Synthesis of 2-Amino-5-hydroxycaprolactam Derivatives Mediated by *E*-Selective Olefination and Asymmetric Oxidation of the Enol Ether

Hong Li,^{a,c} Yingxue Liu,^a Qijun Liu,^{a,c} Wenhui Hu,^a Guo-Chun Zhou*^{a,b}

^a Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P. R. of China

- ^b College of Biotechnology and Pharmaceutical Engineering and College of Pharmaceutical Sciences, Nanjing University of Technology, Nanjing 210009, P. R. of China
- Fax +86(20)32015351; E-mail: allspringzhou@yahoo.com

^c Graduate School of Chinese Academy of Sciences, Beijing 100039, P. R. of China

Received 5 August 2010; revised 6 September 2010

Abstract: The asymmetric synthesis of 2-amino-5-hydroxycaprolactam derivatives is essential for exploring the antitumor properties of ester-bearing bengamides. In this study, chiral caprolactam isomers were achieved on the basis of highly *E*-selective Wittig olefination, asymmetric oxidations of the *E*-enol ethers, reductive amination of the aldehyde derivatives, cyclization of the 5-hydroxylysine analogues or/and deprotection.

Key words: caprolactam, *E*-selective olefination, asymmetric oxidation, enol ether, reductive amination

Bengamides (1, Figure 1) are classified as fused ketideamino acid derivatives, which were first isolated by Crews and co-workers from Jaspis sponges.¹ It was demonstrated that natural and synthetic bengamides target type 1 and type 2 methionine aminopeptidases (MetAP1 and MetAP2)² and act as potent cancer cell growth inhibitors3 and anti-angiogenesis agents.2,4 The sevenmembered caprolactam rings of (2S)-aminocaprolactam, (2S,5S)-2 and (2S,5R)-2 (Figure 1) are the basic building scaffolds of bengamides. (2S)-Aminocaprolactam and (2S,5S)-2, being the cyclized products of lysine and the unnatural amino acid (2S,5S)-5-hydroxylysine, respectively, have been found in natural bengamides, while (2S,5R)-2, which is a derivative of the natural amino acid (2S,5R)-5-hydroxylysine, has been used for synthetic bengamides. Bengamides with a lipophilic ester substituent at the 5-position of the caprolactam (Figure 1, R = naturallinear acyloxy and R = synthetic cyclic acyloxy) are generally more potent than their non-ester-bearing counterparts (Figure 1, R = H) in inhibiting cancer cell growth^{4,5} and HUVEC proliferation.⁵ Therefore, the asymmetric synthesis of 2 and its analogues is essential for exploring the antitumor properties of ester-bearing bengamide analogues. 5-Hydroxycaprolactams of 2 can be cyclized from their corresponding 5-hydroxylysines,⁵ however, a continued supply of 5-hydroxylysine from natural sources or commercial agents was not a practical option since (2S,5R)-5-hydroxylysine is limited in Nature and (2S,5S)-5-hydroxylysine is also difficult to obtain. The development of an efficient synthetic approach capable of produc-

SYNTHESIS 2010, No. 23, pp 4068–4074 Advanced online publication: 30.09.2010 DOI: 10.1055/s-0030-1258275; Art ID: F13710SS © Georg Thieme Verlag Stuttgart · New York ing large quantities of 2 and its analogues that meets the need for diverse ester-bearing bengamides was thus required. Although there are some reports on the synthesis of 5-hydroxylysine⁶ and 5-hydroxycaprolactam 2,⁷ we report herein an alternative asymmetric synthesis of 2 and its analogues.

Figure 1 Structures of bengamides and caprolactams

As shown in Scheme 1, we envisioned a new strategy for the asymmetric synthesis of **2**, **3** and **4** that relied on olefination and then asymmetric epoxidation or dihydroxylation of an intermediate enol ether. We wanted to prepare the *E* or *Z* form of the 1,2-disubstituted olefin of the enol ether from dimethyl L-glutamate, and then introduce the stereogenic center (red asterisk) by means of either Jacobsen epoxidation⁸ of the *Z*-olefin, or Sharpless asymmetric dihydroxylation⁹ and Shi asymmetric epoxidation¹⁰ of the *E*-olefin. Finally, the α -hydroxy aldehyde intermediates could be transformed into the corresponding amine by reductive amination to stereoselectively construct the (5*S*) or (5*R*)-hydroxylysine analogues, which can be cyclized into **2**, **3** or **4**, respectively.

Starting from commercially available dimethyl Lglutamate, bis-*tert*-butyl carbamate protection of the α amine of dimethyl L-glutamate was conducted and then the δ -carboxylic ester was selectively reduced to aldehyde **5** with diisobutylaluminum hydride (DIBAL-H) through a modified literature procedure.¹¹ Although the use of (methoxymethyl)triphenylphosphonium chloride to construct enol ether olefins is common, in most circumstanc-

Scheme 1 Synthetic strategy for 2, 3 and 4 (red asterisk indicates chiral center) from methyl L-glutamate

Table 1 Wittig Reaction of Aldehyde 5 with (Methoxymethyl)triphenylphosphonium Chloride (Scheme 2)

Base	Additive –	Result ^a	Solvent					
			THF	Et ₂ O	Dioxane	DME	Toluene	
n-BuLi	_	Yield (%) E/Z	33 80:20	30 76:24	50 77:23	45 87:13	<10.0 78:12	
i-BuLi	_	Yield (%) <i>E</i> / <i>Z</i>	31 86:14	19 83:17	18 76:24	70 84:16	31 62:38	
LiHMDS	_	Yield (%) <i>E/Z</i>	31 92:8	11 92:8	28 77:23	70 84:16	19 89:11	
NaHMDS	_	Yield (%) <i>E/Z</i>	82 89:11	63 83:17	56 77:23	74 87:13	82 89:11	
	15-crown-5	Yield (%) E/Z	77 86:14	68 91:9	28 74:26	77 88:12	50 88:12	
KHMDS	_	Yield (%) E/Z	19 87:13	79 89:11	trace NA	69 88:12	72 90:10	
	18-crown-6	Yield (%) <i>E/Z</i>	32 89:11	70 89:11	trace NA	82 88:12	23 88:12	

^a The ratios of *E/Z* were determined by ¹H NMR spectroscopic analysis.

es these enol ether olefins have simply been used for elongation of the aldehyde molecule without considering the *E/Z* geometry of olefins. Moreover, from the limited number of reports available, the *E/Z* ratio of the enol ether olefin formed from the Wittig reaction is not consistent. For example, aromatic aldehydes with similar structural properties produced quite different *E/Z* ratios (from $52:48^{12}$ and $56:44^{13}$ to $95:5^{12}$) using the same base (PhLi) in tetrahydrofuran to generate the ylide; meanwhile, alkyl aldehydes generated the *Z*-form as the predominant isomer in some cases,^{14,15} but with only a slight excess in others,¹⁶ when the ylide was generated with lithium hexamethyldisilazide (LiHMDS)^{14,16} or butyllithium¹⁵ in

Scheme 2 Preparation of enol ether olefin 6

tetrahydrofuran. Since substrate **5** is structurally similar to the those used in the last references, ^{14–16} we initially expected *Z* selectivity for olefin **6** in the Wittig reaction. Undaunted, we explored the Wittig olefination of **5** with (methoxymethyl)triphenylphosphonium chloride by employing potassium hexamethyldisilazide (KHMDS) as a base to generate the ylide in toluene (Scheme 2). The reaction furnished an *E/Z* mixture, however, the *E*-isomer was produced as the predominant methyl enol ether product **6** [*E/Z* ratio 91:9, determined by ¹H NMR integration of enol proton signals for the *E*-isomer ($\delta = 6.30$ ppm, $J \sim$ 12.6 Hz) and for *Z*-isomer ($\delta = 5.88$ ppm, $J \sim 6.4$ Hz)].

We further investigated the Wittig reaction of **5** with a range of common bases, solvents and additives (Scheme 2). The reaction yields and E/Z ratios of olefin **6** are shown in Table 1. It was found that NaHMDS and KHMDS were both suitable bases that facilitated the Wittig reaction to produce acceptable yields (~80%) and good E/Z ratios (~91:9); toluene was found to be a good solvent for both bases, as was 1,2-dimethoxyethane. Dioxane was not a good solvent and *n*-butyllithium and isobutyllithium were not suitable bases in that they generally gave lower yields of **6** and poor geometrical selectiv-

Synthesis 2010, No. 23, 4068-4074 © Thieme Stuttgart · New York

 Table 2 Conversion of 6 into 2, 3 and 4 by Oxidation and Reductive Amination (Scheme 3), Cyclization and Deprotection (Scheme 4)

Oxidant			MCPBA	AD-mix-α	AD-mix-β	Shi reagent
6 to 2 and 3 <i>via</i> 8 and 10	2	(2 <i>S</i> ,5 <i>R</i>)/(2 <i>S</i> ,5 <i>S</i>) ^a Yield (%) ^b /isomer	50:50 NA ^d	18:82 12/(2 <i>S</i> ,5 <i>S</i>)	94:6 18/(2 <i>S</i> ,5 <i>R</i>)	82:18 9/(2 <i>S</i> ,5 <i>R</i>)
	3	(2S,5R)/(2S,5S)	57:43	20:80	395:5	79:21
	8	(2S,5R)/(2S,5S)	50:50	15:85	395:5	79:21
	8 s	$(2S,5R)/(2S,5S)^{c}$	50:50	20:80	92:8	80:20
6 to 2 via 9, 11 and 4	2	$(2S,5R)/(2S,5S)^{a}$ Yield (%) ^b /isomer	49:51 NA ^d	15:85 18/(2 <i>S</i> ,5 <i>S</i>)	94:6 29/(2 <i>S</i> ,5 <i>R</i>)	80:20 14/(2 <i>S</i> ,5 <i>R</i>)
	4		50:50	20:80	395:5	80:20
	9		50:50	19:81	395:5	81:19

^a Before recrystallization.

^b Total yield based on **6** after the 1st batch recrystallization.

^c HPLC analysis data are available (see Supporting Information).

^d Not applicable.

ity for the olefin. Moreover, adding 18-crown-6 (for K⁺) or 15-crown-5 (for Na⁺) did not significantly affect either the reaction yields or E/Z ratios. Thus, we chose either NaHMDS or KHMDS as a base in toluene to generate the ylide for the Wittig olefination.

Since the *E*-configuration of the disubstituted enol ether 6 $(E/Z, \sim 91:9)$ was ideal for both Sharpless asymmetric dihydroxylation⁹ and Shi asymmetric epoxidation,¹⁰ the C-5 diastereomeric excess of the possible intermediate of 7a or 7b, respectively, could be achieved by applying the Shi chiral reagent, AD-mix- α or AD-mix- β (Scheme 3). However, because intermediates 7a and 7b were not stable, they were directly transformed into the corresponding amine 8 or 9 by reductive amination with either benzylamine or 4-methoxybenzylamine by treatment with sodium cyanoborohydride. Two diastereomeric products of 8 could be distinguished by ¹H NMR spectroscopic analysis, in which characteristic proton resonances of the (2S,5R)- and the (2S,5S)-isomers could be identified at $\delta = \sim 1.92, \sim 2.30$ ppm and at $\delta \sim 2.00, \sim 2.21$ ppm, respectively. Similarly, the corresponding ¹H NMR chemical shifts of the (2S,5R)- and (2S,5S)-isomer of 9 were differentiated at $\delta = \sim 1.88$, ~ 2.27 ppm and at $\delta = \sim 1.98$, ~ 2.18 ppm. The results summarized in Table 2 indicated that application of *m*-chloroperoxybenzoic acid produced 8 or 9 in almost 50:50 diastereometric ratios of (2S,5R)/(2S,2S); in contrast, the (2S,5S)-isomer of 8 or 9 formed as the predominant product upon use of the AD-mix- α , while the (2S,5R)-isomer of 8 or 9 was formed as the major product by application of either AD-mix-β or the Shi chiral reagent. To verify the ¹H NMR spectroscopic determinations of the stereoselectivity of these oxidations, the two isomers of 8 were converted into the corresponding (2S,5R)- and (2S,5S)-7-N-Boc carbamoylated products 8s, which were analyzed by reverse-phase HPLC; the results were used to determine the diastereomer ratios of (2S,5R)/(2S,5S) (see Supporting Information). To our delight, HPLC analysis data (Table 2) revealed that the diastereomeric ratios of (2S,5R)/(2S,5S) were 50:50 by *m*-chloroperoxybenzoic acid, 20:80 by AD-mix- α , 92:8 by ADmix- β , and 80:20 by use of Shi's chiral reagent, which were very close to the values determined by ¹H NMR spectroscopic analysis.

Scheme 3 Asymmetric epoxidation or dihydroxylation of *E*-rich disubstituted enol ether 6 and reductive amination of aldehyde intermediates 7 (red asterisk indicates chiral center)

We found (data not shown) that bis-Boc protection of the α -amine hampered the cyclization and that, although **8** and **9** can be hydrogenated, the resulting products with free primary amines at the 7-position were difficult to purify and gave low yields. Removal of one protected carbamate was therefore conducted by treatment with trifluoroacetic acid in dichloromethane (1:25; Scheme 4). However, the mono-Boc protected intermediates **10** and **11** were too unstable to isolate due to their tendency to cyclize to **3** and **4**, respectively, at room temperature. Upon heating to reflux temperature in ethanol for 48 hours, **10** and **11** both completely cyclized to **3** or **4**, respectively, in high yield. Furthermore, hydrogenation of **10** in refluxing

ethanol in the presence of Pd/C/H₂ or Pd(OH)₂/H₂ afforded a mixture of **2** (~60%) and **3** (~40%), which were easily separated by silica gel chromatography, while hydrogenation of **11** under the same conditions produced **4** as the dominant product together with a very low yield of **2** (generally less than 10%). Neither **3** nor **4** underwent deprotection of the Bn or PMB group, respectively, upon treatment with Pd/C/H₂ or Pd(OH)₂/H₂, however, the PMB group of **4** was successfully removed by treatment with cerium(IV) ammonium nitrate¹⁷ to afford **2**.

Scheme 4 Synthesis of 2, 3 and 4 (red asterisk indicates chiral center)

The diastereomeric ratios of compounds 2, 3 and 4 were determined by ¹H NMR spectroscopic analysis and are listed in Table 2. The (2S,5R)- and (2S,5S)-isomers of 2 were assigned according to the proton signals identified at $\delta = 4.60$ (m, 5-H) and $\delta = 7.40$ (s, 7-NH) ppm or at $\delta =$ 4.92 (m, 5-H) and 7.76 (s, 7-NH) ppm; the (2S,5R)-and (2S,5S)-isomers of **3** were characterized by the respective signals at $\delta = 4.35$ (m, 5-H), 4.21 (d, J = 14.4 Hz, 7-N- CH_2 -Ph) and 5.21 (d, J = 14.4 Hz, 7-N- CH_2 -Ph) ppm, and at $\delta = 4.44$ (m, 5-*H*), 4.51 (d, J = 14.4 Hz, 7-N-CH₂-Ph) and 4.78 (d, J = 14.4 Hz, 7-N-CH₂-Ph) ppm; and the (2S,5R)- and (2S,5S)-isomers of 4 were determined on the basis of signals at δ = 4.32 (m, 5-H), 4.22 (d, *J* = 14.4 Hz, 7-N-C H_2 -Ar-*p*-OMe) and 5.04 (d, J = 14.4 Hz, 7-N-C H_2 -Ph-*p*-OMe) ppm, and at $\delta = 4.36$ (m, 5-*H*), 4.42 (d, J = 14.4 Hz, 7-N-CH₂-Ar-p-OMe) and 4.61 (d, J = 14.4Hz, 7-N-CH₂-Ar-p-OMe) ppm. It is worth mentioning that the diastereomeric ratio of compounds 2, 3 and 4 were consistent with those of compounds 8 and 9, respectively, and that the diastereometric ratios of the (2S,5R)- and (2S,5S)-isomers of 2 were the same as those of the corresponding isomers of 4 upon CAN-mediated deprotection.

The diastereomeric purity of the (2S,5R)- and (2S,5S)-isomers of **2** reached more than 95% after recrystalization^{7b} (MeOH–EtOAc, ~1:1) of the products from either the AD-mix- β dihydroxylation, Shi asymmetric epoxidation or from the AD-mix- α -mediated dihydroxylation, and the ¹H- and ¹³C NMR spectra of both isomers were identical to the corresponding reported data.^{5,7b} The (2S,5R)-**3** or (2S,5R)-**4** isomers originating from AD-mix- β -mediated dihydroxylation were easily purified to more than 95% diastereomeric purity by silica gel column chromatography, however, only ~90% diastereomeric purity for the (2S,5R)- and (2S,5S)-**3** isomers, or the (2S,5R)- and (2S,5S)-**4** isomers could be achieved after Shi asymmetric epoxidation or AD-mix- α -mediated dihydroxylation, re-

spectively, and only after repeated silica gel column chromatography.

As discussed above and shown in Table 2, the synthetic route to 2 from 6 via 4 could afford the pure (2S,5R)-2 isomer in higher than 29% total yield from AD-mix- β -mediated dihydroxylation, and the pure (2S,5S)-2 isomer in higher than 18% total yield from AD-mix- α -mediated dihydroxylation after one recrystallization; recrystallization yields could be significantly increased by recycling the mixtures. It is noted that our present synthesis is a general method to synthesize diverse N-substituted derivatives of caprolactam.

In summary, the asymmetric synthesis of different isomers of **2**, **3** and **4** was achieved on the basis of highly *E*selective olefination, asymmetric oxidation of the enol ether, reductive amination of the aldehyde derivatives, cyclization of 5-hydroxylysine analogues or/and deprotection. We have found in the present work that both NaHMDS and KHMDS in toluene provide excellent conditions for *E*-selective olefination. The use of AD-mix- α was found the be the best choice for generating the (2*S*,5*S*)-isomers, and AD-mix- β was the best oxidant for the (2*S*,5*R*)-isomers. The synthetic route to **2** from **6** via **4** could be an ideal and practical method for achieving the synthesis of **2**. In addition, it would be possible to synthesize further derivatives of N-substituted caprolactams by using the present method.

¹H and ¹³C NMR spectra were recorded with a Bruker AV-400 instrument operating at 400 and 100 MHz, respectively, in CDCl₃ unless otherwise mentioned. Coupling constants (*J*) are expressed in hertz (Hz). Chemical shifts (δ) for the NMR spectral data are reported in parts per million (ppm) relative to the solvent. Low- and highresolution MS (ESI) were recorded with an Agilent 1200 HPLC-MSD mass spectrometer or Applied Biosystems Q-STAR Elite ESI-LC-MS/MS mass spectrometer. Scanned copies of the ¹H and ¹³C NMR spectra and the HPLC analytical data are included in the Supporting Information.

(2S)-Methyl 2-[Bis(*tert*-butoxycarbonyl)amino]-6-methoxyhex-5-enoate (6) Using KHMDS in Toluene

(Methoxymethyl)riphenyl phosphonium chloride (8.47 g, 25.5 mmol) was suspended in anhydrous toluene (100 mL) under a nitrogen atmosphere and then cooled into 0 °C before the addition of KHMDS (48 mL, 0.5 M in toluene, 24.0 mmol). The reaction was stirred at 0 °C for 30 min, then cooled to -80 °C and a solution of (2*S*)-methyl-2-[bis(*tert*-butoxycarbonyl)amino]-5-oxopentanoate (**5**; 8.0 g, 23.2 mmol) in toluene (50 mL) was added dropwise. The reaction was stirred for 90 min at the same temperature and at r.t. for 60 min. Sat. NH₄Cl (50 mL) was added at -80 °C and the mixture was warmed to r.t. and extracted with EtOAc (3 × 150 mL), dried over anhydrous Na₂SO₄ and purified by column silica gel chromatography (petroleum ether–EtOAc, 98:2–95:5) to give **6**.

Yield: 6.2 g (72%); *E*/*Z* ratio 91:9.

Pure (E)-6

¹H NMR (400 MHz, CDCl₃): δ = 6.29 (d, *J* = 12.8 Hz, 1 H), 4.86 (m, 1 H), 4.67 (m, 1 H), 3.72 (s, 3 H), 3.49 (s, 3 H), 2.16 (m, 1 H), 1.98 (m, 3 H), 1.49 (s, 18 H).

¹³C NMR (100 MHz, CDCl₃): δ = 171.5, 152.1 (2C), 147.9, 101.4, 83.0 (2C), 57.4, 55.8, 52.1, 31.1, 28.0 (6C), 24.5.

HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₈H₃₁NNaO₇: 396.1993; found: 396.2002.

(2*S*,5*R*)/(2*S*,5*S*)-Methyl 2-[Bis-(*tert*-butoxycarbonyl)amino]-5hydroxy-6-oxopentanoate (7)

Preparation of 7a by Shi Epoxidation

To a solution of **6** (2.1 g, 5.7 mmol; *E/Z* ratio ~91:9) in dimethoxymethane (30 mL) and MeCN (15 mL), 30 mL of 0.05 M Na₂B₂O₄/0.4 mM EDTA, Bu₄NHSO₄ (77.0 mg, 0.23 mmol) and fructose-derived chiral ketone (436 mg, 1.7 mmol) were added and the reaction was stirred at 0 °C for 15 min. A solution of Oxone (3.85 g, 0.57 mmol) in aq EDTA (0.4 mM, 18 mL) and aq K₂CO₃ (3.9 g in 18 mL) were added dropwise over 3 h. The reaction was diluted with H₂O (20 mL) and extracted with CH₂Cl₂ (4 × 100 mL), washed with brine (2 × 100 mL), and dried over anhydrous Na₂SO₄. After filtration and concentrated, the residue was quickly purified by flash chromatography to afford **7a** (69% yield).

Preparation of 7b by AD-Mix Dihydroxylation

AD-mix- α or AD-mix- β (280 mg) was dissolved in *t*-BuOH (1.5 mL) and H₂O (1.5 mL) at r.t. and the solution was cooled to 0 °C. A solution of **6** (74.6 mg, 0.2 mmol; *E/Z* ratio ~91:9) in *t*-BuOH (1.0 mL) and H₂O (1.0 mL) was added and the reaction was stir at 0 °C until **6** was completely consumed (reaction monitored by TLC). Na₂SO₃ (300 mg) was added at 0 °C to r.t. for 30 min and the mixture was extracted with CH₂Cl₂ (4 × 15 mL). The combined organic phase was washed with brine (2 × 15 mL) and dried over anhydrous Na₂SO₄. After filtration and concentration, the crude product was quickly purified by silica gel column chromatography (CH₂Cl₂-MeOH, 98:2) to give **7b** (83% yield for AD-mix- α dihydroxylation and 85% yield for AD-mix- β dihydroxylation).

Compounds **7a** and **7b** were not stable and were therefore used for further reductive amination as soon as possible after purification.

(25,5*R*)/(25,5*S*)-Methyl 6-(Benzylamino)-2-[bis(*tert*-butoxycarbonyl)amino]-5-hydroxyhexanoate (8)

To a solution of **7** (300 mg, 0.8 mmol) in MeOH (20 mL), benzylamine (BnNH₂; 0.8 mmol) or 4-methoxybenzylamine (PMBNH₂; 0.8 mmol) was added at 0 °C. The reaction was stirred at 0 °C for 10 min and then at r.t. for 3 h, NaCNBH₃ (75 mg, 1.2 mmol) was added to the reaction, which was then stirred for a further 2 h and then diluted with H₂O (10 mL). Extraction with CH₂Cl₂ (3 × 60 mL) and usual workup gave the crude product, which was purified by silica gel column chromatography (CH₂Cl₂–MeOH, 98:2) to afford **8** (340 mg, 91%). The (2*S*,5*R*)- and (2*S*,5*S*)-isomers of **8** were characterized by ¹H NMR signals at $\delta = \sim$ 1.92, ~2.30 ppm and at $\delta = \sim$ 2.00, ~2.21 ppm, respectively.

Pure (2S,5R)-8 from AD-Mix-β Dihydroxylation

¹H NMR (400 MHz, CDCl₃ + D₂O): δ = 7.23–7.35 (m, 5 H), 4.86 (dd, *J* = 5.2, 9.2 Hz, 1 H), 3.78 (dd, *J* = 13.2, 22.0 Hz, 2 H), 3.70 (s, 3 H), 3.63 (m, 1 H), 2.74 (dd, *J* = 3.2, 12.0 Hz, 1 H), 2.48 (m, 1 H), 2.45 (m, 1 H), 1.90 (m, 1 H), 1.40–1.60 (m, 2 H), 1.49 (s, 18 H).

¹³C NMR (100 MHz, CDCl₃): δ = 171.2, 151.1 (2C), 138.1, 128.6 (2C), 128.5 (2C), 127.5, 83.1 (2C), 68.8, 58.2, 54.1, 53.2, 52.1, 31.6, 28.0 (6C), 26.2.

HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₄H₃₈N₂NaO₇: 489.2571; found: 489.2570.

(2*S*,5*R*)/(2*S*,5*S*)-Methyl 6-[(*tert*-Butoxycarbonyl)benzylamino]-2-[bis(*tert*-butoxycarbonyl)amino]-5-hydroxyhexanoate (8s)

To a solution of **8** (30 mg, 0.064 mmol) in dioxane (4 mL), sat. NaHCO₃ (4 mL) and di-*tert*-butyl dicarbonate (70 mg, 0.32 mmol) were added. The reaction was stirred at r.t. for 3 h and then extracted with CH_2Cl_2 (3 × 10 mL). The combined organic phase was washed with brine (10 mL) and dried over anhydrous Na₂SO₄. After filtra-

tion and concentration, the crude product was purified by silica gel column chromatography (CH₂Cl₂–MeOH, 98:2) to give 8s (82%).

(2*S*,5*R*)/(2*S*,5*S*)-Methyl 6-(4-Methoxybenzylamino)-2-[bis(*tert*-butoxycarbonyl)amino]-5-hydroxyhexanoate (9)

Prepared as described for compound **8** to afford **9** (93% yield). The (2*S*,5*R*)- and (2*S*,5*S*)-isomers of **9** were differentiated at $\delta = \sim 1.88$, ~ 2.27 ppm and at $\delta = \sim 1.98$, ~ 2.18 ppm.

Pure (2S,5R)-9 from AD-Mix-β Dihydroxylation

¹H NMR (400 MHz, CDCl₃): δ = 7.17 (d, *J* = 8.8 Hz, 2 H), 6.81 (d, *J* = 8.8 Hz, 2 H), 4.82 (m, 1 H), 3.78–3.53 (m, 3 H), 3.75 (s, 3 H), 3.63 (s, 3 H), 2.67 (dd, *J* = 2.8, 12.0 Hz, 1 H), 2.44 (dd, *J* = 2.8, 12.0 Hz, 1 H), 2.27 (m, 1 H), 1.88 (m, 1 H), 1.59–1.34 (m, 4 H), 1.45 (s, 18 H).

¹³C NMR (100 MHz, CDCl₃): δ = 171.1, 158.8, 152.2 (2C), 132.3, 129.2 (2C), 113.9 (2C), 83.0 (2C), 69.4, 58.3, 55.2, 54.6, 53.1, 51.7, 31.7, 27.9 (6C), 26.2.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{25}H_{41}N_2O_8$: 497.2863; found: 497.2853.

(2*S*,5*R*)/(2*S*,5*S*)-Methyl 6-(Benzylamino)-2-[(*tert*-butoxycarbonyl)amino]-5-hydroxyhexanoate (10) and (2*S*,5*R*)/(2*S*,5*S*)-Methyl 6-(4-Methoxybenzylamino)-2-[(*tert*-butoxycarbonyl)amino]-5-hydroxyhexanoate (11)

Compound **8** or **9** (~1.0 mmol) was dissolved in CH_2Cl_2 (20 mL) and treated with TFA (0.8 mL) at r.t. for 15 min. The reaction was quenched with sat. aq NaHCO₃ (50 mL) and extracted with CH_2Cl_2 (3 × 60 mL). The combined organic phase was washed with brine (50 mL) and dried over anhydrous Na₂SO₄. After filtration and concentration, the crude product was quickly purified by silica gel column chromatography (CH₂Cl₂–MeOH, 98:2) to give **10** (70% yield) or **11** (80% yield). Compounds **10** and **11** were used for further reactions as soon as possible after purification.

(2S,5R)/(2S,5S)-2-[(*tert*-Butoxycarbonyl)amino]-5-hydroxy-Nbenzylcaprolactam (3) and (2S,5R)/(2S,5S)-2-[(*tert*-Butoxycarbonyl)amino]-5-hydroxy-N-(4-methoxybenzyl)caprolactam (4) Compound 10 or 11 (~1.0 mmol) was dissolved in EtOH (20 mL) and the solution was heated at reflux for 48 h. After evaporation, the residue was purified by silica gel chromatography (CH₂Cl₂–MeOH, 98:2) to give 3 (92% yield) or 4 (94% yield).

(2S,5R)-**3** and (2S,5S)-**3** were characterized by the respective signals at $\delta = 4.35$ (m, 5-H), 4.21 (d, J = 14.4 Hz, 7-N-CH₂-Ph) and 5.21 (d, J = 14.4 Hz, 7-N-CH₂-Ph) ppm, or at $\delta = 4.44$ (m, 5-H), 4.51 (d, J = 14.4 Hz, 7-N-CH₂-Ph) and 4.78 (d, J = 14.4 Hz, 7-N-CH₂-Ph) ppm.

$(2S, 5R)\mbox{-}3$ from AD-Mix- β Dihydroxylation or from Shi Epoxidation

Purified by repeated silica gel chromatography (CH₂Cl₂–MeOH, $100:0\rightarrow$ 98:2).

¹H NMR (400 MHz, CDCl₃): δ = 7.20–7.40 (m, 5 H), 6.06 (d, J = 5.6 Hz, 1 H), 5.21 (d, J = 14.4 Hz, 1 H), 4.35 (m,1 H), 4.21 (d, J = 14.4 Hz, 1 H), 3.99 (m, 1 H), 3.55 (d, J = 15.6 Hz, 1 H), 3.99 (m,1 H), 1.67 (m, 1 H), 1.61 (m, 1 H), 1.45 (s, 9 H).

¹³C NMR (100 MHz, CDCl₃): δ = 173.0, 155.3, 137.0, 128.7 (2C), 128.1 (2C), 127.6, 79.6, 65.4, 53.1, 51.5, 34.9, 29.7, 29.4 (3C), 26.7.

HRMS (ESI): m/z [M + Na]⁺ calcd for C₁₈H₂₆N₂NaO₄: 357.1790; found: 357.1799.

(2S,5S)-3 from AD-Mix-α Dihydroxylation

Purified by repeated silica gel chromatography (CH₂Cl₂–MeOH, $100:0\rightarrow$ 98:2).

¹H NMR (400 MHz, CDCl₃): δ = 7.20–7.50 (m, 5 H), 6.08 (d, J = 5.6 Hz, 1 H), 4.78 (d, J = 14.4 Hz, 1 H), 4.51 (d, J = 14.4 Hz, 1 H), 4.44 (m, 1 H), 3.50 (m, 1 H), 3.38 (m, 1 H), 3.25 (d, J = 14.4 Hz, 1 H), 2.16 (m, 2 H), 2.11 (m, 1 H), 1.80 (m, 1 H), 1.60 (m, 1 H), 1.47 (s, 9 H).

¹³C NMR (100 MHz, CDCl₃): δ = 172.9, 155.2, 136.7, 128.8 (2C), 128.2 (2C), 127.8, 79.6, 68.5, 54.1, 53.0, 51.9, 36.9, 30.4, 28.4 (3C).

MS (ESI): m/z (%) = 707 (8) $[2M + K]^+$, 335 (90) $[M + H]^+$.

(2S,5R)-4 or (2S,5S)-4 isomers were determined on the basis of ¹H NMR signals at $\delta = 4.32$ (m, 5-H), 4.22 (d, J = 14.4 Hz, 7-N-CH₂-Ar-*p*-OMe) and 5.04 (d, J = 14.4 Hz, 7-N-CH₂-Ar-*p*-OMe) ppm or at $\delta = 4.36$ (m, 5-H), 4.42 (d, J = 14.4 Hz, 7-N-CH₂-Ar-*p*-OMe) and 4.61 (d, J = 14.4 Hz, 7-N-CH₂-Ar-*p*-OMe) ppm.

$(2S,\!5R)\!\cdot\!4$ from AD-Mix- β Dihydroxylation or from Shi Epoxidation

Purified by repeated silica gel chromatography (CH₂Cl₂–MeOH, $100:0\rightarrow$ 98:2).

¹H NMR (400 MHz, $CDCl_3$): $\delta = 7.19$ (d, J = 8.8 Hz, 2 H), 6.85 (d, J = 8.8 Hz, 2 H), 6.06 (m, 1 H), 5.04 (d, J = 14.4 Hz, 1 H), 4.32 (m, 1 H), 4.22 (d, J = 14.4 Hz, 1 H), 3.97 (m, 1 H), 3.79 (s, 3 H), 3.54 (d, J = 15.2 Hz, 1 H), 3.39 (dd, J = 5.2, 15.6 Hz, 1 H), 1.94 (m, 2 H), 1.82 (m, 1 H), 1.67 (m, 1 H), 1.54 (m, 1 H), 1.45 (s, 9 H).

¹³C NMR (100 MHz, CDCl₃): δ = 172.9, 159.3, 155.2, 129.6 (2C), 129.2, 114.2 (2C), 79.5, 65.6, 55.2, 53.2, 52.5, 51.4, 34.9, 28.4 (3C), 26.7.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{19}H_{29}N_2O_5$: 365.2076; found: 365.2075.

(2S,5S)-4 from AD-Mix-α Dihydroxylation

Purified by repeated silica gel chromatography (CH₂Cl₂–MeOH, $100:0\rightarrow$ 98:2).

¹H NMR (400 MHz, CDCl₃): δ = 7.15 (d, *J* = 8.4 Hz, 2 H), 6.82 (d, *J* = 8.4 Hz, 2 H), 6.03 (m, 1 H), 4.61 (d, *J* = 14.4 Hz, 1 H), 4.42 (d, *J* = 14.4 Hz, 1 H), 4.36 (m, 1 H), 3.76 (s, 3 H), 3.44–3.19 (m, 3 H), ~2.60 (br s, 1 H), 2.09 (m, 2 H), 1.72 (m, 1 H), 1.56 (m, 1 H), 1.42 (s, 9 H).

¹³C NMR (100 MHz, CDCl₃): δ = 172.7, 159.3, 155.2, 129.6 (2C), 128.9, 114.2 (2C), 79.5, 68.4, 55.2, 54.1, 53.0, 51.3, 36.8, 30.3, 28.4 (3C).

MS (ESI): m/z (%) = 751.3 (20) [2M + Na]⁺, 629.3 (70) [2M + H – Boc]⁺, 387.1 (75) [M + Na]⁺, 465.1 (75) [M + H]⁺, 265.1 (100) [M + H – Boc]⁺.

(2*S*,5*R*)/(2*S*,5*S*)-2-[(*tert*-Butoxycarbonyl)amino]-5-hydroxycaprolactam (2) and (2*S*,5*R*)/(2*S*,5*S*)-2-[(*tert*-Butoxycarbonyl)amino]-5-hydroxy-*N*-benzylcaprolactam (3)

Compound **10** (300 mg, 0.82 mmol) was dissolved in EtOH (50 mL) and treated with 10% Pd/C (86 mg) under H₂. The reaction was heated at reflux overnight and then cooled to r.t., filtered and evaporated. The crude product was purified by gradient silica gel column chromatography (CH₂Cl₂–MeOH, 98:2 \rightarrow 95:5) to afford **2** (110 mg, 55.0%) and **3** (100 mg, 37%). The (2*S*,5*R*)-**2** and (2*S*,5*S*)-**2** isomers were assigned according to the ¹H NMR signals at δ = 4.60 (m, 5-H) and 7.40 (s, 7-NH) ppm, or at δ = 4.92 (m, 5-H) and 7.76 (s, 7-NH) ppm. All the spectroscopic data for pure (2*S*,5*R*)-**2** and pure (2*S*,5*S*)-**2** were in accord with their corresponding reported data.^{5,7b}

Pure (2S,5R)-2

Obtained from AD-mix- β dihydroxylation (33% total yield) or Shi epoxidation (20% total yield) after the 1st batch recrystallization (MeOH–EtOAc; recrystallization yield of the 1st batch: 60% and ~37%, respectively).

¹H NMR (400 MHz, DMSO- d_6): $\delta = 7.40$ (m, 1 H), 6.37 (d, J = 6.4 Hz, 1 H), 4.58 (d, J = 4.4 Hz, 1 H), 4.06 (m, 1 H), 3.72 (m, 1 H), 3.29 (m, 1 H, overlapped with DMSO), 3.01 (m, 1 H), 1.45–1.99 (m, 4 H), 1.38 (s, 9 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 174.3, 155.0, 78.4, 64.1, 52.9, 45.6, 34.7, 28.6 (3C), 25.4.

MS (ESI): m/z (%) = 389 (100) [2M + H – Boc]⁺, 267 (50) [M + Na]⁺.

Pure (2*S*,5*S*)-2

Obtained from AD-mix- α dihydroxylation (22% total yield) after the 1st batch recrystallization (MeOH–EtOAc; recrystallization yield of the 1st batch: ~40%).

¹H NMR (400 MHz, DMSO- d_6): $\delta = 7.73$ (m, 1 H), 6.37 (d, J = 6.8 Hz, 1 H), 4.92 (d, J = 4.4 Hz, 1 H), 4.01 (m, 1 H), 3.25 (m, 1 H), 3.07 (m, 1 H), 2.97 (m, 1 H), 1.99 (m, 1 H), 1.75 (m, 1 H), 1.50 (m, 2 H), 1.37 (s, 9 H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 174.5, 154.9, 78.7, 69.5, 53.2, 48.0, 36.9, 29.9, 28.7 (3C).

MS (ESI): m/z (%) = 389 (100) [2M + H – Boc]⁺, 267 (15) [M + Na]⁺, 245 (10) [M + H]⁺.

2 from 4 by CAN

Compound **4** (100 mg, 0.275 mmol) was dissolved in MeCN–H₂O (9:1, 15 mL) and the solution was cooled to -10 °C. CAN (603 mg, 1.1 mmol) was added and the reaction was stirred at -10 °C for 30 min and then at 0 °C overnight. When the reaction was complete, sat. aq NaHCO₃ (10 mL) was added and the mixture was extracted with CH₂Cl₂ (3 × 20 mL), dried over anhydrous Na₂SO₄, filtered and evaporated. The residue was purified by silica gel chromatography (MeOH–EtOAc, 98:2–)90:10) to afford **2** (51 mg, 76%), in which the diastereomeric ratio of the (2*S*,5*R*)-**2** and (2*S*,5*S*)-**2** isomers were the same as those of the (2*S*,5*R*)-**4** and (2*S*,5*S*)-**4** isomers. Pure (2*S*,5*R*)-**2** and (2*S*,5*S*)-**2** isomers were recrystallized (MeOH–EtOAc) as above (the 1st batch recrystallization yields from ADmix- α dihydroxylation, AD-mix- β dihydroxylation, and Shi epoxidation were ~40%, 60% and ~37%, respectively).

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

Acknowledgment

This work was supported by the National Basic Research Program of China (2007CB914504).

References

- (a) Quinoa, E.; Adamczeski, M.; Crews, P.; Bakus, G. J. J. Org. Chem. **1986**, 51, 4494. (b) Adamczeski, M.; Quinoa, E.; Crews, P. J. Am. Chem. Soc. **1989**, 111, 647.
- (2) Towbin, H.; Bair, K. W.; DeCaprio, J. A.; Eck, M. J.; Kim, S.; Kinder, F. R.; Morollo, A.; Mueller, D. R.; Schindler, P.; Song, H. K.; van Oostrum, J.; Versace, R. W.; Voshol, H.; Wood, J.; Zabludoff, S.; Phillips, P. E. *J. Biol. Chem.* **2003**, 278, 52964.
- (3) (a) Thale, Z.; Kinder, F. R.; Bair, K. W.; Bontempo, J.; Czuchta, A. M.; Versace, R. W.; Phillips, P. E.; Sanders, M. L.; Wattanasin, S.; Crews, P. J. Org. Chem. 2001, 66, 1733.
 (b) Kinder, F. R.; Versace, R. W.; Bair, K. W.; Bontempo, J. M.; Cesarz, D.; Chen, S.; Crews, P.; Czuchta, A. M.; Jagoe, C. T.; Mou, Y.; Nemzek, R.; Phillips, P. E.; Tran, L. D.; Wang, R. M.; Weltchek, S.; Zabludoff, S. J. Med. Chem. 2001, 44, 3692.

Synthesis 2010, No. 23, 4068-4074 © Thieme Stuttgart · New York

- (4) Kim, S.; LaMontagne, K.; Sabio, M.; Sharma, S.; Versace, R. W.; Yusuff, N.; Phillips, P. E. *Cancer Res.* 2004, 64, 2984.
- (5) Kinder, F. R.; Wattanasin, S.; Versace, R. W.; Bair, K. W.; Bontempo, J.; Green, M. A.; Lu, Y. J.; Marepalli, H. R.; Phillips, P. E.; Roche, D.; Tran, L. D.; Wang, R. M.; Waykole, L.; Xu, D. D.; Zabludoff, S. *J. Org. Chem.* 2001, 66, 118; and references therein.
- (6) (a) Löhr, B.; Orlich, S.; Kunz, H. Synlett 1999, 139.
 (b) Adamczyk, M.; Reddy, R. E.; Rege, S. D. J. Labelled Compd. Radiopharm. 2001, 44, 185. (c) van den Nieuwendijk, A. M. C. H.; Kriek, N. M. A. J.; Brussee, J.; van Boom, J. H.; van der Gen, A. Eur. J. Org. Chem. 2000, 3683.
- (7) (a) Broka, C. A.; Ehrler, J. *Tetrahedron Lett.* **1991**, *32*, 5907. (b) Roche, D.; Prasad, K.; Repic, O.; Blacklock, T. J. *Tetrahedron Lett.* **2001**, *42*, 1459; and references therein.
 (c) Boeckman, R. K.; Clark, T. J.; Shook, B. C. *Org. Lett.* **2002**, *4*, 2109. (d) Liu, G.; Tai, W.-Y.; Li, Y.-L.; Nan, F.-J. *Tetrahedron Lett.* **2006**, *47*, 3295.
- (8) Jacobsen, E. N.; Zhang, W.; Muci, A. R.; Ecker, J. R.; Deng, L. J. Am. Chem. Soc. 1991, 113, 7063.

- (9) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K. S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M.; Xu, D.; Zhang, X. L. J. Org. Chem. **1992**, 57, 2768.
- (10) Frohn, M.; Dalkiewicz, M.; Tu, Y.; Wang, Z. X.; Shi, Y. J. Org. Chem. 1998, 63, 2948.
- (11) (a) Padron, J. M.; Kokotos, G.; Mart, T.; Markidis, T.; Gibbons, W. A.; Mart, V. S. *Tetrahedron: Asymmetry* 1998, 9, 3381. (b) Adamczyk, M.; Johnson, D. D.; Reddy, R. E. *Tetrahedron: Asymmetry* 1999, *10*, 775.
- (12) Desai, D.; Sharma, A. K.; Lin, J.-M.; Krzeminski, J.; Pimentel, M.; El-Bayoumy, K.; Nesnow, S.; Amin, S. Chem. Res. Toxicol. 2002, 15, 64.
- (13) Sharma, A. K.; Gowdahalli, K.; Gimbor, M.; Amin, S. *Chem. Res. Toxicol.* **2008**, *21*, 154.
- (14) O'Sullivan, T. P.; Zhang, H.; Mander, L. N. Org. Biomol. Chem. 2007, 5, 2627.
- (15) Liu, G.; Romo, D. Org. Lett. 2008, 11, 1143.
- (16) Srikrishna, A.; Babu, R. R. *Tetrahedron* 2008, 64, 10501.
 (17) Brouillette, Y.; Martinez, J.; Lisowski, V. J. Org. Chem. 2009, 74, 4975.