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ABSTRACT: The synthesis of N-unprotected 2-aryl-3-cyanoindoles was realized via the Mn(III)-mediated radical cascade
cyclization of o-alkenyl aromatic isocyanides with boronic acids. A possible mechanism involving a sequential intermolecular radical
addition, intramolecular cyclization, and cleavage of the C—C bond under mild reaction conditions is proposed. Mechanism studies
show that H,O or O, might provide the oxygen source for the elimination of benzaldehyde.

he indole skeleton is a fundamental structure unit of

numerous biologically active molecules and natural
products.’" Among them, 3-cyanoindole is a “privileged
structure” that has excellent pharmacological properties,
including IMPDH inhibition,” acetyl-CoA carboxylase inhib-
ition,” HCV NS4B inhibition,* xanthine oxidase inhibition,®
and estrogen receptor ligands6 (Figure 1). Further, 3-
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Figure 1. Representative biologically active compounds containing
the 3-cyanoindole core.

cyanoindoles have applications as precursors for various drug
syntheses.” Owing to their fascinating and important biological
activities, various synthetic methodologles were developed over
the years to construct these scaffolds.~'® The need to explore
various eflicient methodologies toward 3-cyanoindoles under
mild conditions still remains.

The use of o-alkenyl aromatic isocyanides for the
construction of N-heterocycles via base-mediated domino
reactions,"’ transition-metal-catalyzed annulations,'> and rad-
ical cyclization reactions'”'* has been well-established.
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Notably, the radical cyclization of o-alkenyl aromatic
isocyanides is an effective method to synthesize indole
derivatives. In these transformations, o-alkenyl aromatic
isocyanides are usually the radical acceptors reacting with
heteroatom or carbon-centered radicals to generate the
corresponding imidoyl radicals, which subsequently undergo
intramolecular cyclization to eventually afford indole skeletons
(Scheme 1a). Recently, a new strategy of indirect 6-endo-trig
radical cyclization pioneered by Alabugin was developed for
six-membered aromatic compounds following a sequential S-
exo-trig addition/3-exo-trig cyclization/ring expansion and C—
C fragmentation process (Scheme 1b). 1492 Subsequently, Yu
and co-workers and our research group achieved progress in
the direct 6-endo-trig radical cyclization strategy of o-alkenyl
aromatic isocyanides for the regiospecific synthesis of quino-
lines (Scheme 1b)."** Inspired by these results, we envisioned
that 2-aryl-3-cyanoindoles can be constructed from the
reaction of o-alkenyl aromatic isocyanides with arylboronic
acids as aryl radical precursors through a sequential
intermolecular radical addition, intramolecular cyclization,
and cleavage of the C—C bond under suitable conditions. As
a part of our research results on the synthesis of heterocyclic
compounds,"*'* we reported the Mn(III)-mediated radical
cyclization reaction of o-alkenyl aromatic isocyanides with
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Scheme 1. Radical Cycloaddition of o-Alkenyl Aromatic
Isocyanides

(a) Synthesis of indole derivatives via radical cyclization of o-alkenyl aromatic isocyanides
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arylboronic acids to access 2-aryl-3-cyanoindoles under mild
conditions.

Initially, the reaction of (E)-2-(2-isocyanophenyl)-3-phenyl-
acrylonitrile 1a and p-tolylboronic acid 2b in the presence of
1.0 equiv of Mn(acac); in CH;CN in air was selected as the
model reaction. The desired product 3ab was isolated in 63%
yield along with quinoline 4ab in 12% yield (see SI, Table S1,
entry 1). Further optimization of the solvents revealed that
DCM was better suited than toluene, THF, 1,4-dioxane,
DMSO, DMF, and DCE, giving a 74% yield of 3ab with a 7%
yield of 4ab (see SI, Table S1, entries 2—8). Examination of
the effect of the reaction temperature revealed that elevating
the temperature was detrimental to the reaction efficiency (see
SI, Table S1, entry 9). Next, lowering the amount of boronic
acid to 2.5 equiv resulted in a diminished yield and selectivity
(see SI, Table S1, entry 10). A similar yield with entry 7 was
obtained increasing the amount of Mn(acac); to 2.0 equiv (see
SI, Table S1, entry 11). Finally, poor or no conversion was
observed when Mn(acac); was replaced by other catalysts such
as Mn(OAc);-2H,0, Mn(OAc),-4H,0, Cu(OAc),-H,0
CuCl, or Co(acac); (see SI, Table S1, entries 12—16).

After establishing the optimized reaction conditions, the
scope and generality of boronic acid 2 in the cascade
cyclization reaction were explored (Scheme 2). It was found
that electron-donating (Me, OMe, ‘Bu, CH=CH,), halogen
(F, Cl, Br), and electron-withdrawing substituents (CF,) at the
para-position of aryl boronic acids were all smoothly converted
into indole products (3ab—3ai) in 52%—82% yields. The use
of ortho- and meta-substituted aryl boronic acids was also
compatible with these reaction conditions, and target products
3aj—3ap were obtained in moderate to good yields. The
disubstituted substrates were fully tolerated, furnishing target
products 3aq—3au in 39%—76% yields. Notably, the thiophene
heterocycle worked well to provide a product 3av in 42% yield.
To further demonstrate the synthesized application of this
cascade cyclization reaction, the gram-scale reaction of 1a with
2b was performed under the standard reaction conditions. The
reaction proceeded smoothly to afford desired product 3ab in
64% yield along with quinoline 4ab in 12% yield. When the
Mn(acac); was reduced to 50 mol % in a pure O, atmosphere,
we obtained 3ab in 52% yield and 4ab in 19% yield.
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Scheme 2. Substrate Scope of Boronic Acid™?
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We next explored the scope of o-alkenyl aromatic
isocyanides under the standard conditions (Scheme 3). The

Scheme 3. Substrate Scope of 0-Alkenyl Aromatic
Isocyanides™”
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“Reactions were carried out using la (0.2 mmol), 2 (0.6 mmol), and
Mn(acac)3 (0.2 mmol) in DCM (2 mL) at room temperature for 24 h
in air. “Isolated yield.

functional groups such as methyl, methoxy, fluoro, chloro, and
trifluoro methyl introduced at different positions of o-alkenyl
aromatic isocyanides reacted smoothly with boronic acids. In
all the cases, target products 3bb—3hb were obtained in
moderate yields. Substrate 1i was also utilized for this
transformation, and desired product 3ib was isolated in 79%
yield. Furthermore, boronic acids 2g and 2h also reacted with
4-Cl-substituted aromatic isocyanide lo to produce desired
products 3hg and 3hh in 52% and 52% yields, respectively.
Boronic acids as radical precursors are widely applied m
radical cascade cyclization in the presence of Mn salt.'®
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However, in the reported transformations, usually, the use of
more than 2 equiv of the Mn salt was required for the
corresponding reactions. Until recently, Lei’s group reported a
Mn(III)-catalyzed electrochemical assistance cascade cycliza-
tion reaction of N-substituted 2-arylbenzoimidazoles with
alkylboronic acids.'® Note that 1 equiv of Mn salt was used to
drive the reaction to completion in our reported experimental
results. To gain mechanistic insight into this transformation,
some control experiments were designed and investigated
(Schemes 4, S1, and S2). First, the reaction was performed in

Scheme 4. Control Experiments
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an inert Ar atmosphere, resulting in a drastic decrease in the
yield. When the reaction proceeded in pure O, atmosphere or
in Ar atmosphere in the presence of 2 equiv of Mn(acac),, the
products 3ab and 4ab were isolated in comparable yields
(Scheme S1). Therefore, we hypothesized that the radical
cyclization reaction might be related with the presence of air
(O, from air). As far as we know, f-dicarbonyl compounds are
effective radical acceptors,'” but the adduct of the aryl radical
with the acac ligand of Mn(acac); was not observed in this
transformation. In addition, we analyzed the 4-bromobenzal-
dehyde coproduct in 29% yield in the coupling of 1j and 2b.
Meanwhile, the acetylacetone and 4,4’-dimethylbiphenyl were
already detected by GC-MS (Scheme 4d). Next, a H,0'*-
labeling experiment has been carried out (Scheme 4e). The
observed 'O incorporation into 4-bromobenzaldehyde was
detected by GC-Ms. Next, the reaction was performed in
DCM (dry) and resulted in a diminished yield along with 4-
bromobenzaldehyde in 26% yield (Schemes 4f and S1). These
results imply that the oxygen atom of 4-bromobenzaldehyde
might come from H,O or O,. The reaction was inhibited with
a dramatic decrease of the yield when tert-butylmercaptan
(TBM) was used as the radical inhibitor under the standard
conditions.'® Radical inhibition experiments suggested a
possible radical process for this reaction (Schemes 4g and S2).

On the basis of our preliminary results, a plausible
mechanism was proposed (Scheme S). The reaction is initiated
by a single-electron transfer from both boronic acids 2 and
Mn(acac); to afford an aryl radical A, which undergoes an
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Scheme 5. Plausible Mechanism
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intermolecular addition to o-alkenyl aromatic isocyanide 1 to
deliver an imidoyl radical B. Subsequently, a S5-exo-trig
cyclization involving an intramolecular radical addition
generates a radical intermediate C, providing two possible
pathways for the formation of 2-aryl-3-cyanoindoles. Radical
intermediate C was oxidized to a carbocation intermediate D
by the Mn(III)/air (O,)."® Next, the nucleophilic attack of
H,O on the carbocation intermediate D and deprotonation
deliver an intermediate E. Finally, the cleavage of the C—C
bond via elimination of benzaldehyde gives the desired 2-aryl-
3-cyanoindoles (path a). Another pathway involves molecular
oxygen addition to furnish a peroxy radical F, which undergoes
a reduction by Mn(Il) to afford an alkoxy radical H."
Subsequent f-scission of the alkoxy radical G is followed by
extrusion of benzaldehyde to produce a radical intermediate I
Finally, product 3 is obtained by the single-electron oxidation
and protonation from intermediate I (path b). In addition, the
hydroperoxide intermediate G could be reduced by Mn(II) to
generate intermediate E. 2% Meanwhile, the radical intermediate
B undergoes an indirect or direct 6-endo-trig cycloaddition to
generate an intermediate J. %4 The byproduct 4 is eventually
released by the single-electron oxidation of L by Mn(III)
followed by deprotonation (paths ¢ and d).

In summary, a Mn(III)-mediated radical cascade cyclization
of o-alkenyl aromatic isocyanides with boronic acids to
synthesize N-unprotected 2-aryl-3-cyanoindoles is reported
herein. The reaction involves a sequential intermolecular
radical addition, intramolecular cyclization, and cleavage of the
C—C bond. The radical cascade cyclization reaction has
attractive features such as synthetic simplicity, broad scope of
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substrates, and excellent functional group compatibilities under
mild reaction conditions. Furthermore, the synthetic utility was
showcased by gram-scale synthesis.
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