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N-Oxalylglycine (NOG) derivatives were synthesized, and their inhibitory effect on histone lysine
demethylase activity was evaluated. NOG and compound 1 inhibited histone lysine demethylases
JMJD2A, 2C and 2D in enzyme assays, and their dimethyl ester prodrugs DMOG and 21 exerted histone
lysine methylating activity in cellular assays.
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Methylation of lysine residues in the N-terminal region of the
core histones plays a pivotal role in the regulation of gene expres-
sion.1 It has been reported that methylation of histone lysine resi-
dues occurs on lysine 26 of histone 1 (H1K26), H3K4, H3K9, H3K27,
H3K36, H3K79 and H4K20.2 Methylated lysine can be in a mono-,
di-, or tri-methylated form, and these different forms differentially
affect chromatin structure and are responsible for transcriptional
activation as well as silencing.3

In contrast to other histone modifications such as acetylation
and phosphorylation, histone methylation had been regarded as
irreversible because of the high thermodynamic stability of the
N–C bond. However, two classes of histone lysine demethylases
have recently been identified. One is lysine-specific demethylase
1, a flavin-dependent amine oxidase domain-containing enzyme.4

The other comprises the Jumonji C domain-containing histone
demethylases (JHDMs) such as JMJD2A, 2B, 2C and 2D.5 JHDMs
are Fe(II) and a-ketoglutarate dependent enzymes that oxygenate
methylated histone lysine residues and thereby cause their
demethylation after releasing formaldehyde, carbon dioxide and
succinic acid. The identification of these enzymes established that
histone methylation is reversibly regulated by histone lysine meth-
yltransferases and histone lysine demethylases.6

JHDMs are implicated in cancer cell growth.2 For example, it
was shown that JMJD2C is associated with the growth of oesopha-
gal squamous cancer, and JMJD2A, 2B and 2C are involved in pros-
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tate cancer.5,7 Therefore, JHDM inhibitors can be not only tools to
study the function of these enzymes, but also serve as potential
anticancer agents.

To date, only a few JHDM inhibitors have been identified
(Fig. 1). N-Oxalylglycine (NOG), the amide analogue of a-ketoglu-
tarate, has been reported to inhibit JMJD2C in an in vitro assay,7

but has not been tested in a cellular assay. Succinic acid has been
suggested to inhibit JMJD2D by product inhibition.8 In addition,
during the course of our study presented in this report, 2,4-lutidi-
nic acid, which is known as an inhibitor of other Fe(II)/a-ketoglu-
tarate dependent oxygenases, was reported as an inhibitor of
JMJD2A and 2E,9 although it was also not examined in a cellular as-
say. To the best of our knowledge, there is no report on selective
JHDM inhibitors. Therefore, we initiated a search for novel JHDM
inhibitors with the goal of drug discovery as well as finding new
tools for biological research. In this letter, we describe the design,
synthesis, JHDM inhibition activity and cellular activity of NOG and
its derivatives.

We designed JHDM inhibitors based on the crystal structure of
JMJD2A complexed with NOG and histone trimethylated lysine
H

NOG succinic acid
CO2H

2,4-lutidinic acid

Figure 1. Structures of previously reported JHDM inhibitors.
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Scheme 2. Reagents and conditions: (a) (Boc)2O, Et3N, THF, 0 �C to rt, 82%; (b) H2,
Pd/C, EtOH, rt, 90%; (c) MeI, K2CO3, DMF, rt, 34%; (d) HCl, AcOEt, CH2Cl2, 0 �C to rt,
94%; (e) tert-butyl bromoacetate, Et3N, CH2Cl2, rt; (f) tert-butyl chloroglyoxylate,
Et3N, CH2Cl2, rt; (g) HCl, AcOEt, CHCl3, 0 �C to rt, 26% (three steps).
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peptide (PDB ID 2OQ6).10 The crystal structure showed that the
oxalyl group of NOG interacts with Fe(II), and the other carboxyl
group forms a hydrogen bond with Tyr 132 in the active centre
of JMJD2A (Fig. 2, left). In addition, the trimethylamino group of
histone trimethylated lysine peptide is surrounded by Gly 170,
Tyr 175, Glu 190 and Ser 288. On the basis of this structure, we de-
signed potential selective JHDM inhibitors 1–4 (Fig. 3) in which
NOG is connected with a dimethylamino group through a linker
(Fig. 2, right). We anticipated that the nitrogen atom of the dimeth-
ylamino group forms a hydrogen bond with the hydroxyl group of
Tyr 175 or Ser 288,11,12 and the aryl linker interacts with the aro-
matic rings of Tyr 177, Phe 185 and Trp 208, which might lead to
the selective inhibition of JHDMs.

The synthesis of compound 1 is outlined in Scheme 1. The pri-
mary amine of 4-dimethylaminobenzylamine 5 was alkylated with
tert-butyl bromoacetate to give secondary amine 6. Treatment of
compound 6 with tert-butyl chloroglyoxylate afforded tertiary
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Figure 2. Interaction of NOG and trimethylated lysine substrate with JMJD2A (left),
and models for the binding of designed inhibitors (right).
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Figure 3. Structures of compounds 1–4.
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Scheme 1. Reagents and conditions: (a) tert-butyl bromoacetate, Et3N, CH2Cl2, rt,
54%; (b) tert-butyl chloroglyoxylate, Et3N, CH2Cl2, 0 �C, 58%; (c) HCl, AcOEt, CH2Cl2,
0 �C to rt, 59%.
amine 7. Removal of the two tert-butyl groups of 7 under acidic
conditions gave the desired dicarboxylic acid 1.

Scheme 2 shows the preparation of compound 2. Reaction of 4-
nitrophenethylamine 8 with (Boc)2O gave Boc-protected com-
pound 9. Reduction of the nitro group of 9 gave aniline 10. Aniline
10 was reacted with iodomethane to give dimethylamine 11. Then,
deprotection of 11 using hydrochloric acid yielded amine 12. Com-
pound 2 was prepared from amine 12 using the procedure de-
scribed for the synthesis of 1.

Preparation of compound 3 is shown in Scheme 3. Horner–
Wadsworth–Emmons reaction was applied to the conversion of
benzaldehyde 13 into cinnamonitrile 14. The double bond of 14
was hydrogenated to give compound 15. The cyano group of 15
was then reduced, and subsequent treatment with (Boc)2O gave
compound 16. N-Boc compound 16 was converted to compound
3 using the procedure described for the synthesis of 1 and 2.

Scheme 4 illustrates the synthesis of compound 4. Coupling be-
tween carboxylic acid 17 and NH3 in the presence of EDCI and
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Scheme 3. Reagents and conditions: (a) cyanomethylphosphoic acid diethyl ester,
NaH, THF, 0 �C, 66%; (b) H2, Pd/C, MeOH, 83%; (c) (i) BH3?SMe2, THF, reflux; (ii)
(Boc)2O, Et3N, THF, rt, 58%; (d) HCl, AcOEt, CH2Cl2, 0 �C to rt, 80%; (e) tert-butyl
bromoacetate, Et3N, CH2Cl2, rt; (f) tert-butyl chloroglyoxylate, Et3N, CH2Cl2, 0 �C, rt;
(g) HCl, AcOEt, CH2Cl2, 0 �C to rt, 12% (three steps).
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Scheme 4. Reagents and conditions: (a) NH3, EDCI, HOBt�H2O, DMF, H2O, rt, 54%;
(b) (i) LiAlH4, THF, reflux; (ii) (Boc)2O, Et3N, THF, rt, 87%; (c) HCl, AcOEt, 0 �C to rt;
(d) tert-butyl bromoacetate, Et3N, CH2Cl2, rt; (e) tert-butyl chloroglyoxylate, Et3N,
CH2Cl2, 0 �C, rt; (f) HCl, AcOEt, CH2Cl2, 0 �C to rt, 23% (four steps).



Figure 5. In vitro JMJD2 inhibition assay of NOG and compounds 1–4. H4K20me1

was assessed as a control and revealed to be unchanged.
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Scheme 5. Reagents and conditions: (a) bromoacetic acid methyl ester, Et3N,
CH2Cl2, rt, 58%; (b) chloroglyoxylic acid methyl ester, Et3N, CH2Cl2, 0 �C, 35%.
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HOBt afforded amide 18. The reduction of the amide group of 18,
followed by the treatment with (Boc)2O gave compound 19. Com-
pound 4 was prepared from compound 19 using the procedure de-
scribed for the synthesis of 1 and 2.

For the evaluation of the enzyme inhibitory activity of NOG and
its derivatives 1–4, we initially generated GST fusion proteins of
the catalytic N-terminus of JMJD2A and 2C as well as of full-length
JMJD2D.13–16 Because JMJD2A, 2C and 2D have been reported to
demethylate H3K9me3,14 we confirmed the histone demethylating
activity of these three proteins in an in vitro assay and revealed
demethylation with an antibody recognizing trimethylated H3K9
(H3K9me3).17–20 As shown in Figure 4, all three GST-JMJD2 fusion
proteins completely removed H3K9me3, whereas no demethylat-
ing activity was observed with mutated GST fusion proteins13 in
which homologous histidine residues in the catalytic centre were
mutated to alanine. Using this system, we next assessed the impact
of NOG and putative JMJD2 inhibitors 1–4 on the in vitro demeth-
ylation activity of GST-JMJD2 fusion proteins.17 We first utilized
inhibitors at 1 mM concentration and observed that only NOG sig-
nificantly curtailed the demethylation activity of JMJD2A and
JMJD2C (Fig. 5, lane 4). However, at a higher inhibitor concentra-
tion of 3 mM, significant inhibitory effects were also noted with
compounds 1, 2, 4 and weakest with 3. In contrast, JMJD2D enzy-
matic activity was not only strongly inhibited by 1 mM NOG, but
also by 1 mM compounds 1, 2 and 3. Furthermore, compound 4
also displayed an inhibitory effect at 3 mM concentration. Thus,
all compounds tested were able to inhibit the demethylation activ-
ity of JMJD2 proteins.

Next, we assessed if the inhibitors would display activity in
cells.14,21–25 We focused on the strongest inhibitors, NOG and com-
pound 1, and prepared dimethylester prodrugs of these com-
pounds to allow for uptake through the cell membrane. Scheme
5 shows the synthesis of compound 21, the dimethylester prodrug
of compound 1. Compound 5 was allowed to react with methyl
bromoacetate to give compound 20. Then, compound 20 was re-
acted with methyl chloroglyoxylate to give compound 21.

In this cellular assay, the accumulation of H3K9me3 and
H3K36me3 was examined, because JMJD2C has been reported to
demethylate both H3K9 and H3K36.14 As shown in Figure 6, over-
expression of JMJD2C resulted in robust demethylation of
H3K9me3 and H3K36me3 (compare lanes 1 and 5). Further, neither
100 mM dimethyl succinate (DMS), a previously reported JMJD2D
Figure 4. Demethylation ability of GST-JMJD2 fusion proteins (top) and Coomassie
stained gel (bottom) indicating that comparable amounts of GST-JMJD2 fusion
proteins were utilized.

Figure 6. Demethylation in cells. 293T cells transfected with or without Flag-
JMJD2C were treated with 100 mM dimethyl succinate (DMS), 2.5 mM oxalylgly-
cine dimethylester (DMOG), 2.5 mM compound 21 or DMSO as a control.
Demethylation activity of JMJD2C was assessed by anti-H3K9me3 and anti-
H3K36me3 blotting. As loading controls, total H3 and actin levels were assessed,
and expression of JMJD2C revealed by anti-Flag blotting.
inhibitor,8 nor 2.5 mM compound 21 affected H3K9me3 and
H3K36me3 in the presence of JMJD2C. However, 2.5 mM dimethy-
lester of NOG (DMOG) resulted in enhanced H3K9me3 and
H3K36me3 levels both in the presence of JMJD2C and in the ab-
sence of overexpressed JMJD2C, indicating that DMOG represses
the demethylation activity of JHDMs including JMJD2C in cells.
On the other hand, compound 21 slightly enhanced H3K9me3 lev-
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els in the absence of overexpressed JMJD2C as compared with
DMSO and DMS, suggesting that 2.5 mM compound 21 selectively
inhibited the demethylase activity of a JHDM(s) other than JMJD2C
in cells.

In summary, we have designed and synthesized NOG deriva-
tives 1–426 and evaluated the JMJD2-inhibitory activity of NOG
and compounds 1–4 both in enzyme assays and in cellular assays
that have been established for this study. Our data suggest that
NOG and compound 1 show inhibitory activity against JHDMs
and are more potent than succinic acid. As far as we could deter-
mine, this is the first report demonstrating that NOG and its deriv-
ative inhibit JHDMs both in enzyme assays and in cellular assays.
The findings presented here should be valuable for further explor-
ative studies uncovering more potent and selective JHDM inhibi-
tors. Further investigations pertaining to NOG derivatives are
progressing and will be reported in due course.
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