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Abstract—8-Chloro cyclic inosine 50-diphosphate ethoxymethyl ether 3 was synthesized by means of chemical method from pro-
tected inosine via phenylthio-type biphosphate substrate. The detection of Ca2+ release activity shows that 3 is a potent agonist of
cADPR and has activity in intact Hela cells. # 2002 Elsevier Science Ltd. All rights reserved.

Cyclic ADP-ribose (cADPR, 1), a metabolite of NAD+,
is of great interest because of its significant biological
importance as a physiological modulator of ryanodine
receptor.1 Accordingly, many cADPR analogues have
been synthesized from NAD+ analogues by the ADP-
ribosyl cyclase (ADPR-cyclase) and used for the studies
on the mechanism of cADPR mediated Ca2+ release
pathway.2 The most structural modifications of cADPR
focused on the adenosine moiety and pyrophosphate
unit.3 Due to the inherent substrate specificity of
ADPR-cyclase, different groups have worked on the
chemical synthesis of cADPR analogues (Fig. 1).4,5

The only effort related to the N1-ribosyl-modified cADPR
analogue, a carbocyclic mimic of cADPR 2a and 2b,
was reported by Matsuda’s group.6 The biological data
of 2b showed that 2b caused a significant release of
Ca2+ in sea urchin eggs via micro-injection. Among the
analogues of cADPR, none of the 8-substituted analo-
gues synthesized has Ca2+ release activity in sea urchin
egg homogenates, but most of them block cADPR from
releasing Ca2+.7 On the contrary, cyclic aristeromycin-
diphosphate-ribose, cyclic ATP-ribose and 7-deaza-
cADPR have been shown to be agonistic analogues of
cADPR.8�10 Some analogues were found to be cell per-
meant and resistant to both heat and enzymatic hydro-
lysis.11,12 To investigate the relationships between the
structure and biological activities of cADPR, it would
be interesting to synthesize the N1-ribosyl-modified
cADPR analogues.The present study introduced a facile

synthesis of the N1-ribose ring modification, that is an
N1-acyclic ether chain analogue, and it was found that
the N1-acyclic mimic 3 showed some Ca2+ release
activity in Hela cells.

According to the synthetic strategy of cADPR, N-1
substitution and intramolecular cyclization are the key
steps. To date, the most conventional preparations of
acyclic nucleoside involved an N-9 substitution of purine
with 2-chloromethoxyethyl acetate in the presence of a
base such as K2CO3 or NaH as well as in situ substitu-
tion with trimethylsilyl iodide and 1,3-dioxolane.13,14

Unfortunately, the N-1 substituted derivative 5 was not
obtained by the described methods due to the weak
nucleophilicity of this position. Interestingly, the reac-
tion of protected inosine 46a with 2-chloromethoxyethyl
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Figure 1. Structure of cADPR 1, cyclic IDP-carbocyclic ribose 2a,
cyclic ADP-carbocyclic ribose 2b and N1-ether strand analogue 3.



acetate in the presence of excess DBU afforded regiose-
lectively the desired 5 in 82% yield. The structure of N1-
substituted ether strand was determined by the spectra
of UV and 1H NMR. The tert-butyldimethylsilyl
(TBDMS) group of 5 was selectively removed and the
resulting 50-primary hydroxy was reacted with
(PhNH)2POCl to give phosphoroamide 6 in 84% yield.
Deacetylation of 7 with CH3ONa gave the mono-
hydroxy compound 8, which was transformed into the
corresponding biphosphate 915 by treatment with cyclo-
hexylammonium S,S-diphenylphosphorodithioate (PSS),
triisopropylbenzenesulfonyl chloride (TPS) and tetra-

zole in pyridine in 48% yield over two steps. However,
MALDI-TOF MS of 9 showed that the bromo group
was replaced with chloro group during the phosphor-
ylation reaction (Scheme 1).

The successive removal of diphenylamino group and
phenylthio group of 9 with isoamyl nitrite in a mixed
solvent of pyridine–AcOH–Ac2O and H3PO2 gave 10
for intramolecular condensation in 67% yield. The
intramolecular cyclization of 10 was performed under
the promotion of I2 and 3Å MS in pyridine via a syringe
pump according to Matsuda’s method.16 The desired
cyclic product 1117 as a triethylammonium salt was
obtained after purification by HPLC in 43% yield. The
cyclic structure of 11 was characterized by the data of
HR-FABMS and 31P NMR. Deprotection of cyclic
product 11 provided the compound 318 in 45% yield in
60% HCO2H solution.

In human Hela cells transfected with CD 38, a type II
transmembrane glycoprotein, cADPR is shown to play
a role in regulating the cell doubling time.19 It is inter-
esting to know if the cellular Ca2+ level correlates with
the cADPR level in Hela cells. We measured the cellular
Ca2+ level in Hela cells by cofocal system after incuba-
tion with cADPR and analogue 3, respectively. In this
study, the calcium level was represented by relative
fluorescence intensity of Fluo-3. The suspension at a
density of 2�105 cells/mL was attached to a 35-mm dish
coated glass coverslips for 18 h. The packed cells were
incubated in HEPES buffer solution containing (mM):
125 NaCl, 1.2 KH2PO4, 1.2 MgCl2, 2 CaCl2, 6 glucose,
25 HEPES [pH 7.4 containing 20 mM Fluo-3 AM
(Molecular Probe)] at 37 �C in dark for 30 min. The cells
were washed twice and then incubated for another 30
min in a dye-free-HEPES solution. The Fluo-3 fluores-
cence measurements were carried out using a Leica TCS
NT cofocal laser-scanning microscope. The results
showed that compound 3 could cause the abrupt fluor-
escence increase in Hela cells after exposure to 100 mM 3
for about 30 s. But cADPR cannot induce an efficient
increase in Fluo-3 fluorescence within 10 min under the
same concentration (Fig. 2). By combining both the
modifications on the N1 and 8-position of cADPR, we
found that compound 3 is a potent agonist of cADPR
and has activity in intact Hela cells. This is the first study

Scheme 1. Reagents and conditions: (i) DBU, ClCH2OCH2CH2OAc,
CH2Cl2, rt; (ii) TBAF in THF, rt; (iii) (PhNH)2POCl, Py, tetrazole, rt;
(iv) CH3ONa, CH3OH, rt; (v) PSS, TPS, tetrazole, Py, rt; (vi) (a)
isoamyl nitrite, Py/AcOH/Ac2O (2:1:1), rt; (b) H3PO2, Et3N, Py, rt;
(vii) I2, 3Å MS, Py, rt; (viii) 60% aqueous HCO2H, rt.

Figure 2. Effect of 3 and cADPR on intracellular Ca2+ dynamic
changes in intact Hela cells. The data shown are typical curves for at
least two experiments carried out in duplicate using different Hela cell
preparations.
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to implicate that the N1-ribosyl may not have a crucial
role for the Ca2+ release activity of cADPR analogues
and 3 should be a useful tool to investigate the cADPR
signaling pathway.

Acknowledgements

We are grateful for the support of the National Natural
Science Foundation of China.

References and Notes

1. Galine, A.; Lee, H. C.; Busa, W. B. Science 1991, 253, 1143.
2. Walseth, T. F.; Lee, H. C. Biochim. Biophys. Acta 1993,
1178, 235.
3. Zhang, F. J.; Gu, Q. M.; Sih, C. J. Bioorg. Med. Chem.
1999, 7, 653.
4. Fortt, S. M.; Potter, B. V. L. Tetrahedron Lett. 1997, 38,
5371.
5. Hutchinson, E. J.; Tayler, B. F.; Blackburn, G. M. J.
Chem. Soc. Chem. Commun. 1997, 1859.
6. (a) Shuto, S.; Shirato, M.; Sumita, Y.; Veno, Y.; Matsuda,
A. J. Org. Chem. 1998, 63, 1986. (b) Shuto, S.; Fukuoka, M.;
Manikowasky, A.; Ueno, Y.; Nakano, T.; Kuroda, R.; Kur-
oda, H.; Matsuda, A. J. Am. Chem. Soc. 2001, 123, 8750.
7. Lee, H. C. Physiol. Rev. 1997, 77, 1133.
8. Bailey, V. C.; Fortt, S. M.; Summerhill, R. J.; Galione, A.;
Potter, B. V. L. FEBS Lett. 1996, 379, 227.
9. Zhang, F. J.; Yawada, S.; Qu, Q. M.; Sih, C. J. Bioorg.
Med. Chem. Lett. 1996, 6, 1203.
10. Bailey, V. C.; Sethi, J. K.; Fortt, S. M.; Galione, A.; Pot-
ter, B. V. L. Chem. Biol. 1997, 4, 51.
11. Wong, L.; Aarhus, R.; Lee, H. C.; Walseth, T. F. Biochim.
Biophys. Acta 1999, 1472, 555.
12. Bailey, V. C.; Sethi, J. K.; Galione, A.; Potter, B. V. L. J.
Chem. Soc. Chem. Commun. 1997, 695.

13. Beauchamp, L. M.; Dolmath, B. L.; Schaeffer, H. J.; Col-
lins, P.; Baue, D. J.; Keller, P. M. J. Med. Chem. 1985, 28, 982.
14. Barrio, J. R.; Bryant, J. D.; Keyser, G. E. J. Med. Chem.
1980, 23, 572.
15. 9: 1H NMR (300MHz, DMSO-d6): d 1.26, 1.51 (each 3H,
each s, (CH3)2C–), 3.81 (2H, m, H-50), 4.06–4.36 (5H, m,
–OCH2CH2O–, H-40), 5.06 (1H, m, H-30), 5.31 (1H, m, H-20),
5.42–5.53 (2H, m, –OCH2O–), 6.03 (1H, d, J=1.8 Hz, H-10),
6.72–7.52 (20H, m, arom H), 8.02 (1H, d, J=9.9 Hz, NH),
8.10 (1H, d, J=9.9 Hz, NH), 8.30 (1H, s, H-2). 13C NMR
(75 MHz, DMSO-d6): d 25.20, 26.00, 64.17, 67.04, 68.14, 75.12,
80.92, 82.87, 85.60, 90.62, 113.86, 117.26, 120.50, 123.75,
124.36, 125.60, 126.40, 127.26, 127.69, 128.35, 128.67, 128.82,
129.57, 129.76, 133.34, 135.12, 140.93, 141.08, 147.96,
149.12, 154.78. 31P NMR (121 MHz, DMSO-d6): d 2.65 (s),
51.58 (s); m/z 933 (M+Na)+, 949 (M+K)+. Anal. calcd for
C40H41ClN6O9P2S2: C, 52.72; H, 4.53; N, 9.22. Found: C,
53.12; H, 4.72; N, 9.26.
16. Fukuota, M.; Shuto, S.; Shirato, M.; Sumita, Y.; Veno,
Y.; Matsuda, A. J. Org. Chem. 2000, 65, 5238.
17. 11: 1H NMR (500 MHz, D2O): d 1.28, 1.45 (each 3H, each
s, CH3�2), 3.61 (1H, m, H-50a), 3.70 (2H, m, OCH2CH2O–),
3.75 (3H, m, CH2, H-50b), 4.40 (1H, m, H-40), 5.08 (1H, d,
J=11 Hz, –OCHN–), 5.30 (1H, dd, J=2.5, 6.5 Hz, H-30), 5.71
(1H, d, J=11 Hz, –OCHN–), 5.81 (1H, d, J=2.5 Hz, H-20),
6.22 (1H, s, H-10). 31P NMR (D2O, 121MHz): d �9.04 (d,
J=15.7 Hz), �9.86 (d, J=15.7 Hz); high resolution m/z calcd
for C16H19ClN4O12P2: 557.0247 (M�H)�. Found: 557.0254.
18. 3: 1H NMR (500 MHz, D2O): d 3.69 (3H, m, H-50a, CH2),
3.80 (2H, m, CH2), 3.92 (1H, dd, J=3.0, 9.0 Hz, H-50b), 4.18
(2H, m, CH2), 4.64 (1H, m, H-40), 4.75 (1H, m, H-30), 5.18
(1H, d, J=11 Hz, –OCHN–), 5.52 (1H, t, J=5.0 Hz, H-20),
5.85 (1H, d, J 11 Hz, –OCHN–), 5.98 (1H, d, J=5.0 Hz, H-10).
31P NMR (D2O, 121 MHz): d �10.44, �10.79; high resolution
m/z calcd for C13H15ClN4O12P2: 5169934 (M�H)�. Found:
516.9925.
19. Zocchi, E.; Franco, L.; Daga, A.; Usai, C.; Franco, L.;
Guida, L.; Bruzzone, S.; Costa, A.; Marchetti, C.; Deflora, A.
J. Biol. Chem. 1998, 273, 8017.

L.-J. Huang et al. / Bioorg. Med. Chem. Lett. 12 (2002) 887–889 889


