish NMR-pure dibromo acid 3a (0.518 g, 62% yield) as white needles: mp 161-163 °C; wt% calcd (found) for $C_9H_8Br_2O_2$, C 35.10 (35.21), H 2.62 (2.65), Br 51.89 (51.84); M_r calcd (found) for ($C_9H_8Br_2O_2$)⁺, 305.8891 (305.8888); ¹H NMR (CDCl₃) δ 4.50 (s, 4 H, CH₂), 7.74 (t, 1 H, C⁴H), and 8.08 ppm (d, 2 H, C²H and C⁶H).

3,5-Bis((2-amino-2-(methoxycarbonyl)ethyl)thiomethyl)benzoic Acid ((Cys-OCH₃)₂Dmb). The ¹H NMR spectrum of a solution of Cys-OCH₃ (17.1 mg, 100 µmol, 2.8 equiv), Br₂Dmb (3a, 11.1 mg, 36 µmol, 2.0 equiv), and DIEA (17.4 µL, 100 µmol, 2.8 equiv) in (CD₃)₂SO (1.0 mL) was monitored at 12 time points over 3 h (see Fig. 3). In addition, the amounts of (Cys-OCH₃)₂Dmb and Br₂Dmb present were 80 mol% and 20 mol% at 8 h and 89 mol% and 11 mol% at 25 h, respectively. Formation of the disulfide (Cys-OCH₃)₂ was not observed. Reversed-phase HPLC separation of the reaction mixture on octyl-silica (µBondapak C8, Millipore Corp.) afforded the NMR-pure title diamino acid (12 mg, 79% yield) as a white solid: M_r calcd (found) for (C₁₇H₂₄N₂O₆S₂ + H)⁺, 417.1156 (417.1147); ¹H NMR ((CD₃)₂SO) δ 2.89 (m, 4 H, C^βH₂), 3.75 (s, 6 H, OCH₃), 3.87 (s, 4 H, SC^αH₂), 4.38 (m, 2 H, C^αH), 7.54 (s, 1 H, C⁴'H), 7.84 (s, 2 H, C²'H and C⁶'H), and 8.50 ppm (br s, 4 H, NH₂). 3,5-Bis((2-(*tert*-butyloxycarbonylamino)-2-(methoxycarbonyl)ethyl)thiomethyl)benzoic Acid ((Boc-Cys-OCH₃)₂Dmb). A solution of Cys-OCH₃ (0.392 g, 2.3 mmol, 2.6 equiv), Br₂Dmb (3a, 0.308 g, 1.0 mmol, 2.0 equiv), and DIEA (1.04 mL, 6.0 mmol, 12 equiv) in (CH₃)₂SO (2.5 mL) was kept at room temperature for 30 min until Br₂Dmb was no longer detected by TLC in 950:50:1 (v/v) CHCl₃/methanol/acetic acid. Di(*tert*-butyl) dicarbonate (0.77 mL) and DIEA (0.52 mL) were added and the solution was allowed to stand for 1 h. The solvent was removed under vacuum and the residue was dissolved in ethyl acetate and washed with water (3 x 25 mL). The aqueous layer was acidified with 5% HCl and extracted with ethyl acetate (3 x 25 mL). The combined organic layers were dried over anhydrous magnesium sulfate and the solvent was removed by rotary evaporation. The residual yellow solid was recrystallized from ethyl acetate/hexane to furnish NMR-pure (Boc-Cys-OCH₃)₂Dmb (0.374 g, 60% yield) as a white solid: mp 105-107 °C; wt% calcd (found) for C₂₇H₄₀N₂O₁₀S₂, C 52.58 (52.65), H 6.54 (6.56), N 4.54 (4.46), S 10.38 (10.30); ¹H NMR (CDCl₃) δ 1.44 (s, 18 H, CCH₃), 2.83 (m, 4 H, C^βH₂), 3.75 (s, 10 H, SC^αH₂, OCH₃), 4.53 (m, 2 H, C^αH), 5.33 (d J = 7.3 Hz, 2 H, NH), 7.52 (s, 1 H, C⁴H), and 7.91 ppm (s, 2 H, C²H and C⁶H).

ACKNOWLEDGMENTS

This work was supported by a graduate fellowship (to M.E.) from La Caxia (Spain) and U.S. Public Health Service Grant GM 42031 (to B.W.E.) from the National Institute of General Medical Sciences.

REFERENCES

- (a) Engel, M.; Erickson, B. W. *Peptides 1990*; Giralt, E.; Andreu, D. Eds.; ESCOM Science Publishers: Leiden, 1991; pp. 577-578. (b) Engel, M.; Williams, R. W.; Erickson, B. W. *Biochemistry* 1991, 30, 3161-3169.
- 2. Young, R.; Chang, C. K. J. Am. Chem. Soc. 1985, 107, 898-909.
- Reddy, P. A.; Erickson, B. W. Peptides: Structure and Function; Deber, C. M.; Hruby, V. J.; Kopple, K. D. Eds.; Pierce Chemical Company: Rockford, Illinois, 1985; pp. 453-456.
- Albrecht, E.; Engel, M.; Melton, L. G.; Peek, B. M.; Erickson, B. W. Peptides: Chemistry, Structure and Biology; Rivier, J. E.; Marshall, G. R. Eds.; ESCOM Science Publishers: Leiden, 1990; pp. 718-720.
- 5. Offermann, W.; Vogtle, F. J. Org. Chem. 1979, 44, 710-713.
- 6. Offermann, W.; Vogtle, F. Angew. Chem. Int. Ed. Engl. 1980, 19, 464-465.
- 7. Kasina, S.; Nematollahi, J. Tetrahedron Lett. 1978, 1403-1406.
- 8. Erickson, B. W.; Merrifield, R. B. Proteins (3rd Ed.) 1976, 2, 255-527.
- (a) Erickson, B. W.; Daniels, S. B.; Reddy, P. A.; Higgins, M. L.; Richardson, J. S.; Richardson, D. C. *ICSU Short Rep.* 1988, 8, 4-5. (b) McClain, R. D. Protein Engineering of Betabellin, University of North Carolina at Chapel Hill 1991.