

Article

Rhodium-Catalyzed C3-Selective Alkenylation of Substituted Thiophene-2-Carboxylic Acids and Related Compounds

Tomonori litsuka, Petra Schaal, Koji Hirano, Tetsuya Satoh, Carsten Bolm, and Masahiro Miura

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/jo4011969 • Publication Date (Web): 26 Jun 2013

Downloaded from http://pubs.acs.org on June 28, 2013

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Rhodium-Catalyzed C3-Selective Alkenylation of Substituted Thiophene-2-Carboxylic Acids and Related Compounds

Tomonori Iitsuka,[†] Petra Schaal,[§] Koji Hirano,[†] Tetsuya Satoh,^{*,†,‡} Carsten Bolm,[§] and Masahiro

Miura^{*,†}

[†]Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871,

Japan

JST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

§Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany

satoh@chem.eng.osaka-u.ac.jp; miura@chem.eng.osaka-u.ac.jp

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required)

Abstract: The regioselective C3-alkenylation of thiophene-2-carboxylic acids can be achieved effectively via rhodium/silver-catalyzed oxidative coupling with alkenes, unaccompanied by

decarboxylation. A wide range of substrates including brominated thiophenecarboxylic acids and furan-2-carboxylic acids can be employed together with styrenes as well as acrylates. The present catalyst system is also applicable to *ortho*-alkenylation of benzoic acids.

Introduction

Alkenylthiophene and -furan structures can be seen in various organic functional materials and bioactive compounds.¹ As an atom- and step-economical tool for constructing such frameworks, the transition-metal-catalyzed direct alkenylation of thiophenes and furans via C–H bond cleavage have gained considerable attention. This type of reaction is known to usually take place at the electron-rich C2-position on the heterocycles predominantly.² Among the most powerful methods for direct functionalization of non-activated C–H bonds is a chelation-assisted version with the aid of directing groups.³ Although the methodology has been well-developed, its application to thiophene and furan derivatives, especially to their C3-selective alkenylation has been less explored and only few examples utilizing amide groups as directing groups have been reported.^{4,5} One of more promising directing groups is a carboxyl function, which is readily removable and substitutable through decarboxylation and decarboxylative coupling, respectively,⁶ after the chelation-assisted alkenylation. Recently, we reported the palladium-,⁷ rhodium-,⁸ and ruthenium-catalyzed ^o C3-alkenylation of thiophene-2-carboxylic acids (Scheme 1). While the palladium-catalyzed version gave a mixture of C2-Scheme 1. Catalytic C3-Alkenylation of Thiophene- and Furan-2-Carboxylic Acids

The Journal of Organic Chemistry

and C3-alkenylated products, the use of a rhodium catalyst allowed exclusive C3-alkenylation. These reactions proceeded accompanied by decarboxylation. In contrast, simple C3-alkenylation retaining the carboxyl group was realized under ruthenium catalysis. The third version is synthetically meaningful because the remained carboxyl group can be utilized for further transformations. However, the substrate scope for the ruthenium catalysis is narrow: only some thiophene-2-carboxylic acids and acrylates undergo the reaction smoothly. During further investigation, we succeeded in finding that the C3-alkenylation of variously substituted thiophene-2-carboxylic acids proceeds efficiently with retaining their carboxyl function in the presence of a rhodium/silver catalyst system. The present catalysis was found to be applicable to the reactions of a wider range of substrates including substituted thiophene-and furan-2-carboxylic acids, 2-substituted benzoic acids, and 1-naphthoic acid. Moreover, various styrenes could be employed as alkenyl sources. The results obtained with respect to these reactions are described herein.

Results and Discussion

In an initial attempt, thiophene-2-carboxylic acid (**1a**) (0.5 mmol) was treated with butyl acrylate (**2a**) (1 mmol) in the presence of $[Cp*RhCl_2]_2$ (0.005 mmol), AgSbF₆ (0.02 mmol), and AgOAc (1 mmol) in dioxane (3 mL) at 120 °C for 5 h. As a result, the C3-alkenylated product was formed, which was then esterified for quantification to produce **3a** in a moderate yield (entry 1 in Table 1). Even at 120 °C,

decarboxylation was not observed at all under the Rh/Ag catalysis. The reaction was terminated with remaining unconsumed substrates. At 100 °C, the yield of **3a** was significantly improved (entry 2). Under similar conditions, however, the reaction did not proceed at all in the presence of $Cu(OAc)_2 \cdot H_2O$ in place of AgOAc (entry 3). At 80 °C, the reaction proceeded smoothly to produce **3a** quantitatively (entry 4). In the absence of AgSbF₆, the reaction was sluggish at 80 °C (entry 5). In the presence of $[Cp*RhCl_2]_2/AgSbF_6$ as catalyst at 80 °C, **1a** efficiently reacted with various acrylates **2b-e** as well as acrylonitrile (**2f**) to selectively produce the corresponding C3-alkenylated products **3b-f** in 71-87% yield (entries 6-10).

1) [Cp*RhCl₂]₂ AgSbF₆ AgOAc °CO₂H + 2) Mel CO₂Me K₂CO₃ 1a 2 3 entry 2 R product, % yield 1^b 2a CO₂Bu **3a**, (41)^c 2^d 2a CO₂Bu 3a, (95)^c $3^{d,e}$ CO₂Bu 2a 3a. (0)^c CO₂Bu 4 2a 3a. 84 (99)^c 5f 2a CO₂Bu $3a, (36)^c$ 6 2b CO₂Et 3b. 87 7 2c CO₂Cy^e 3c.79 $CO_2(i-Bu)$ 8 2d 3d, 81 $CO_2(t-Bu)$ 9 2e 3e, 76 10 2f CN 3f, 71

Table 1. Reaction of Thiophene-2-Carboxylic Acid (1a) with Alkenes 2^a

^{*a*} Reaction conditions: (1) **1a** (0.5 mmol), **2** (1 mmol), $[Cp*RhCl_2]_2$ (0.005 mmol), AgSbF₆ (0.02 mmol), AgOAc (1 mmol), dioxane (3 mL) under N₂ at 80 °C for 8 h; (2) with the addition of MeI (3 mmol), K₂CO₃ (1.5 mmol), and DMF (3 mL) at rt for 3 h. ^{*b*} At 120 °C for 5 h. ^{*c*} GC yield. ^{*d*} At 100 °C for 5 h. ^{*e*} Cu(OAc)₂•H₂O (1 mmol) was employed as oxidant in place of AgOAc. ^{*f*} Without AgSbF₆.

Next, we examined reactions using styrenes as alkenyl sources, which could not be utilized under ruthenium catalysis (Scheme 1).⁹ Under the conditions employed for entry 2 in Table 1, **1a** coupled with styrene (**2g**) to form a C3-styrylated product **3g** in a low yield (entry 1 in Table 2). In this case, the reaction proceeded more smoothly at 120 °C to improve the product yield to 56% (entry 2). Increasing

ACS Paragon Plus Environment

1

The Journal of Organic Chemistry

the amount of $[Cp*RhCl_2]_2$ to 0.01 mmol led to further enhancement of the yield (entry 3). Finally, **3g** was obtained in 74% yield, when the reaction was conducted using 4 equiv of **2g** (entry 4). Under the optimized reaction conditions, **1a** reacted with a number of 4-substitued styrenes **2h-l** and 2-vinylnaphthalene (**2m**) in fair to good yields (entries 5-10).

Table 2. Reaction of Thiophene-2-Carboxylic Acid (1a) with Styrenes 2^a

	±	1) [Cp*RhCl ₂] ₂ AgSbF ₆ AgOAc	Ar
S CO ₂ H Ar		2) Mel K ₂ CO ₃	S CO ₂ Me
1a	2		3
entry	2	Ar	product, % yield
$1^{b,c,d}$	2g	Ph	3g , $(16)^{e}$
$2^{b,c}$	$2\mathbf{g}$	Ph	$3g, (56)^e$
3^b	2g	Ph	$3g, (62)^e$
4	$2\mathbf{g}$	Ph	$3g, 74 (74)^e$
5	2h	$4 - MeC_6H_4$	3h , 76
6	2i	$4-(t-Bu)C_6H_4$	3i , 84
7	2ј	$4-MeOC_6H_4$	3j , 60
8	2k	$4-ClC_6H_4$	3k , 85
9	21	$4-CF_3C_6H_4$	31 , 74
10	2m	2-naphthyl	3m , 82

^{*a*} Reaction conditions: (1) **1a** (0.5 mmol), **2** (2 mmol), $[Cp*RhCl_2]_2$ (0.01 mmol), $AgSbF_6$ (0.02 mmol), AgOAc (2 mmol), dioxane (3 mL) under N₂ at 120 °C for 8 h; (2) with the addition of MeI (3 mmol), K₂CO₃ (1.5 mmol), and DMF (3 mL) at rt for 3 h. ^{*b*} With $[Cp*RhCl_2]_2$ (0.005 mmol). ^{*c*} With **2g** (1 mmol). ^{*d*} At 80 °C. ^{*e*} GC yield.

A series of 4- and/or 5-substituted thiophene-2-carboxylic acids **1b-f** also underwent C3-alkenylation upon treatment with **2a** (Table 3). It should be noted that each of the C–Br bond in **1d-f** was tolerated. The retained bromine atom, as well as a carboxyl function, are utilizable for further transformation (*vide infra*). In contrast, the ruthenium-catalyzed reaction of **1d** gave a mixture of **3p** and a debrominated product in a moderate yield. Similar debromination was also observed in the palladium-catalyzed alkenylation of 2-bromothiophene.^{2a,9}

^{*a*} Reaction conditions: (1) **1** (0.5 mmol), **2a** (1 mmol), $[Cp*RhCl_2]_2$ (0.005 mmol), AgSbF₆ (0.02 mmol), AgOAc (1 mmol), dioxane (3 mL) under N₂ at 80 °C for 8 h; (2) with the addition of MeI (3 mmol), K₂CO₃ (1.5 mmol), and DMF (3 mL) at rt for 3 h.

A possible mechanism for the C3-alkenylation of **1a** with **2** is illustrated in Scheme 2, in which neutral ligands are omitted. Coordination of the carboxyl oxygen of **1a** to a Cp*Rh(III)X₂ species gives a rhodium(III) carboxylate **A**. Subsequent cyclorhodation to form a rhodacycle **B**, alkene insertion, and β -hydrogen elimination take place to produce the corresponding C3-alkenylated product. After liberation of **3**, the resulting Cp*Rh(I) species may be oxidized in the presence of AgOAc to regenerate Cp*Rh(III)X₂. To conduct the reaction efficiently under relatively mild conditions, the addition of AgSbF₆ as a cocatalyst was essential. Therefore, a cationic rhodium species may be generated in situ and catalyze the reaction.

Scheme 2. Possible Mechanism for the Reaction of 1a with 2

ACS Paragon Plus Environment

The Journal of Organic Chemistry

Under the conditions using $[Cp*RhCl_2]_2/AgSbF_6$ and AgOAc as catalyst and oxidant, respectively, 2acetylthiophene also underwent C3-alkenylation via acetyl-directed C–H bond cleavage¹⁰ (Scheme 3). Thus, (*E*)-butyl 3-(2-acetylthiophene-3-yl)acrylate (**4**) was obtained in 78% yield. However, the corresponding aldehyde and ester were found to be inefficient substrates.

Scheme 3. Reaction of 2-Substituted Thiophenes with 2a

Further derivatization of C3-alkenylated thiophenes was then examined. Treatment of **3p** with boronic acid **5** under Suzuki-Miyaura coupling conditions¹¹ gave 3-alkenyl-5-arylthiophene-2-carboxylic acid derivative **6** (Scheme 4). This kind of push-pull molecule has attracted much attention due to their optical, electronic, and biological properties.¹² Meanwhile, a thienopyridazinone framework can be seen in a range of bioactive compounds.¹³ The fused heterocyclic structure could be readily constructed in a few steps from (*E*)-3-(3-butoxy-3-oxoprop-1-en-1-yl)thiophene-2-carboxylic acid (**3a'**) (Scheme 5).¹⁴

Scheme 4. Transformation of C3-Alkenylated Thiophene 3p

ACS Paragon Plus Environment

Scheme 5. Transformation of C3-Alkenylated Thiophene 3a'

Besides thienyl substrates 1, furan-2-carboxylic acid (9a) also underwent C3-alkenylation under standard conditions (entry 2 in Table 1) to afford the desired product 10a, albeit with a low yield (entry 1 in Table 4). The use of Ag_2CO_3 (0.5 mmol) in place of AgOAc slightly improved the yield of 10a (entry 2). Among solvents examined (entries 3-7), diglyme was found to be the solvent of choice (entry 3). At 120 °C in diglyme, the yield of 10a was enhanced up to 78% (entry 8). Under similar conditions, benzofuran-2-carboxylic acid (9b) also reacted with 2a smoothly to give the C3-alkenylated product 10b in 83% yield (entry 10).

Table 4. Reaction of Furan- and Benzofuran-2-Carboxylic Acids 9 with Butyl Acrylate (2a)^a

The Journal of Organic Chemistry

^{*a*} Reaction conditions: (1) **9** (0.5 mmol), **2** (1 mmol), $[Cp*RhCl_2]_2$ (0.005 mmol), $AgSbF_6$ (0.02 mmol) under N₂ for 8 h; (2) with the addition of MeI (3 mmol), K_2CO_3 (1.5 mmol), and DMF (3 mL) at rt for 3 h. ^{*b*} The value in parentheses indicates GC yield.

We next applied the present Rh/Ag catalyst system to the alkenylation of benzoic acids. Under somewhat modified conditions in *t*-AmOH at 60 °C, *ortho*-alkenylated product **11a** was obtained in 76% yield from 2-bromobenzoic acid, unaccompanied by debromination nor nucleophilic cyclization (Scheme 6). It should be noted that nucleophilically cyclized products were formed under previously reported conditions at an elevated temperature.¹⁵ 2-Methyl- and 2-methoxybenzoic acids also underwent *ortho*-alkenylation under appropriate conditions to afford **11b** and **11c**, respectively. The alkenylation of 1-naphthoic acid took place selectively at the 2-position to give **12** in 62% yield.

Scheme 6. Reaction of ortho-Substituted Benzoic Acids and 1-Naphthoic Acids with 2a

^{*a*} In dioxane. ^{*b*} At 80 °C for 8 h.

Conclusions

We have demonstrated that the C3-alkenylation of thiophene- and furan-2-carboxylic acids as well as 2-acetylthiophene with acrylates and styrenes can be performed efficiently in the presence of a rhodium/silver catalyst system and a silver salt oxidant. Several 2-substituted benzoic acids and 1naphthoic acid also undergo regioselective alkenylation. A bromine substituent and a carboxyl directing-group in substrates are retainable during the reaction. These functions can be utilized for further transformation.

Experimental Section

General. H and ¹³C NMR spectra were recorded at 400 and 100 MHz for CDCl₃ solutions. HRMS data were obtained by EI using a double focusing mass spectrometer, unless noted. GC analysis was carried out using a silicon OV-17 column (i. d. 2.6 mm x 1.5 m). GC-MS analysis was carried out using a CBP-1 capillary column (i. d. 0.25 mm x 25 m). The structures of all products listed below were unambiguously determined by ¹H and ¹³C NMR with the aid of NOE, COSY, HMQC, and HMBC experiments.

All starting materials and reagents were commercially available.

The Journal of Organic Chemistry

General Procedure for the Reaction of Thiophene-2-Carboxylic Acids with Alkenes. To a 20 mL two-necked flask with a reflux condenser, a balloon, and a rubber cup were added thiophene-2-carboxylic acid 1 (0.5 mmol), alkene 2 (1 mmol), $[(Cp*RhCl_2)_2]$ (0.005 mmol, 3 mg), AgSbF₆ (0.02 mmol, 6.8 mg), AgOAc (1 mmol, 167 mg), 1-methylnaphthalene (ca. 50 mg) as internal standard, and dioxane (3 mL). Then, the resulting mixture was stirred under nitrogen at 80 °C for 8 h. After cooling, iodomethane (3 mmol, 423 mg), K₂CO₃ (1.5 mmol, 207 mg), and DMF (3 mL) were added and the resulting mixture was stirred under air at room temperature for 3 h. GC and GC-MS analyses of the mixtures confirmed formation of **3**. Then, the reaction mixture was extracted with ethyl acetate (100 mL). The organic layer was washed by water (100 mL, three times), and dried over Na₂SO₄. After evaporation of the solvent under vacuum, product **3** was isolated by column chromatography on silica gel using hexane-ethyl acetate (10:1, v/v) as eluant.

Procedure for the Reaction of 3p with 5. To a 20 mL two-necked flask with a reflux condenser, a balloon, and a rubber cup were added **3p** (0.25 mmol, 87 mg), **5** (0.38 mmol, 109 mg), $Pd(OAc)_2$ (4.5 µmol, 1.0 mg), K_3PO_4 (0.5 mmol, 106 mg), 1-methylnaphthalne (ca. 50 mg) as internal standard, and *i*-PrOH/H₂O (1.35 mL/0.65 mL). The resulting mixture was stirred under air at 80 °C for 6 h (Scheme 4). After cooling, the reaction mixture was extracted with ethyl acetate (100 mL). The organic layer was washed by water (100 mL, three times), and dried over Na₂SO₄. After evaporation of the solvent under vacuum, product **6** (76 mg, 60%) was isolated by column chromatography on silica gel using hexaneethyl acetate (10:1, v/v) as eluant and preparative GPC using chloroform as eluant.

Procedure for Preparation of 7. To a 20 mL two-necked flask were added **3a'** (0.3 mmol, 77 mg), $SOCl_2$ (0.5 mL), and toluene (1.5 mL). Then, the resulting mixture was stirred at room temperature over night. After azeotropic distillation under vaccum with toluene, NHPhNHAc (0.36 mmol, 54 mg), pyridine (0.72 mmol, 57 mg), and dry DCM (3 mL) were added at 0 °C and the resulting mixture was stirred at room temperature over night. The reaction mixture was washed with water (20 mL) and extracted with ethyl acetate (20 mL, three times). The organic layer was dried over Na₂SO₄/Al₂O₃. After

evaporation of the solvent under vacuum, product 7 (51 mg, 43%) was isolated by column chromatography on silica gel using hexane-ethyl acetate (1:2, v/v) as eluant.

Procedure for Preparation of 8. To a 20 mL two-necked flask were added 7 (0.06 mmol, 23 mg), DBU (0.072 mmol, 11 mg), and DMSO (0.5 mL). Then, the resulting mixture was stirred at room temperature for 2 h. The reaction mixture was diluted with water (3 mL) and ethyl acetate (5 mL). The aqueous layer was extracted with ethyl acetate (5 mL, three times). The combined organic layer was washed with brine (10 mL) and then dried over Na₂SO₄. After evaporation of the solvent under vacuum, product **8** (21 mg, 90%) was isolated by column chromatography on silica gel using hexane-ethyl acetate (2:1, v/v) as eluant.

(*E*)-Methyl 3-(3-Butoxy-3-oxoprop-1-en-1-yl)thiophene-2-carboxylate (3a):⁹ oil, 113 mg (84%); ¹H NMR (400 MHz, CDCl₃) δ 0.97 (t, *J* = 7.3 Hz, 3H), 1.40-1.49 (m, 2H), 1.66-1.74 (m, 2H), 3.92 (s, 3H), 4.22 (t, *J* = 6.6 Hz, 2H), 6.38 (d, *J* = 16.5 Hz, 1H), 7.36 (d, *J* = 5.0 Hz, 1H), 7.48 (d, *J* = 5.0 Hz, 1H), 8.51 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 19.1, 30.6, 52.2, 64.5, 122.0, 126.6, 130.8, 131.1, 136.4, 141.7, 162.2, 166.7; HRMS *m*/*z* Calcd for C₁₃H₁₆O₄S (M⁺) 268.0769, found 268.0771.

(*E*)-Methyl 3-(3-Ethoxy-3-oxoprop-1-en-1-yl)thiophene-2-carboxylate (3b):⁹ mp 65-67 °C (colorless microcrystals), 104 mg (87%); ¹H NMR (400 MHz, CDCl₃) δ 1.34 (t, *J* = 7.1 Hz, 3H), 3.92 (s, 3H), 4.28 (q, *J* = 7.2 Hz, 2H), 6.38 (d, *J* = 16.0 Hz, 1H), 7.35 (d, *J* = 5.5 Hz, 1H), 7.47 (d, *J* = 5.5 Hz, 1H), 8.51 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.3, 52.3, 60.6, 122.1, 126.6, 130.8, 131.1, 136.4, 141.8, 162.2, 166.6; HRMS *m/z* Calcd for C₁₁H₁₂O₄S (M⁺) 240.0456, found 240.0455.

(*E*)-Methyl 3-[3-(Cyclohexyloxy)-3-oxoprop-1-en-1-yl]thiophene-2-carboxylate (3c):⁹ mp 75-76 °C (colorless microcrystals), 116 mg (79%); ¹H NMR (400 MHz, CDCl₃) δ 1.25-1.56 (m, 6H), 1.76-1.83 (m, 2H), 1.90-1.94 (m, 2H), 3.92 (s, 3H), 4.90 (m, 1H), 6.37 (d, *J* = 16.0 Hz, 1H), 7.35 (d, *J* = 5.5 Hz, 1H), 8.50 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 23.7, 25.4, 31.6,

52.2, 72.8, 122.7, 126.6, 130.7, 131.0, 136.2, 141.8, 162.2, 166.1; HRMS *m/z* Calcd for C₁₅H₁₈O₄S (M⁺) 294.0926, found 294.0927.

(*E*)-Methyl 3-(3-Isobutoxy-3-oxoprop-1-en-1-yl)thiophene-2-carboxylate (3d):⁹ oil, 108 mg (81%); ¹H NMR (400 MHz, CDCl₃) δ 1.00 (d, *J* = 6.9 Hz, 6H), 1.98-2.08 (m, 1H), 3.92 (s, 3H), 4.01 (d, *J* = 6.9 Hz, 2H), 6.39 (d, *J* = 16.5 Hz, 1H), 7.36 (d, *J* = 5.5 Hz, 1H), 7.48 (d, *J* = 6.0 Hz, 1H), 8.52 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.1, 27.8, 52.3, 70.7, 122.0, 126.6, 130.8, 131.2, 136.4, 141.7, 162.2, 166.7; HRMS *m*/*z* Calcd for C₁₃H₁₆O₄S (M⁺) 268.0769, found 268.0772.

(*E*)-Methyl 3-[3-(*tert*-Butoxy)-3-oxoprop-1-en-1-yl]thiophene-2-carboxylate (3e):⁹ oil, 102 mg (76%); ¹H NMR (400 MHz, CDCl₃) δ 1.54 (s, 9H), 3.91 (s, 3H), 6.31 (d, *J* = 16.0 Hz, 1H), 7.34 (d, *J* = 5.5 Hz, 1H), 7.46 (d, *J* = 5.0 Hz, 1H), 8.41 (d, *J* = 16.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 28.1, 52.3, 80.7, 124.0, 126.7, 130.7, 130.9, 135.6, 142.0, 162.3, 166.0; HRMS *m*/*z* Calcd for C₁₃H₁₆O₄S (M⁺) 268.0769, found 268.0767.

(*E*)-Methyl 3-(2-Cyanovinyl)thiophene-2-carboxylate (3f):⁹ mp 125-126 °C (colorless microcrystals), 68 mg (71%); ¹H NMR (400 MHz, CDCl₃) δ 3.92 (s, 3H), 5.86 (d, *J* = 16.9 Hz, 1H), 7.31 (d, *J* = 5.0 Hz, 1H), 7.51 (d, *J* = 5.5 Hz, 1H), 8.34 (d, *J* = 17.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 52.5, 99.7, 117.8, 125.5, 131.3, 131.5, 140.4, 142.6, 161.9; HRMS *m*/*z* Calcd for C₉H₇NO₂S (M⁺) 193.0197, found 193.0198.

(*E*)-Methyl 3-styrylthiophene-2-carboxylate (3g):¹⁶ mp 83-84 °C (colorless microcrystals), 90.4 mg (74%); ¹H NMR (400 MHz, CDCl₃) δ 3.91 (s, 3H), 7.12 (d, *J* = 16.5 Hz, 1H), 7.26-7.30 (m, 1H), 7.35-7.38 (m, 2H), 7.44-7.47 (m, 2H), 7.56-7.58 (m, 2H), 8.14 (d, *J* = 16.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 51.9, 121.9, 126.1, 126.3, 126.9, 128.2, 128.7, 130.5, 132.9, 136.9, 145.6,163.0; HRMS *m/z* Calcd for C₁₄H₁₂O₂S (M⁺) 244.0558, found 244.0559.

(*E*)-Methyl 3-(4-Methylstyryl)thiophene-2-carboxylate (3h): mp 116-117 °C (colorless microcrystals), 98 mg (76%); ¹H NMR (400 MHz, CDCl₃) δ 2.36 (s, 3H), 3.90 (s, 3H), 7.09 (d, *J* = 16.5 Hz, 1H), 7.17 (d, *J* = 8.2 Hz, 2H), 7.42-7.47 (m, 4H), 8.09 (d, *J* = 16.5 Hz, 1H); ¹³C NMR (100 MHz,

CDCl₃) δ 21.3, 51.9, 121.0, 125.9, 126.0, 126.9, 129.4, 130.4, 132.9, 134.2, 138.3, 145.9, 163.1; HRMS *m*/*z* Calcd for C₁₅H₁₄O₂S (M⁺) 258.0715, found 258.0715.

(*E*)-Methyl 3-[4-(*tert*-Butyl)styryl]thiophene-2-carboxylate (3i): oil, 122 mg (84%); ¹H NMR (400 MHz, CDCl₃) δ 1.33 (s, 9H), 3.90 (s, 3H), 7.10 (d, *J* = 16.5 Hz, 1H), 7.37-7.44 (m, 4H), 7.50 (d, *J* = 8.2 Hz, 2H), 8.09 (d, *J* = 16.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 31.2, 34.7, 51.9, 121.2, 125.6, 125.9, 126.0, 126.7, 130.4, 132.8, 134.2, 145.8, 151.5, 163.0; HRMS *m*/*z* Calcd for C₁₈H₂₀O₂S (M⁺) 300.1184, found 300.1181.

(*E*)-Methyl 3-(4-Methoxystyryl)thiophene-2-carboxylate (3j): mp 126-127 °C (colorless needle crystals), 83 mg (60%); ¹H NMR (400 MHz, CDCl₃) δ 3.82 (s, 3H), 3.89 (s, 3H), 6.89 (d, *J* = 8.7 Hz, 2H), 7.06 (d, *J* = 16.5 Hz, 1H), 7.40-7.43 (m, 2H), 7.48-7.52 (m, 2H), 8.01 (d, *J* = 16.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 51.9, 55.3, 114.1, 119.9, 125.4, 125.9, 128.2, 129.7, 130.4, 132.5, 146.0, 159.8, 163.1; HRMS *m/z* Calcd for C₁₅H₁₄O₃S (M⁺) 274.0664, found 274.0665.

(*E*)-Methyl 3-(4-Chlorostyryl)thiophene-2-carboxylate (3k): m.p. 117-118 °C (pale yellow microcrystals), 118 mg (85%); ¹H NMR (400 MHz, CDCl₃) δ 3.90 (s, 3H), 7.04 (d, *J* = 16.5 Hz, 1H), 7.30-7.34 (m, 2H), 7.42-7.50 (m, 4H), 8.11 (d, *J* = 16.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 52.0, 122.5, 125.9, 126.5, 128.1, 128.9, 130.6, 131.5, 133.8, 135.5, 145.2, 163.0; HRMS *m/z* Calcd for C₁₄H₁₁ClO₂S (M⁺) 278.0168, found 278.0165.

(*E*)-Methyl 3-[4-(Trifluoromethyl)styryl]thiophene-2-carboxylate (3l): mp 88-90 °C (pale yellow microcrystals), 112 mg (74%); ¹H NMR (600 MHz, CDCl₃) δ 3.91 (s, 3H), 7.09 (d, *J* = 16.4 Hz, 1H), 7.44-7.46 (m, 2H), 7.59 (d, *J* = 8.5 Hz, 2H), 7.63 (d, *J* = 8.5 Hz, 2H), 8.20 (d, *J* = 16.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 52.0, 124.13 (q, *J* = 271.7 Hz), 124.2, 125.6 (q, *J* = 3.8 Hz), 125.9, 126.9, 127.2, 129.7 (q, *J* = 32.2 Hz), 130.6, 131.1, 140.4, 144.8, 162.8; HRMS *m*/*z* Calcd for C₁₅H₁₁F₃O₂S (M⁺) 312.0432, found 312.0428.

(*E*)-Methyl 3-[2-(Naphthalen-2-yl)vinyl]thiophene-2-carboxylate (3m): mp 131-132 °C (pale yellow needle crystal), 119 mg (82%); ¹H NMR (400 MHz, CDCl₃) δ 3.91 (s, 3H), 7.26 (d, *J* = 16.5 Hz,

The Journal of Organic Chemistry

1H), 7.43-7.49 (m, 4H), 7.78-7.83 (m, 4H), 7.87 (s, 1H), 8.26 (d, J = 16.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 52.0, 122.2, 123.7, 126.0, 126.18, 126,22, 126.4, 127.4, 127.7, 128.1, 128.4, 130.5, 133.1, 133.4, 133.6, 134.5, 145.7, 163.1; HRMS *m*/*z* Calcd for C₁₈H₁₄O₂S (M⁺) 294.0715, found 294.0716.

(*E*)-Methyl 3-(3-Butoxy-3-oxoprop-1-en-1-yl)-5-methylthiophene-2-carboxylate (3n): oil, 118 mg (84%); ¹H NMR (400 MHz, CDCl₃) δ 0.96 (t, *J* = 7.6 Hz, 3H), 1.39-1.48 (m, 2H), 1.66-1.73 (m, 2H), 2.49 (s, 3H), 3.88 (s, 3H), 4.21 (t, *J* = 6.9 Hz, 2H), 6.31 (d, *J* = 16.5 Hz, 1H), 7.03 (s, 1H), 8.45 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 15.6, 19.1, 30.7, 52.1, 64.5, 121.8, 125.0, 129.0, 136.6, 142.0, 145.8, 162.2, 166.8; HRMS *m*/*z* Calcd for C₁₄H₁₈O₄S (M⁺) 282.0926, found 282.0924.

(*E*)-Methyl 3-(3-Butoxy-3-oxoprop-1-en-1-yl)-5-chlorothiophene-2-carboxylate (3o): mp 45-46 °C (pale yellow microcrystals), 120 mg (80%); ¹H NMR (400 MHz, CDCl₃) δ 0.96 (t, *J* = 7.3 Hz, 3H), 1.39-1.48 (m, 2H), 1.66-1.73 (m, 2H), 3.90 (s, 3H), 4.21 (t, *J* = 6.6 Hz, 2H), 6.30 (d, *J* = 16.0 Hz, 1H), 7.18 (s, 1H), 8.40 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 19.1, 30.6, 52.4, 64.6, 123.0, 125.7, 129.3, 135.4, 136.4, 141.5, 161.2, 166.4; HRMS *m*/*z* Calcd for C₁₃H₁₅ClO₄S (M⁺) 302.0380, found 302.0383.

(*E*)-Methyl 5-Bromo-3-(3-butoxy-3-oxoprop-1-en-1-yl)thiophene-2-carboxylate (3p):⁹ mp 34-36 °C (colorless microcrystals), 158 mg (91%); ¹H NMR (400 MHz, CDCl₃) δ 0.97 (t, *J* = 7.3 Hz, 3H), 1.39-1.48 (m, 2H), 1.66-1.73 (m, 2H), 3.90 (s, 3H), 4.21 (t, *J* = 6.9 Hz, 2H), 6.31 (d, *J* = 16.5 Hz, 1H), 7.32 (s, 1H), 8.40 (d, *J* = 16.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 19.1, 30.6, 52.4, 64.6, 119.5, 122.9, 129.4, 132.0, 135.1, 142.2, 161.0, 166.3; HRMS *m*/*z* Calcd for C₁₃H₁₅BrO₄S (M⁺) 345.9874, found 345.9873.

(*E*)-Methyl 4-Bromo-3-(3-butoxy-3-oxoprop-1-en-1-yl)thiophene-2-carboxylate (3q): mp 43-45 °C (colorless microcrystals), 162 mg (93%); ¹H NMR (400 MHz, CDCl₃) δ 0.97 (t, *J* = 7.3 Hz, 3H), 1.40-1.49 (m, 2H), 1.67-1.74 (m, 2H), 3.91 (s, 3H), 4.23 (t, *J* = 6.6 Hz, 2H), 6.80 (d, *J* = 16.5 Hz, 1H), 7.52 (s, 1H), 8.18 (d, *J* = 16.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 19.1, 30.6, 52.6, 64.6, 112.3, 124.9, 129.4, 131.2, 135.2, 139.4, 161.2, 166.5; HRMS m/z Calcd for C₁₃H₁₅BrO₄S (M⁺) 345.9874, found 345.9872.

(*E*)-Methyl 4,5-Dibromo-3-(3-butoxy-3-oxoprop-1-en-1-yl)thiophene-2-carboxylate (3r): mp 76-78 °C (colorless needle crystals), 190 mg (89%); ¹H NMR (400 MHz, CDCl₃) δ 0.97 (t, *J* = 7.3 Hz, 3H), 1.42-1.49 (m, 2H), 1.67-1.74 (m, 2H), 3.90 (s, 3H), 4.23 (t, *J* = 6.9 Hz, 2H), 6.76 (d, *J* = 16.5 Hz, 1H), 8.13 (d, *J* = 16.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 19.2, 30.7, 52.8, 64.8, 116.6, 119.6, 125.6, 131.2, 135.2, 140.1, 160.6, 166.3; HRMS *m*/*z* Calcd for C₁₃H₁₄Br₂O₄S (M⁺) 423.8980, found 423.8980.

(*E*)-Butyl 3-(2-Acetylthiophen-3-yl)acrylate (4): mp 50-51 °C (colorless needle crystals), 98 mg (78%); ¹H NMR (400 MHz, CDCl₃) δ 0.97 (t, *J* = 7.3 Hz, 3H), 1.40-1.50 (m, 2H), 1.66-1.73 (m, 2H), 2.59 (s, 3H), 4.22 (t, *J* = 6.6 Hz, 2H), 6.38 (d, *J* = 16.5 Hz, 1H), 7.38 (d, *J* = 5.0 Hz, 1H), 7.48 (d, *J* = 5.0 Hz, 1H), 8.46 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 19.1, 30.0, 30.6, 64.6, 122.7, 127.6, 130.1, 137.2, 139.1, 140.8, 166.7, 190.8; HRMS *m*/*z* Calcd for C₁₃H₁₆O₃S (M⁺) 252.0820, found 252.0821.

(*E*)-Methyl 3-(3-Butoxy-3-oxoprop-1-en-1yl)-5-(4-(diphenylamino)phenyl)thiophene-2carboxylate (6): oil, 76 mg (60%); ¹H NMR (400 MHz, CDCl₃) δ 0.97 (t, *J* = 7.6Hz, 3H), 1.40-1.49 (m, 2H), 1.67-1.74 (m, 2H), 3.91 (s, 3H), 4.22 (t, *J* = 6.6 Hz, 2H), 6.41 (d, *J* = 16.5 Hz, 1H), 7.04-7.14 (m, 8H), 7.25-7.31 (m, 4H), 7.41 (s, 1H), 7.44-7.48 (m, 2H), 8.49 (d, *J* = 16.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 19.2, 30.7, 52.2, 64.5, 120.9, 122.1, 122.6, 123.7, 125.0, 125.9, 126.9, 128.6, 129.4, 136.7, 142.6, 147.0, 148.9, 149.1, 162.3, 166.8; HRMS *m*/*z* Calcd for C₃₁H₂₉NO₄S (M⁺) 511.1817, found 511.1814.

(*E*)-Butyl 3-(2-(2-Acetyl-1-phenylhydrazinecarbonyl)thiophen-3-yl)acrylate (7): mp 113-115 °C (colorless microcrystals), 51 mg (43%); ¹H NMR (400 MHz, CDCl₃) δ 0.94 (t, *J* = 7.4Hz, 3H), 1.38-1.45 (m, 2H), 1.62-1.69 (m, 2H), 2.02 (s, 3H), 4.16 (t, *J* = 6.7 Hz, 2H), 6.17 (d, *J* = 15.2 Hz, 1H), 7.12 (d, *J* = 5.2 Hz, 1H), 7.16-7.29 (m, 6H), 8.06 (d, *J* = 16.0 Hz, 1H), 8.97 (s, 1H); ¹³C NMR (100 MHz,

The Journal of Organic Chemistry

 $CDCl_{3}) \ \delta \ 13.7, \ 19.1, \ 20.7, \ 30.6, \ 64.5, \ 120.4, \ 125.2, \ 126.2, \ 127.6, \ 128.8, \ 129.0, \ 134.3, \ 136.7, \ 139.5, \ 120.4, \ 125.2, \ 126.2, \ 127.6, \ 128.8, \ 129.0, \ 134.3, \ 136.7, \ 139.5, \ 120.4, \ 125.2, \ 126.2, \ 127.6, \ 128.8, \ 129.0, \ 134.3, \ 136.7, \ 139.5, \ 120.4, \ 125.2, \ 126.2, \ 127.6, \ 128.8, \ 129.0, \ 134.3, \ 136.7, \ 139.5, \ 120.4, \ 125.2, \ 126.2, \ 127.6, \ 128.8, \ 129.0, \ 134.3, \ 136.7, \ 139.5, \ 120.4, \ 125.2, \ 126.2, \ 127.6, \ 128.8, \ 129.0, \ 134.3, \ 136.7, \ 139.5, \ 120.4, \ 125.2, \ 126.2, \ 126.2, \ 127.6, \ 128.8, \ 129.0, \ 134.3, \ 136.7, \ 139.5, \ 120.4, \ 126.2, \$

141.7, 163.2, 166.9, 169.6; HRMS *m*/*z* Calcd for C₂₀H₂₂N₂O₄S (M⁺) 386.1300, found 386.1301.

Butyl 2-(5-Acetyl-7-oxo-6-phenyl-4,5,6,7-tetrahydrothieno[2,3-d]pyridazin-4-yl)acetate (8): mp 102-103 °C (colorless microcrystals), 21 mg (90%); ¹H NMR (400 MHz, CDCl₃) δ 0.91 (t, *J* = 7.3Hz, 3H), 1.28-1.37 (m, 2H), 1.54-1.61 (m, 2H), 1.98 (s, 3H), 2.69 (dd, *J* = 7.1 Hz, 16.0 Hz, 1H), 2.90 (dd, *J* = 7.5 Hz, 16.5 Hz, 1H), 4.11 (t, *J* = 6.6 Hz, 2H), 6.55 (t, *J* = 7.1 Hz, 1H), 7.07 (d, *J* = 5.0 Hz, 1H), 7.20 (t, *J* = 7.34 Hz, 1H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.62 (d, *J* = 5.0 Hz, 1H), 7.83 (d, *J* = 7.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 19.0, 21.9, 30.5, 37.5, 49.5, 65.1, 118.9, 125.2, 125.4, 129.3, 130.6, 134.1, 141.3, 149.4, 158.9, 169.5, 175.3; HRMS *m/z* Calcd for C₂₀H₂₂N₂O₄S (M⁺) 386.1300, found 386.1298.

(*E*)-Methyl 3-(3-Butoxy-3-oxoprop-1-en-1-yl)furan-2-carboxylate (10a): mp 32-33 °C (pale yellow microcrystals), 77 mg (63%); ¹H NMR (400 MHz, CDCl₃) δ 0.97 (t, *J* = 7.3 Hz, 3H), 1.39-1.49 (m, 2H), 1.66-1.73 (m, 2H), 3.97 (s, 3H), 4.22 (t, *J* = 6.6 Hz, 2H), 6.34 (d, *J* = 16.0 Hz, 1H), 6.73 (d, *J* = 1.38 Hz, 1H), 7.53 (d, *J* = 1.83 Hz, 1H), 8.19 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 19.2, 30.7, 52.2, 64.6, 109.7, 122.8, 128.6, 133.8, 142.0, 145.8, 159.1, 166.4; HRMS *m/z* Calcd for C₁₃H₁₆O₅ (M⁺) 252.0998, found 252.0999.

(*E*)-Methyl 3-(3-Butoxy-3-oxoprop-1-en-1-yl)benzofuran-2-carboxylate (10b):⁹ mp 63-65 °C (pale yellow microcrystals), 118 mg (78%); ¹H NMR (400 MHz, CDCl₃) δ 0.97 (t, *J* = 7.3 Hz, 3H), 1.43-1.52 (m, 2H), 1.70-1.77 (m, 2H), 4.04 (s, 3H), 4.26 (t, *J* = 6.6 Hz, 2H), 6.77 (d, *J* = 16.5 Hz, 1H), 7.40 (m, 1H), 7.52 (m, 1H), 7.62 (d, *J* = 8.3 Hz, 1H), 7.95 (d, *J* = 8.2 Hz, 1H), 8.46 (d, *J* = 16.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 19.2, 30.7, 52.7, 64.7, 112.7, 122.4, 123.0, 123.5, 124.6, 125.1, 128.3, 134.2, 143.3, 154.8, 159.9, 166.5; HRMS *m/z* Calcd for C₁₇H₁₈O₅ (M⁺) 302.1154, found 302.1151.

(*E*)-Methyl 2-Bromo-6-(3-butoxy-3-oxoprop-1-en-1-yl)benzoate (11a): oil, 131 mg (76%); ¹H
NMR (400 MHz, CDCl₃) δ 0.96 (t, J = 7.3 Hz, 3H), 1.38-1.47 (m, 2H), 1.64-1.72 (m, 2H), 3.99 (s, 3H),
4.20 (t, J = 6.9 Hz, 2H), 6.40 (d, J = 15.6 Hz, 1H), 7.30 (t, J = 7.8 Hz, 1H), 7.56-7.60 (m, 3H); ¹³C NMR

(100 MHz, CDCl₃) δ 13.7, 19.1, 30.6, 52.9, 64.7, 120.0, 122.3, 125.2, 130.8, 133.7, 133.9, 136.0, 139.9, 166.0, 167.3; HRMS *m/z* Calcd for C₁₅H₁₇BrO₄ (M⁺) 340.0310, found 340.0310.

(*E*)-Methyl 2-(3-Butoxy-3-oxoprop-1-en-1-yl)-6-methylbenzoate (11b): oil, 95 mg (69%); ¹H NMR (400 MHz, CDCl₃) δ 0.96 (t, *J* = 7.3 Hz, 3H), 1.38-1.48 (m, 2H), 1.64-1.71 (m, 2H), 2.35 (s, 3H), 3.95 (s, 3H), 4.20 (t, *J* = 6.6 Hz, 2H), 6.37 (d, *J* = 15.6 Hz, 1H), 7.24 (d, *J* = 7.8 Hz, 1H), 7.33 (t, *J* = 7.8 Hz, 1H), 7.47 (d, *J* = 7.3 Hz, 1H), 7.70 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 19.2, 19.7, 30.7, 52.3, 64.5, 120.8, 124.0, 129.7, 131.7, 132.3, 134.1, 135.9, 141.6, 166.6, 169.3; HRMS *m/z* Calcd for C₁₆H₂₀O₄ (M⁺) 276.1362, found 276.1363.

(*E*)-Methyl 2-(3-Butoxy-3-oxoprop-1-en-1-yl)-6-methoxybenzoate (11c): oil, 118 mg (81%); ¹H NMR (400 MHz, CDCl₃) δ 0.96 (t, *J* = 7.3 Hz, 3H), 1.38-1.47 (m, 2H), 1.64-1.71 (m, 2H), 3.85 (s, 3H), 3.95 (s, 3H), 4.19 (t, *J* = 6.6 Hz, 2H), 6.40 (d, *J* = 15.6 Hz, 1H), 6.96 (d, *J* = 8.7 Hz, 1H), 7.23 (d, *J* = 7.8 Hz, 1H), 7.38 (t, *J* = 8.2 Hz, 1H), 7.62 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 19.1, 30.7, 52.6, 56.1, 64.5, 112.2, 118.5, 121.4, 124.0, 130.8, 133.3, 140.8, 156.6, 166.4, 167.6; HRMS *m/z* Calcd for C₁₆H₂₀O₅ (M⁺) 292.1311, found 292.1313.

(*E*)-Methyl 2-(3-Butoxy-3-oxoprop-1-en-1-yl)-1-naphthoate (12): oil, 97 mg (62%); ¹H NMR (400 MHz, CDCl₃) δ 0.98 (t, *J* = 7.3 Hz, 3H), 1.41-1.50 (m, 2H), 1.65-1.74 (m, 2H), 4.09 (s, 3H), 4.23 (t, *J* = 6.6 Hz, 2H), 6.54 (d, *J* = 15.5 Hz, 1H), 7.52-7.58 (m, 2H), 7.70 (d, *J* = 9.2 Hz, 1H), 7.83-7.90 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 19.2, 30.7, 52.7, 64.6, 121.3, 122.5, 125.6, 127.5, 127.7, 128.2, 129.7, 129.8, 130.3, 132.5, 133.7, 141.2, 166.5, 169.0; HRMS *m*/*z* Calcd for C₁₉H₂₀O₄ (M⁺) 312.1362, found 312.1363.

Acknowledgment. This work was supported by Grants-in-Aid from MEXT, JSPS, and JST, Japan, the Deutsche Forschungsgemeinschaft through the International Research Training Group Seleca (IGRK 1628) and the Forschungscluster SusChemSys. SusChemSys is co-financed by the Regional

The Journal of Organic Chemistry

Development Fund - investing in your future - of the European Union and the state of North Rhine - Westphalia.

Supporting Information Available: Copies of ¹H- and ¹³C-NMR spectra of products. This material is available free of charge via the Internet at http://pubs.acs.org.

- (1) (a) Xie, Y.; Huang, B.; Yu, K.; Shi, F.; Xu, W. Med. Chem. Res. 2013, 22, 3485. (b) Ashour, H.
 M.; El-Wakil, M. H.; Khalil, M. A.; Ismail, K. A.; Labouta, I. M. Med. Chem. Res. 2013, 22, 1909. (c) Solomon, V. R.; Lee, H. Biomed. Pharmacother. 2012, 66, 213. (d) Van Der Looy, J. F.
 A.; Thys, G. J. H.; Dieltiens, P. E. M.; De Schrijver, D.; Van Alsenoy, C.; Geise, H. J. Tetrahedron 1997, 53, 15069. (e) Roncali, J. Chem. Rev. 1997, 97, 173.
- (2) (a) Zhang, Y.; Li, Z.; Liu, Z.-Q. Org. Lett. 2012, 14, 226. (b) Tani, M.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2004, 69, 1221. (c) Jia, C.; Lu, W.; Kitamura, T.; Fujiwara, Y. Org. Lett. 1999, 1, 2097. (d) Tsuji, J.; Nagashima, H. Tetrahedron 1984, 40, 2699. (e) Fujiwara, Y.; Maruyama, O.; Yoshidomi, M.; Taniguchi, H. J. Org. Chem. 1981, 46, 851. For a stoichiometric version, see: (f) Itahara, T.; Ouseto, F. Synthesis 1984, 488.
- (3) For selected reviews concerning C–H bond functionalization, see: (a) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814. (b) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788. (c) Mitchell, E. A.; Peschiulli, A.; Lefevre, N.; Meerpoel, L.; Maes, B. U. W. Chem. Eur. J. 2012, 18, 10092. (d) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (e) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. (f) Kuninobu, Y.; Takai, K. Chem. Rev. 2011, 111, 1938. (g) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780. (h) Ackermann, L. Chem. Rev. 2011, 111, 1315. (i) Lapointe, D.; Fagnou, K. Chem. Lett. 2010, 39, 1118. (j) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (k) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (l) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677. (m) Satoh, T.; Miura, M. Chem. Eur. J. 2010, 16, 11212. (n) Chen, X.; Engle, K. M.; Wang, D.-

H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (o) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. (p) McGlacken, G. P.; Bateman, L. M. Chem. Soc. Rev. 2009, 38, 2447. (q) Li, C.-J. Acc. Chem. Res. 2009, 42, 335. (r) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013. (s) Ferreira, E. M.; Zhang, H.; Stoltz, B. M. Tetrahedron 2008, 64, 5987. (t) Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222. (u) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318. (v) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (w) Godula, K.; Sames, D. Science 2006, 312, 67. (x) Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077. (y) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698.

- (4) Amido-directed C3-alkenylations of thiophenes: (a) Li, B.; Ma, J.; Wang, N.; Feng, H.; Xu, S.;
 Wang, B. Org. Lett. 2012, 14, 736. (b) Ackermann, L.; Wang, L.; Wolfram, R.; Lygin, A. V. Org.
 Lett. 2012, 14, 728. (c) Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350. (d) Kim, B. S.; Lee, S. Y.; Youn, S. W. Chem. Asian J. 2011, 6, 1952. (e) Wang, F.;
 Song, G.; Li, X. Org. Lett. 2010, 12, 5430.
- (5) Directed C2-alkenylation of thiophenes: (a) Graczyk, K.; Ma, W.; Ackermann, L. Org. Lett. 2012, 14, 4110. (b) Padala, K.; Pimparkar, S.; Madasamy, P.; Jeganmohan, M. Chem. Commun. 2012, 48, 7140. (c) Padala, K.; Jeganmohan, M. Org. Lett. 2012, 14, 1134. (d) Park, S. H.; Kim, J. Y.; Chang, S. Org. Lett. 2011, 13, 2372.
- (6) For selected reviews, see: (a) Cornella, J.; Larrosa, I. Synthesis 2012, 653. (b) Rodriguez, N.;
 Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030. (c) Weaver, V.; Recio, A., III; Grenning, A. J.;
 Tunge, J. A. Chem. Rev. 2011, 111, 1846. (d) Satoh, T.; Miura, M. Synthesis 2010, 3395. (e)
 Goossen, L. J.; Rodriguez, N.; Goossen, K. Angew. Chem., Int. Ed. 2008, 47, 3100. (f) Baudoin,
 O. Angew. Chem., Int. Ed. 2007, 46, 1373.
- (7) Maehara, A.; Tsurugi, H.; Satoh, T.; Miura, M. Org. Lett. 2008, 10, 1159.
- (8) Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2011, 76, 3024.
- Ueyama, T.; Mochida, S.; Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2011, 13, 706.
 ACS Paragon Plus Environment

The Journal of Organic Chemistry

(10)	Directed ortho-alkenylation of aromatic ketones: (a) Patureau, F. W.; Besset, T.; Glorius, F.
	Angew. Chem., Int. Ed. 2011, 50, 1064. (b) Padala, K.; Jeganmohan, M. Org. Lett. 2011, 13, 6144.
(11)	(a) Liu, C.; Ni, Q.; Qiu, J. Eur. J. Org. Chem. 2011, 3009. (b) Varello, S.; Handy, S. T. Synthesis
	2009, 138. For reviews, see: (a) Miyaura, N. J. Organomet. Chem. 2002, 653, 54. (b) Miyaura,
	N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(12)	(a) Tang, A.; Li, L.; Lu, Z.; Huang, J.; Jia, H.; Zhan, C.; Tan, Z.; Li, Y.; Yao, J. J. Mater. Chem.
	A 2013, 1, 5747. (b) Lin, Y.; Zhang, ZG.; Li, Y.; Zhu, D.; Zhan, X. J. Mater. Chem. A 2013, 1,
	5128. (c) Cheng, M.; Yang, X.; Zhang, F.; Zhao, J.; Sun, L. J. Phys. Chem. C 2013, 117, 9076.
	(d) Li, G.; Liang, M.; Wang, H.; Sun, Z.; Wang, L.; Wang, Z.; Xue, S. Chem. Mater. 2013, 25,
	1713. (e) Wan, ZK.; Lee, J.; Xu, W.; Erbe, D. V.; Joseph-McCarthy, D.; Follows, B. C.; Zhang,
	YL. Bioorg. Med. Chem. Lett. 2006, 16, 4941.
(13)	(a) Ballatore, C.; Crowe, A.; Piscitelli, F.; James, M.; Lou, K.; Rossidivito, G.; Yao, Y.;
	Trojanowski, J. Q.; Lee, V. MY.; Brunden, K. R.; Smith III, A. B. Bioorg. Med. Chem. 2012, 20,
	4451. (b) Dyck, B.; Markison, S.; Zhao, L.; Tamiya, J.; Grey, J.; Rowbottom, M. W.; Zhang, M.;
	Vickers, T.; Sorensen, K.; Norton, C.; Wen, J.; Heise, C. E.; Saunders, J.; Conlon, P.; Madan, A.;
	Schwarz, D.; Goodfellow, V. S. J. Med. Chem. 2006, 49, 3753.
(1.1)	Construction has been reported. China D. Coldbarry, W. Chall, M. M. (C. Kill, C.

- (14) Similar cyclization has been reported: Grigg, R.; Sridharan, V.; Shah, M.; Mutton, S.; Kilner, C.;MacPherson, D.; Milner, P. J. Org. Chem. 2008, 73, 8352.
- (15) Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem. 2007, 72, 5362.
- (16) Raduan, M.; Padrosa, J.; Pla-Quintana, A.; Parella, T.; Roglans, A. Adv. Synth. Catal. 2011, 353, 2003.