

Tetrahedron Letters 39 (1998) 2553-2554

TETRAHEDRON LETTERS

Functionalized 2-Azabicyclo[3.3.0] octanes as Ligands in the Enantioselective Catalysis

Hans Günter Aurich*, Michael Soeberdt

Fachbereich Chemie der Philipps-Universität Marburg, D-35032 Marburg, Germany

Received 18 December 1997; revised 10 February 1998; accepted 11 February 1998

Abstract: Enantiopure compounds 4 were prepared by condensation of β -aminoalcohols 2 with ethyl (2oxocyclopentyl)acetate 1 and subsequent reduction of intermediates 3. Compound 4a was converted to 6 via 5. With compounds 4, 5 or 6 as chiral ligands in the reaction of benzaldehyde with diethylzinc an enantiomeric excess between 14 and 84% was achieved. © 1998 Elsevier Science Ltd. All rights reserved.

The reaction of aldehydes with a dialkylzinc compound in the presence of chiral ligands that give rise to a catalytic process belongs to the frequently studied enantioselective reactions.¹ Among the various bicyclic compounds with a β -aminoalcohol group that are used as chiral ligands are only a few with a 2-azabicyclo-[3.3.0]octane backbone.² We synthesized enantiopure N-hydroxyalkylsubstituted 2-azabicyclo[3.3.0]octanes 4 and checked them as ligands in the enantioselective reaction of diethylzinc with benzaldehyde. Since β -aminothiols revealed sometimes a higher enantioselectivity compared to the corresponding β -aminoalcohols³ it seemed reasonable to study also such compounds.

Condensation of γ -ketoester 1 with aminoalcohols 2 afforded 9-oxa-1-azatricyclo[6.3.0.0^{4.8}]undecan-2-ones 3 or ent-3⁴ (for substitution pattern see Table 1). Reductive ring-opening either with lithium aluminium hydride (R² =H) or borane-tetrahydrofuran complex (R² = Ph) gave 2-azabicyclo[3.3.0]octanes 4 or ent-4, respectively. Aminoalcohol 4a was converted to aminothiol 6 via compound 5.⁵ An analogous conversion of compound ent-4g, however, could not be achieved. Compounds 4-6 were obtained diastereomerically pure as was shown by their ¹H and ¹³C NMR spectra. Since aminoalcohols 2 were enantiopure, this must be also true for the products 4-6.⁶

i: reflux in toluene, ii: LiAlH₄ in THF or BH₃- THF complex in THF, iii: MsCl, NEt₃, iv: CH₃CO-SK, v: LiAlH₄ iii, iv v v $5: X = S-COCH_3$ 6: X = SH

For substitution pattern R¹, R² see Table 1

0040-4039/98/\$19.00 © 1998 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(98)00345-1 The reaction of diethylzinc with benzaldehyde was performed in the presence of 6 mol% of compounds 4, 5 or 6 at 0°C hexane. The enantiomeric excess of the reaction was determined as described earlier.⁷ The results are summarized in Table 1.

Table 1.

Enantiomeric excess in the reaction of benzaldehyde with diethylzinc in the presence of compounds $4-6^a$

Compound	R ¹	R ²	Yield (%)	ee (%)	config. ^f	
4a	Me	Н	88 ^b	32	R	
4b	iPr	Н	58°	34	R	
4c	Bn	Н	93	30	R	
4d	Me	Ph	97 ^d	46	R	
4e	Bn	Ph	88 ^d	74	R	
ent-4f ^e	Ph	Н	90°	14	S	
ent-4g	Ph	Ph	100	78	S	
5	-	-	100	82	R	
6	-	-	100	84	R	

^a 150 mol% of Et₂Zn, 6 mol% of compounds 4, ent-4, 5, or 6 - ^b 8% of benzylalcohol were formed in addition to the 1-phenylpropanol-1 - ^c 10% of benzylalcohol were formed - ^d 3% of benzylalcohol were formed - ^e See reference 4a - ^f Configuration of the enantiomer formed in excess

We thank the Fonds der Chemischen Industrie for financial support.

References and Notes

- 1. a) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833-856. b) Noyori, R.; Kitamura, M. Angew. Chem. Int. Ed. Engl. 1991, 30, 49-69.
- a) Wallbaum, S.; Martens, J. Tetrahedron: Asymmetry 1993, 4, 637-640. b) Wilken, J.; Kossenjans, M.; Gröger, H.; Martens, J. Tetrahedron: Asymmetry 1997, 8, 2007-2015.
- a) Nakano, H.; Kumagai, N.; Matsuzaki, H.; Kabuto, C.; Hongo, H. Tetrahedron: Asymmetry 1997, 8, 1391-1401. b) Kang, J.; Lee, J.W.; Kim, J.I. J. Chem. Soc., Chem. Commun. 1994, 2009-2010.
- a) Ennis, M.D.; Hoffmann, R.L.; Ghazal, N.B.; Old, D.W.; Mooney, P.A. J. Org. Chem. 1996, 61, 5813-5817. b) Ragan, J.A.; Claffey, M.C. Heterocycles 1995, 41, 57-70.
- 5. The conversion of compound 4a to 6 via 5 was performed according to the procedure described in ref. 3a.
- 6. Characterization of selected compounds: Compound 3a ($R^1 = Me$, $R^2 = H$): Colourless oil, cc (SiO₂, AcOEt/ petroleum ether 1:1, $R_{f} = 0.10$); 85% yield. - $[\alpha]_{D}^{20} = +91.4$.- Selected signals: ¹H NMR (300 MHz, CDCl₃) 1.21 (d, 3H. CH₃), 2.29 (dd, 7-H), 2.53 (m, 2.53) (m 8-H), 2.68 (dd, 7-H'), 3.53 (dd, 3-H), 4.07 (ddq, 4-H), 4.16 (dd, 3-H'). - 13C NMR (75 MHz, CDCl₃): 50,3 (C-4), 73.6 (C-3), 110.1 (C-1), 179.5 (C-6). MS (EI): m/z (%) = 181 (24) [M⁺]. - Compound 4a (R¹ = Me, R² = H): Colourless oil, kugelrohrdistillation, 85% yield. - $[\alpha]_D^{20}$ = +44.3. - Selected signals: ¹H NMR (300 MHz, CDCl₃) 0.84 (d, 3H, CH₃), 2.23 (dd, 3'-H), 2.43 (m, 5'-H) 2.58 (dd, 3'-H'), 2.88 (ddq, 2-H), 3.08 (dd, 1'-H), 3.15 (t, 1-H), 3.35 (dd, 1-H'). - 13C NMR (75 MHz, CDCl₃): 41.6 (C-5'), 44.7 (C-3'), 54.4 (C-2), 63.5 (C-1), 65.2 (C-1'). - MS (FD): m/z (%) = 169 (100) [M⁺]. - C₁₀H₁₉NO (169.3) Calcd. C 70.95 H 11.31 N 8.27 Found C 71.12 H 11.42 N 8.31. - Compound 5: Pale-yellow oil, cc (SiO₂; AcOEt/petroleum ether 1:1, R_f = 0.25), AcOEt (R_f = 0.23), 23% yield. - $[\alpha]_{D}^{25} = -29.6$. - Selected signals: ¹H NMR (300 MHz, CDCl₃): 0.99 (d, 3H, CH₃), 2.23 (s, 3H, CH₃), 2.28 (ddd, 3'-H), 2.41 (m, 5'-H), 2.66-2.73 (m, 2H, 2-H and 3'-H'), 2.85 (dd, 1-H), 3.03 (m, 1'-H), 3.04 (dd, 1-H'). - 13C NMR (75 MHz, CDCl₃): 35.2 (C-1), 42.1 (C-5'), 48.4 (C-3'), 55.2 (C-2), 66.2 (C-1'), 196.3 (CO). - MS (EI): m/z (%) = 138 (100) $[C_9H_{16}N^+]$. C12H21NOS (227.4) Calcd C 63.38 H 9.31 N 6.16 Found 62.82 H 9.41 H 6.36. - Compound 8: Pale-yellow oil, cc (SiO2; EtOH, Rf = 0.21), 61% yield, undergoes oxidation on air. - Selected signals: ^{1}H NMR (300 MHz, CDCl₃) 0.96 (d, CH₃), 2.22 (m, 3'-H), 2.34 (m, 5'-H), 2.53 (dd, 1-H), 2.64 (m, 3'-H'), 2.81 (m, 2-H), 2.86-3.11 (m, 1'-H), 3.04 (dd, 1-H'). - ¹³C NMR (75 MHz, CDCl₃): 14.2 (CH₃), 42.3 (C-5'), 46.2 (C-1), 48.3 (C-3'), 55.3 (C-2), 66.0 (C-1'). - MS (FD): m/z (%) = 185 (70) [M⁺], 368 (15) [2M⁺-2 H, disulfide]. - MS (EI): m/z (%) = 138 (100) [C₉H₁₆N⁺].
- 7. Aurich, H.G.; Biesemeier, F.; Geiger, M.; Harms, K. Liebigs Ann./Recueil 1997, 423-434.