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AbstractÐThe in¯uence of nitro substituents on the properties of adenosine and 1-deazaadenosine was studied. Combination of a
nitro group at the 2-position with several N6 substituents such as cyclopentyl and m-iodobenzyl gave a series of analogues with
good adenosine receptor a�nity, showing directable selectivity for the A1, A2A and A3 adenosine receptor subtypes. # 2000
Elsevier Science Ltd. All rights reserved.

Regulation of adenosine receptor a�nity is an expand-
ing target for drug development.1,2 Due to its low in
vivo stability adenosine itself has only limited ther-
apeutic applications which requires the availability of
selective and metabolically stable ligands for the A1,
A2A A2B or A3 adenosine receptor subtypes. Modi®ca-
tion of adenosine is a subtle process, and only variation
of the adenosine 2, N6, and/or 50 position was shown to
produce selective agonists. From the numerous analo-
gues that have been prepared, it can be deduced that
substituents on the adenosine 2-position such as chlor-
ine, have a positive e�ect on receptor a�nity and
selectivity.3ÿ5 To further explore this trend we have
chosen for a nitro-group at the adenosine 2-position.
Nitro-substituents in (hetero)aromatic ring systems are
widely used in pharmacology and in particular nitro
substituted imidazoles and furans have found a variety
of clinical applications.6 Previous to our work7,8 the
appearance of nitro substituents in purines, both from
synthetical and biological point of view, was limited to
only a few examples.9,10 In this study the e�ect of a
nitro-group at the (1-deaza)-adenosine 2-position in
combination with receptor selective N6 substituents on
the a�nity at the adenosine A1, A2A and A3 receptor
will be described.

Chemistry

Functionalization of adenosines at the 2-position by
direct aromatic substitution is not a general process.
For instance halogenation reactions take place exclu-
sively at the purine 8-position. To obtain C-2 sub-
stituted adenosines, 2,6-dichloropurines or guanosine
are commonly used as starting materials.10ÿ14 Recently we
have shown that nitration of a number of 6-substituted
nucleosides using a mixture of tetrabutylammonium
nitrate (TBAN) and tri¯uoroacetic anhydride (TFAA),
e�ciently results in the formation of 2-nitropurine and
2-nitro-deazapurine nucleosides.7,8 In the present study
this nitration strategy was applied for the preparation of
a series of receptor ligands.

In a ®rst attempt towards a short synthetic route for 2-
nitroadenosine, penta-acetylated adenosine 1 was nitra-
ted with TBAN/TFAA and the acetate protecting
groups of the corresponding 2-nitro product 2 were
removed with potassium cyanide in methanol (Scheme 1).
In particular removal of the second N-acetyl group from
the 6-position was rather slow and 2-methoxyadenosine
3 was formed as the main product via nucleophilic sub-
stitution of the nitro group. This side reaction also
occurred during deprotection of nitrated tetra-acetyl
N6-cyclopentyladenosine 5, resulting in the formation of
2-methoxy-CPA 6.
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An alternative synthetic procedure for 2-nitroadeno-
sines starts with tri-O-acetyl protected 6-chloropurine-
riboside 7 which is readily available from inosine
(Scheme 2).15 Crystalline 6-chloro-2-nitro derivative 8
was obtained in 65±71% overall yield based on inosine.8

Introduction of a nitro substituent in the purine ring
had a strong accelerating e�ect on substitution reactions
at the 6-position. With almost equimolar amounts of

nitrogen nucleophiles and reaction temperatures below
0 �C the 6-aminated purines were obtained without
a�ecting the acetates or the nitro group. Removal of the
acetate protecting groups from the sugar part with
potassium cyanide in methanol gave adenosine analo-
gues 9b±9e.16 Shorter reaction times reduced competing
methanolysis of the nitro group, as was described in
Scheme 1, to a minor process.

For the preparation of the parent compound 2-nitro-
adenosine 9a, a three-step procedure was developed to
avoid the use of ammonia as a nucleophile.17 Substitu-
tion of 8 with sodium azide, subsequent reaction of the
azide with triphenylphosphine and acid hydrolysis of
the corresponding iminophosphorane 11 produced 2-
nitroadenosine 9a.16 For the synthesis of 2-nitro-1-dea-
zaadenosines 14a±c, 6-nitro-derivative 12 (purine num-
bering) was used (Scheme 3). This precursor for 1-
deazaadenosine was prepared via an e�cient literature
procedure by electrophilic nitration of 1-deazapurine-3-
oxide followed by regioselective ribosylation.18 Intro-
duction of a second nitrogroup in 12 was accomplished
with TBAN/TFAA to give 2,6-dinitro-1-deazapurine
riboside 13.7 The 6-nitro substituent in this electron-
poor ring system displayed good leaving group proper-
ties and nucleophilic substitution with amines proceeded
exclusively at this position. 1-Deaza-adenosine analo-
gues 14b and 14c19 were obtained in good overall yield
from reaction with cyclopentylamine and m-iodobenzyl-

Scheme 1. (i) Acetic anhydride, DMAP, re¯ux (1: 79%; 4: 70%); (ii)
1.5 equiv TBAN/TFAA, DCM, 0 �C (2: 55%; 5: 48%); (iii) 1.2 equiv
KCN, MeOH, 48 h, rt (3: 62%; 6: 73%).

Scheme 2. (i) 1.7 equiv TBAN/TFAA, DCM, 0 �C, 65±71% (3 steps); (ii) 1.2 equiv RNH2, TEA, DMF, 0 �C; (iii) KCN, MeOH, 2h, rt (9b: 42%; 9c:
53%; 9d: 46%; 9e: 56%, 2 steps); (iv) 1.0 equiv NaN3, DMF,ÿ18 �C; (v) PPh3, DCM, rt; (vi) HOAc:H2O 3:1, 45 �C, 64%, 3 steps; (vii) KCN, methanol,
2 h, rt, 80%.

Scheme 3. (i) 1.5 equiv TBAN/TFAA, DCM, 0 �C, 73%; (ii) 1.2 equiv RNH2, TEA, DMF, 6 h, rt; (iii) KCN, MeOH, 5 h, rt (14b: 60%; 14c: 68% (2
steps); (iv) 1.1 equiv NaN3, DMF, 0 �C; (v) PPh3, DCM, rt; (vi) HOAc:H2O 3:1, 40 �C, 51%, 3 steps; (vii) 0.3 equiv KCN, MeOH, 5 h, rt, 92%.
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amine respectively. Conversion of 13 into the parent
compound 2-nitro-1-deazaadenosine 14a19 was per-
formed in three steps via the azide 15 and the imino-
phosphorane 16, analogous to the sequence described
for 9a. X-ray analysis of 2-nitro-1-deazaadenosine tria-
cetate 177 con®rmed the regioselectivity of the SNAr
reaction.

Biological Evaluation

Next the a�nity of the 2-nitro adenosine derivatives for
the adenosine A1, A2A and A3 receptors was studied.
Receptor a�nities were determined by radioligand
binding studies according to previously reported protocols
and are given in nanomolar concentrations or as per-
centage displacement at a single concentration of
10 mM.20ÿ22 The results of the binding studies (Table 1)
show that the reference agonist for the adenosine A1

receptor, N6-cyclopentyladenosine (CPA), which has
a�nities of 5.9 and 580 nM for adenosine A1 and A2A

receptors, respectively,23 can be compared to 2-nitro-
derivative 9c. Both ligands show selectivity for A1 rela-
tive to A2A and A3 receptors and the Ki value is in the
same range as for the reference compound CPA. Simi-
larly, 14b is the 2-nitro equivalent of 1-deaza-N6-cyclo-
pentyladenosine. In this case the two compounds are
more or less equipotent, since 1-deaza-N6-cyclopentyla-
denosine has Ki values of 100 nM and 10mM for adeno-
sine A1 and A2A receptors, respectively.3 From these
values it appears that the introduction of the 2-nitro sub-
stituent is fairly well tolerated by the A1 receptor.

The A3 receptor also seems to accommodate the nitro-
substituent very well. When 9d is compared to the ana-
logous compound lacking the nitro-group, an increase
in a�nity was observed. N6-Benzyladenosine was shown
to have a Ki value of 550 nM versus. 163 nM for the 2-
nitro substituted counterpart 9d. Introduction of the 3-
iodobenzyl enhanced both a�nity and selectivity for the
A3 receptor: 28 nM versus 12 nM.24 The highest a�nity
for the A3 receptor was obtained for 1-deaza-analogue
14c: Ki=9.8 nM. The corresponding material without
the 2-nitro substituent is not known to us. In conclu-
sion, introduction of the 2-nitro group, a substituent
with outspoken physico-chemical characteristics, a�ec-
ted receptor a�nities only marginally. Further work on
transformation reactions of the nitronucleosides into
new receptor ligands is currently underway.
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aDisplacement of [3H]DPCPX from rat cortical membranes.
bDisplacement of [3H]ZM241,385 from rat striatal membranes.
cDisplacement of [125I]-ABMECA from human A3 receptors expressed
on HEK293 cells.
d% Displacement at 10mM.
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