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Abstract: The synthesis of enantiomerically pure, distally-bridged
resorcinarenes 3 with various R groups (CH3, C5H11, C11H23) is re-
ported. The key step makes use of the Mannich reaction for attach-
ment of a chiral diamine-line 2 across the cavity. Yields for this step
are good to excellent. One of the bridged compounds exhibits mod-
est activity (27% ee) as an enantioselective catalyst in the addition
of diethylzinc to benzaldehyde.
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Recent interest in the development of resorcinarenes1 as
molecular receptors2 has focused on attachment of appro-
priate groups to the upper rim, and in this regard the Man-
nich reaction has emerged as a versatile methodology.
Use of primary amines with aqueous formaldehyde results
in benzoxazine3 formation involving participation of phe-
nolic hydroxyl groups. Interestingly, reaction to the tet-
rakis(benzoxazine) level is highly regioselective to afford
the C4v product, and completely diastereoselective4 when
using a-chiral amines such as a-methylbenzylamine. The
latter discovery has been used to prepare the first5 inher-
ently chiral enantiomerically pure resorcin[4]arenes as a
new class of asymmetric receptor. Extension of the benz-
oxazine approach to afford distally-bridged benzoxazine
derivatives with C2v symmetry by using primary diamines
has been reported by Böhmer.6 Our interest in distally-
bridged7 chiral resorcinarenes, centres on developing the
asymmetric environment in the line to catalytic and other
processes. In this communication, we report on the syn-
thesis of the first chiral, non-racemic, distally-bridged re-
sorcin[4]arenes based on a-methylbenzylamine as the
chiral source, and the application of one of them to the
enantioselective addition of diethylzinc to benzaldehyde.

In designing the target it was decided to place a chiral aux-
iliary on each nitrogen of the line bridging the cavity in or-
der to generate a C2v-symmetric target, and an a-
methylbenzyl group from a-methylbenzylamine was cho-
sen for this purpose. Such a choice precluded the possibil-
ity of using a benzoxazine formation / hydrolysis
sequence as used by Böhmer.6,8 However, our choice was
felt to be justified since secondary amines had been shown
by Matsushita9 to aminomethylate the upper rim of resor-
cinarenes under standard Mannich conditions (aqueous
formaldehyde / sec amine). In the event, however, these

conditions failed to give the desired-bridged compound
and a new set of reaction conditions were developed. A
second crucial feature was the necessity to produce quan-
tities of an appropriate C2v-symmetric tetra-substituted re-
sorcinarene with distal rings available for Mannich
functionalisation. Tetra-tosylation of C-methyl and C-
pentyl resorcinarenes as reported in the literature10 using
tosyl chloride (4 eq) and triethylamine (4 eq) in acetoni-
trile, and with precipitation of the products, produced tet-
ra-tosylates 1a and 1b. By comparison, formation of the
tetra-tosylate of C-undecyl resorcinarene required chang-
ing the solvent to tetrahydrofuran and the use of column
chromatography (no precipitation) to produce 1c in 41%
yield. Protection in the undecyl series with benzyl chloro-
formate similarly required THF as solvent and column
chromatography for isolation, but the resultant tetra-car-
bonate proved to be unsuitable for further elaboration in
view of competing base-catalysed migrations around the
ring during Mannich functionalisation (Figure 1).

Figure 1 1a, R = CH3; 1b, R = n-C5H11; 1c, R = C11H23

Synthesis of the chiral diamine bridging group was
straightforward involving thermal amide formation using
a-methylbenzylamine and dimethyl glutarate to the di-
amide followed by reduction (LiAlH4/ THF / D) and iso-
lation using salt precipitation following addition of a tri-
ethylamine / water mixture. Conventional column
chromatography furnished the pure diamine 2 in around
50% overall yield for the two steps. Compound 2 gave sat-
isfactory NMR data and could be unambiguously charac-
terised as its crystalline bis-hydrochloride salt or bis-
toluene-p-sulfonamide.11 Both enantiomers of 2 were pre-
pared in identical optical purity. 

Heating the diamine 2 under reflux with the resor-
cin[4]arene 1c using the Matsushita conditions of aqueous
formaldehyde in ethanol with a catalytic amount of glacial
acetic  acid  only  succeeded  in  substituting  the   non-
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protected phenolic rings of 1c with ethoxymethyl groups.
The participation of ethanol as nucleophile under these
conditions suggested that a set of conditions needed to be
developed in which the possibility of competing nucleo-
philic interception was minimised. Gratifyingly, on heat-
ing 1c under reflux with the diamine 2 in a 1:1.2 ratio in
the presence of an excess of paraformaldehyde in 1,4-di-
oxane at moderate dilution (0.02M of tosylate) furnished
the desired bridged compound 3c in about 40% yield after
column chromatography. Repeating the same reaction in
acetonitrile at 100 ºC in a sealed tube for 30 minutes suc-
ceeded in raising the yield to a reproducible 56-67% over
several runs. Similarly, using the same conditions,
bridged compounds 3a12 (58-61% over three runs), and 3b
(75% over two runs) could also be synthesised (Figure 2).

Figure 2 3a, R = CH3; 3b, R = n-C5H11; 3c, R = C11H23

Compounds 3a-c displayed extremely non-polar chro-
matographic characteristics for diamines, running on TLC
in ethyl acetate/light petroleum systems depending on the
nature of R (e.g. Rf = 0.6 for 3c in ethyl acatate:light
petroleum = 3:7). Compounds 3b and 3c with the larger R
groups proved more difficult to purify chromatographi-
cally than 3a, always eluting with traces (<5%) of a mar-
ginally less polar contaminant that prevented correct
combustion analysis and optical rotation data being ob-
tained. By comparison, the bridged compound 3a was
crystalline and returned excellent spectroscopic and mi-
croanalytical data,12 as well as parity in the specific rota-
tions of the (R, R) and (S, S) antipodes. The 1H NMR
spectra of compounds 3a-c required being recorded at 50
ºC to avoid line broadening, and revealed a stoichiometric
ratio of 1:1 between the diamine-line and the resorcinare-
ne. Three singlets for two sets of aromatic rings, con-
firmed that distal aromatic substitution had taken place,
while only 3a revealed the diastereotopicity of the benzyl-
ic methylene protons as an AB pair of doublets. Evidence
that the line lies over the cavity in compounds 3a-c was

provided by NMR chemical shifts. Thus, in their 1H spec-
tra, upfield shifts occurred in the methylene group reso-
nances going from diamine 2 to bridged compounds 3a-c.
Such shifts increased on passing from the a- to the b- and
g-carbons, and with increasing size of R group (Table).

Table 1H NMRa shifts in lineb of compounds 3a-c

a recorded on a 400 MHz instrument
b in ppm relative to diamine 2 and with negative values = upfield
c H on line relative to nitrogen

In conclusion, we have synthesised the first chiral, non-ra-
cemic, distally-bridged resorcinarenes as models for a
number of processes that use chiral materials. As an ex-
ample, reaction of 3c with diethylzinc13 and benzaldehyde
in THF at room temperature afforded 1-phenyl-1-pro-
panol in 27% ee.14 Further studies will focus on elaborat-
ing the bridged resorcinarenes into more effective
reagents.

Typical experimental procedure

The tetra-tosylate (0.5 mmol), paraformaldehyde (10 mmol, 10 eq),
and the diamine (2) (0.6 mmol, 1.2 eq) were heated together in dry
acetonitrile (25 ml, 0.02 M in tosylate) in a sealed tube (thick glass
wall with teflon pressure screw-tap) for 30 minutes. On cooling, the
vessel was opened, the contents filtered (to remove unreacted
paraformaldehyde) and solvent evaporated to afford a crude residue
which was subjected to column chromatography directly without
work-up. Eluent ethyl acetate: light petroleum (bp 60-80 °C) = 2:1
to 1:1 depending on the R group present in the resorcinarene; yields
60-80% of bridged compounds.
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