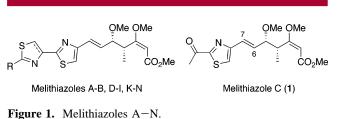

A Concise Total Synthesis of Melithiazole C[†]

Julian Gebauer, Stellios Arseniyadis, and Janine Cossy*

Laboratoire de Chimie Organique, ESPCI, CNRS, 10 rue Vauquelin, F-75231 Paris Cedex 05, France


janine.cossy@espci.fr

Received June 20, 2007

A short and convergent synthesis of the myxobacterial antibiotic melithiazole C is described featuring a highly E-selective cross-metathesis as the key step.

The thiazole subunit is found in many natural and synthetic compounds with a wide range of interesting bioactivities.¹ The melithiazoles A–N represent a group of fungicidal β -methoxy acrylate (MOA) metabolites which have been isolated from different strains of myxobacteria.² As a common structural motif they share either a bisthiazole or a thiazole—thiazoline ring system linked via a double bond to a highly pharmacophoric polypropionate moiety that selectively inhibits mitochondrial respiration by binding to the cytochrome bc_1 complex (Figure 1).³

Isolated in only minor quantities from *Melittangium lichenicola*, melithiazole C (1) contains a single thiazole ring and additionally occurs as a mixture of E/Z isomers at C6– C7 (6E/6Z = 7/2)² with only the *trans*-isomer being biologically active.⁴ On the other hand, derivatization of the acetyl group in **1** was found to selectively enhance its biological activities.⁴ Whereas simple transformation of the carbonyl group into an oxime functionality reduces the antifungal properties and increases the cytotoxicity, an exceptionally high antifungal activity is observed with a methoxime or vinyl derivative. Thus, melithiazole C (**1**) has attracted great attention as a potential lead for the development of agrochemical fungicides.⁵

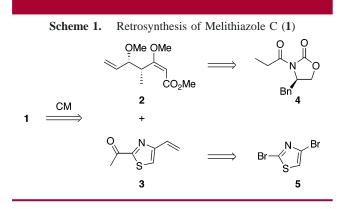
Despite its very limited natural availability arising from the low efficiency of the fermentation process, only one total synthesis of **1** has been reported proceeding via a moderately stereoselective Wittig reaction ($E/Z \approx 6/1$) to introduce the C6–C7 double bond (14 steps, 15% overall yield).⁶ On the basis of our recent work on the cross-metathesis (CM) of vinyl substituted thiazoles,⁷ we present herein a short and

[†] Dedicated to the memory of Charles Mioskowski (1946-2007).

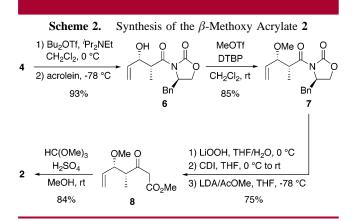
⁽¹⁾ de Souza, M. V. N. J. Sulfur Chem 2005, 26, 429-449.

⁽²⁾ Böhlendorf, B.; Herrmann, M.; Hecht, H. J.; Sasse, F.; Forche, E.; Kunze, B.; Reichenbach, H.; Höfle, G. *Eur. J. Org. Chem.* **1999**, *10*, 2601–2608.

⁽³⁾ Thierbach, G.; Reichenbach, H. Biochim. Biophys. Acta 1981, 638, 282–289.

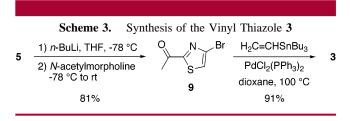

⁽⁴⁾ Söker, U.; Sasse, F.; Kunze, B.; Höfle, G. Eur. J. Org. Chem. 2000, 11, 2021–2026.

^{(5) (}a) Meyer, O.; Simon, W.; Höfle, G.; Söker, U. PCT Int. Appl. WO 2001038317 A2 20010531, 2001 (32 pp). (b) Simon, W.; Carter, P.; Höfle, G.; Söker, U. PCT Int. Appl. WO 2001012615 A2 20010222, 2001 (41 pp). (c) Höfle, G.; Söker, U. Ger. Offen. DE 19715290 A1 19981015, 1998 (14 pp).


⁽⁶⁾ Takayama, H.; Kato, K.; Kimura, M.; Akita, H. *Heterocycles* **2007**, *71*, 75–85.

highly stereoselective synthesis of 1 that, at the same time, should allow rapid access to structural derivatives^{5c} as well as various heterocyclic analogues.5b

Retrosynthetically, 1 was therefore fragmented into the common β -methoxy acrylate 2 and the vinyl thiazole 3 which would both be readily accessible in a few steps from the commercially available Evans' propionate 4 and the dibromothiazole 5, respectively (Scheme 1).


As depicted in Scheme 2, the synthesis of the β -methoxy acrylate 2 began with a previously described asymmetric aldol reaction between 4 and acrolein $(dr > 95:5)^8$ followed by O-methylation with methyl triflate in the presence of 2,6ditertbutylpyridine (DTBP). While initial attempts to directly

transform the resulting oxazolidinone 7 into the required β -keto ester **8** under Reformatsky conditions failed (BrCH₂-CO₂Me, Zn, THF, reflux),⁹ activation of the corresponding carboxylic acid with use of carbonyl diimidazole (CDI) and direct condensation with the lithium enolate of methyl acetate at -78 °C in THF proceeded smoothly to produce 8 in 75% yield (3 steps). Finally, acid-catalyzed methyl enol ether formation with MeOH in the presence of trimethyl ortho-

formate gave the desired β -methoxy acrylate 2 as a single stereoisomer in 50% overall yield from 4.10

Concerning the preparation of the vinyl thiazole 3, the thiazolyl bromide 9 was considered a suitable precursor since it is readily available from 2,4-dibromothiazole (5) via regioselective metalation (n-BuLi, Et₂O, -78 °C) and treatment with N-acetylmorpholine.¹¹ In our approach, a change of solvent from Et₂O to THF furnished the known bromide 9 in a significantly improved yield (81% vs 66%).¹¹ The latter was then subjected to a Stille cross-coupling reaction with vinyl tributyltin (1.1 equiv) under standard conditions [2 mol % of PdCl₂(PPh₃)₂, dioxane, 100 °C]¹² to efficiently afford the desired vinyl thiazole 3 (Scheme 3).

With both fragments in hand, the conditions for the final metathesis reaction were investigated. While Grubbs first generation catalyst (G I)¹³ proved completely ineffective (Table 1, entry 1), CM of an equimolar mixture of 2 and 3

Table 1.	Optimization of the CM Reaction								
	[Bu]	0	N A	OMe OMe					

2	+ 0		onditions	- / _	s_l	Ė	└O₂Me	
			Melithiazole C (1)					
		mol	equiv		temp	time	$conversion^{b,c}$	
entry	[Ru]	%	of 3	$\mathrm{solvent}^a$	(°C)	(h)	(%)	
1	${ m G}~{ m I}$	10	1	$\mathrm{CH}_2\mathrm{Cl}_2$	40	48	0	
2	${ m G~II}$	10	1	$\mathrm{CH}_2\mathrm{Cl}_2$	40	48	27	
3	H-G	10	1	$\rm CH_2\rm Cl_2$	40	48	18	
4	G II	20	2	$\rm CH_2\rm Cl_2$	40	60	50	
5	G II	20	2	C_6H_6	60	60	26	
6	G II	20	2	$\rm CH_2\rm Cl_2$	20	72	5	
7	G II	30	2	CH_2Cl_2	40	60	$68 (56)^d$	
8	G II	40	2	CH_2Cl_2	40	60	72	

^a 0.05 M. ^b Ratio of 1:2 determined by ¹H NMR. ^c E/Z > 20/1. ^d Isolated yield.

in refluxing CH₂Cl₂ with 10 mol % of Grubbs second generation catalyst (G II)¹⁴ or with Hoveyda–Grubbs catalyst (H-G)¹⁵ resulted mainly in homodimerization of the vinyl

(11) Ung, A. T.; Pyne, S. G. Tetrahedron: Asymmetry 1998, 9, 1395-1407

`| CO₀Me

⁽⁷⁾ Dash, J.; Arseniyadis, S.; Cossy, J. Adv. Synth. Catal. 2007, 349, 152–156.

⁽⁸⁾ Nicolaou, K. C.; Brenzovich, W. E.; Bulger, P. G.; Francis, T. M. Org. Biomol. Chem. 2006, 4, 2119-2157.

⁽⁹⁾ Kashima, C.; Huang, X. C.; Harada, Y.; Hosomi, A. J. Org. Chem. 1993, 58, 793-794.

⁽¹⁰⁾ Shao, J.; Panek, J. S. Org. Lett. 2004, 6, 3083-3085.

⁽¹²⁾ Hodgetts, K. J.; Kershaw, M. T. Org. Lett. 2002, 4, 1363-1365. (13) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100-110.

⁽¹⁴⁾ Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-956.

thiazole **3** while **2** was consumed only slowly (Table 1, entries 2 and 3).

Since protected allylic alcohols such as **2** do not undergo any self-metathesis (Type III olefins),¹⁶ better results were obtained under more forcing conditions by employing 20 mol % of G II and an excess of thiazole **3**, whereas higher or lower temperatures were detrimental (Table 1, entries 4–6). Finally, CM was best effected with 30 mol % of G II in the presence of 2 equiv of **3** at 40 °C in CH₂Cl₂ (Table 1, entry 7) affording melithiazole C (**1**) as a single diastereoisomer (E/Z > 20/1) in 56% isolated yield. The spectroscopic and physical data of **1** were identical with those reported for the natural product {[α]²⁰_D +167 (*c* 0.3, MeOH); lit. [α]²²_D +169 (*c* 0.3, MeOH)}.^{2.4} In conclusion we have described a short and convergent synthesis of melithiazole C (1), which was obtained in 6 steps and 28% overall yield starting from the commercially available Evans' propionate 4. The key feature of this novel approach consists of a highly *E*-selective CM reaction between a vinyl thiazole and a polypropionate fragment. Further applications of this strategy to the synthesis of related natural products are currently under investigation.

Acknowledgment. J.G. thanks the CNRS for a grant.

Supporting Information Available: Experimental details and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL701459J

⁽¹⁵⁾ Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168–8179.

⁽¹⁶⁾ Chatterjee, A. K.; Choi, T.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. **2003**, *125*, 11360–11370.