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ENANTIOSELECTIVE SYNTHESIS OF CHIRAL
PROPARGYLIC ALCOHOLS CATALYZED BY
BIFUNCTIONAL ZINC-BASED COMPLEXES

Xinhua Lu, Guanlei Xie, Tingyi Li, Xiaoming Qu, and
Jincheng Mao
Key Laboratory of Organic Synthesis of Jiangsu Province, College of
Chemistry, Chemical Engineering and Materials Science, Soochow
University, Suzhou, P. R. China

GRAPHICAL ABSTRACT

Abstract This work demonstrates an efficient way to prepare chiral propargylic alcohols by

asymmetric addition of terminal Zn-acetylide to aldehydes catalyzed by bifunctional

zinc-based complexes. The corresponding products with moderate to good yields and

enantioselectivities were obtained in the absence of moisture-sensitive Ti(OiPr)4.

Keywords Alkyne; asymmetric addition; bifunctional complexes; enantioselectivities

INTRODUCTION

Chiral secondary propargylic alcohols were important and useful building
blocks in the synthesis of many natural products and pharmaceuticals.[1,2] However,
the most effective and straightforward way is asymmetric alkynylation of aldehydes,
which can simultaneously form a new C-C bond and a stereogenic center in one
step.[3–6] In past decades, various excellent chiral ligands in combination with differ-
ent central metals have been developed for such an enantioselective transformation
process, such as alkyl zinc–catalyzed asymmetric alkynylation of aldehydes,[7]

titanium-catalyzed enantioselective alkynylide addition to aldehydes,[8] Zn(OTf)2-
meditated enantioselective additions,[9] InBr3-catalyzed alkynylation of aldehydes,[10]

vanadium-mediated asymmetric additions,[11] and copper-promoted enantioselective
addition of terminal alkynes to aldehydes.[12] Among them, alkylzinc-mediated
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asymmetric addition of phenylacetylene to aldehydes is most attractive.[13] Although
great effort has been made in this field, development of novel readily available chiral
catalysts is still desirable. Based on our interest in such catalytic reactions,[14–19] here
we report our recent findings in this asymmetric transformation using the bifunc-
tional zinc-based catalysts (Fig. 1).

We know that bifunctional catalysts have been developed for various asymmet-
ric transformation processes.[20–22] However, this concept for the design of catalysts
has not been extensively applied in asymmetric addition reactions.[23] When this
bifunctional catalyst was employed in this reaction, the Lewis-acid part could
activate the electrophilic substrate, such as aldehyde, and the Lewis-base part could
activate the nuclephilic substrate, such as metal acetylide. In this way, double activa-
tions could make this catalyst efficient for the asymmetric alkynylation of aldehydes.

RESULTS AND DISCUSSION

Based on commercially available chiral amino alcohols, ligands A–H were
easily prepared in one-step reaction with good yields. Then, we applied these stable

Figure 1. Design of possible bifunctional zinc-based catalysts for asymmetric alkynylation reaction.

Figure 2. Chiral ligands evaluated in this research.
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ligands to the asymmetric addition of Zn-phenylacetylide to benzaldehyde as the
model reaction, and the related results are listed in Table 1. Using toluene as the sol-
vent, ligand C gave the best enantioselectivity (48% ee) (entries 1–8, Table 1). At the
same time, additional Lewis acid Ti(OiPr)4 was employed in the reaction. However,
less than 5% ee was obtained, although the yield of the desired product was very high
(91%) (entry 9, Table 1). After screening different solvents (entries 10–12, Table 1),
we found that hexane afforded the greatest enantioselectivity (entry 11, Table 1).
When 1 equiv. of 1,2-dimethoxyethane (DME) and hexamethylphosphoramide
(HMPA) were employed as the additives, we did not get the enhanced ee values

Table 1. Asymmetric addition of Zn-phenylacetylide to benzaldehyde using various chiral ligandsa

Entry Ligand (mol%) Solvent PhCCH (equiv) R2Zn (equiv) Yield (%)b Ee (%)c Config.

1 A (10) Toluene 2.0 Me (2.0) 26 18 R

2 B (10) Toluene 2.0 Me (2.0) 29 31 R

3 C (10) Toluene 2.0 Me (2.0) 34 48 R

4 D (10) Toluene 2.0 Me (2.0) 25 40 R

5 E (10) Toluene 2.0 Me (2.0) 33 43 S

6 F (10) Toluene 2.0 Me (2.0) 17 21 S

7 G (10) Toluene 2.0 Me (2.0) 15 35 R

8 H (10) Toluene 2.0 Me (2.0) 13 32 S

9d C (10) Toluene 2.0 Me (2.0) 91 <5 R

10 C (10) DCM 2.0 Me (2.0) 82 15 R

11 C (10) Hexane 2.0 Me (2.0) 26 53 R

12 C (10) THF 2.0 Me (2.0) 17 20 R

13e C (10) Hexane 2.0 Me (2.0) 89 9 R

14f C (10) Hexane 2.0 Me (2.0) 30 52 R

15 C (10) Hexane 2.0 Et (2.0) 83 60 R

16 C (10) Hexane 3.0 Et (3.0) 80 40 R

17 C (10) Hexane 4.0 Et (4.0) 85 44 R

18 C (10) Hexane 1.4 Et (1.4) 67 51 R

19 C (20) Hexane 2.0 Et (2.0) 84 59 R

20 C (40) Hexane 2.0 Et (2.0) 75 61 R

21 C (5) Hexane 2.0 Et (2.0) 76 28 R

22g C (10) Hexane 2.0 Et (2.0) 62 26 R

23h C (10) Hexane 2.0 Et (2.0) 47 0 R

aAll the reactions were performed under argon at room temperature for 24 h. Alkyne=Me2Zn=

benzaldehyde=ligand 1:1:0.5:0.05.
bIsolated yield.
cThe enantiomeric excess was determined by chiral HPLC analysis of the corresponding products on a

Chiralcel OD-H column.
d0.2mmol Ti(OiPr)4 was used.
e1mmol HMPA was added.
f1mmol DME was added.
gReaction was carried out at 0 �C.
hReaction was carried out at 60 �C.
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Table 2. Results for asymmetric alkynylzinc additions to various aldehydes catalyzed by ligand Ca

Entry Substrate Product Yield (%)b Ee (%)c Config.

1 83 60 R

2 64 39 R

3 72 43 R

4 63 41 R

5 76 52 R

6 73 32 R

7 72 48 R

8 67 47 R

9 70 56 R

(Continued )
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(entries 13 and 14, Table 1). Replacement of Me2Zn with Et2Zn led to better yield
(83%) and better enantioselectivity (60% ee) (entry 15, Table 1). Varying the amount
of phenylacetylene and diethyl zinc did not improve results (entries 16–18, Table 1).
To our surprise, higher or lower loading of ligand C did not afford better results
(entries 19–21, Table 1). Changing reaction temperatures did not lead to enhanced
enantioselectivities (entries 22 and 23, Table 1).

The influence of various aromatic aldehyde substrates on the reactivity and
enantioselectivity was studied under the standard conditions. As shown by the results
summarized in Table 2, moderate yields and enantioselectivities were achieved for the
addition of Zn-phenylacetylide to aromatic aldehydes (entries 1–11, Table 2). Substitu-
ents of aromatic aldehydes containing an electron-withdrawing group at the ortho- or
para-position have little effect on the enantiomeric excess. It is noteworthy that for
b-naphthaldehyde, the desired product was obtained with good enantioselectivity
(90%) after simple recrystallization (entry 10, Table 2). In addition, promising enan-
tioselectivity (50%) can also be obtained with aliphatic aldehyde (entry 12, Table 2).

In addition, we performed different asymmetric reactions using C as the ligand
to test its possible catalytic performances. One selected reaction is copper-catalyzed
asymmetric Henry reaction of 4-nitrobenzaldehyde and nitromethane. In air, the
desired product was obtained in good yield and enantioselectivity in the presence
of Cu(OAc)2 �H2O using C as the ligand (Scheme 1). The other reaction is
copper-catalyzed asymmetric Michael addition reaction of 40-methylchalcone and
nitromethane. The promising result was acquired using Cu(OAc)2 �H2O=C catalytic
system as shown in Scheme 2. Thus, it shows that our catalytic system may be
efficient in various enantioseletive catalytic processes.

Table 2. Continued

Entry Substrate Product Yield (%)b Ee (%)c Config.

10 76 60 [90]d R

11 51 50 R

12 56 50 R

aAll the reactions were performed under argon at room temperature for 24 h. Alkyne=Et2Zn=

benzaldehyde=C 1:1:0.5:0.05.
bIsolated yield.
cThe enantiomeric excess was determined by chiral HPLC analysis of the corresponding products on a

Chiralcel OD-H column.
dThe ee in parentheses was determined after simple recrystallization.
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CONCLUSIONS

In summary, we have developed a bifunctional zinc-based complex for the
enantioselective reaction of phenylacetylene with various aldehydes for the synthesis
of optically active propargylic alcohols. Using 10mol% of easily prepared amino
alcohol derivative C as the chiral ligand, the desired products were obtained in mod-
erate to good yields and enantioselectivities. Thus, the easily available catalyst made
this catalytic process potentially practical and useful. Further studies on highly effec-
tive asymmetric addition reactions using novel catalysts are in progress in our
laboratory.

EXPERIMENTAL

All manipulations were carried out under an argon atmosphere in dried and
degassed solvents. All solvents were dried and degassed by the standard methods
and all aldehydes, dimethyl zinc, and diethyl zinc were commercially available. Melt-
ing points were determined using a standard melting-point apparatus and are uncor-
rected. The reactions were monitored by thin-layer chromatography (TLC). NMR
spectra were measured in CDCl3 on a Varian-Inova 400 NMR spectrometer
(400MHz) with tetramethylsilane (TMS) as an internal reference. Optical rotations
were measured with a HORIBA SEPA-200 highly sensitive polarimeter. Enantio-
meric excess (ee) determination was carried out using a chiral OD-H column (sol-
vent, hexane=isopropanol; flow rate, 1 cm3min�1; UV detection, 254 nm). High-
resolution mass spectra (HRMS) were measured with electron impact (EI).

General Procedure for the Addition of Zinc-Phenylacethylene to
Aldehydes

All manipulations were carried out under an argon atmosphere using dried and
degassed solvent. The ligand C (0.05mmol) was suspended in dry hexane (2.0mL) at

Scheme 1. Copper-catalyzed asymmetric Henry reaction in the presence of ligand C.

Scheme 2. Copper-catalyzed asymmetric Michael addition reaction in the presence of ligand C.
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room temperature. Then, a solution of diethyl zinc (1.0M in hexane, 1.0mL,
1.0mmol) was added. After the mixture was stirred at room temperature for 1.5 h,
phenylacetylene (1.0mmol) was added, and the stirring continued for another
1.5 h. The yellow solution was cooled to 0 �C and treated with benzaldehyde
(50 mL, 0.5mmol); then the resultant mixture was allowed to warm up to room tem-
perature naturally and stirred for 20 h. After the reaction was completed, it was
cooled to 0 �C again and quenched by 5% aqueous HCl (2mL). The mixture was
extracted with ethyl acetate (EtOAc) (2� 10mL). The organic layer was dried over
Na2SO4 and concentrated under vacuum. The residue was purified by flash column
chromatography (silica gel H, EtOAc–petroleum ether¼ 1:6) to give the pure pro-
duct. 1H NMR (400MHz, CDCl3): d 7.62 (d, J¼ 7.2Hz, 2H), 7.48–7.25 (m, 8H),
5.69 (s, 1H), 2.36 (s, 1H); 13C NMR (100MHz, CDCl3): d 141.1, 132.2, 129.2,
129.1, 128.9, 128.8, 127.2, 122.9, 89.1, 87.2, 65.6.

Chiral HPLC Chromatography Data

1,3-Diphenylprop-2-yn-1-ol. Yield 83%; 60% ee determined by HPLC analy-
sis (Chiralcel OD-H column, IPA–hexane 20:80). Retention time: tminor¼ 9.53min,
tmajor¼ 6.42min.

1-(2-Fluorophenyl)-3-phenylprop-2-yn-1-ol. Yield 64%; 39% ee determined
by HPLC analysis (Chiralcel OD-H column, IPA–hexane 20:80). Retention time:
tminor¼ 7.02min, tmajor¼ 5.77min.

1-(4-Fluorophenyl)-3-phenylprop-2-yn-1-ol. Yield 72%; 43% ee determined
by HPLC analysis (Chiralcel OD-H column, IPA–hexane 20:80). Retention time:
tminor¼ 11.58min, tmajor¼ 5.91min.

1-(4-Bromophenyl)-3-phenylprop-2-yn-1-ol. Yield 63%; 41% ee determined
by HPLC analysis (Chiralcel OD-H column, IPA–hexane 20:80). Retention time:
tminor¼ 13.49min, tmajor¼ 6.25min.

1-(4-Chlorophenyl)-3-phenylprop-2-yn-1-ol. Yield 76%; 52% ee determined
by HPLC analysis (Chiralcel OD-H column, IPA–hexane 20:80). Retention time:
tminor¼ 12.62min, tmajor¼ 6.03min.

1-(Naphthalen-4-yl)-3-phenylprop-2-yn-1-ol. Yield70%;56% eedetermined
by HPLC analysis (Chiralcel OD-H column, IPA–hexane 20:80). Retention time:
tminor¼ 15.21min, tmajor¼ 9.04min.

1-(2-Chlorophenyl)-3-phenylprop-2-yn-1-ol. Yield 73%; 32% ee determined
by HPLC analysis (Chiralcel OD-H column, IPA–hexane 20:80). Retention time:
tminor¼ 6.22min, tmajor¼ 5.77min.

3-Phenyl-1-p-tolylprop-2-yn-1-ol. Yield 72%; 48% ee determined by HPLC
analysis (Chiralcel OD-H column, IPA–hexane 20:80). Retention time: tminor¼
9.22min, tmajor¼ 5.62min.

3-Phenyl-1-o-tolylprop-2-yn-1-ol. Yield 67%; 47% ee determined by HPLC
analysis (Chiralcel OD-H column, IPA–hexane 20:80). Retention time: tminor¼
9.16min, tmajor¼ 5.49min.
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1,4-Diphenylbut-3-yn-2-ol. Yield 56%; 50% ee determined by HPLC analy-
sis (Chiralcel OD-H column, IPA–hexane 20:80). Retention time: tminor¼ 9.15min,
tmajor¼ 5.53min.

1-(Naphthalen-3-yl)-3-phenylprop-2-yn-1-ol. Yield76%;60% eedetermined
by HPLC analysis (Chiralcel OD-H column, IPA–hexane 20:80). Retention time:
tminor¼ 7.74min, tmajor¼ 5.57min.

3-Phenyl-1-(thiophen-2-yl)prop-2-yn-1-ol. Yield 51%; 50% ee determined
by HPLC analysis (Chiralcel OD-H column, IPA–hexane 20:80). Retention time:
tminor¼ 9.46min, tmajor¼ 6.16min.
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