Discovery of a Novel A_{2B} Adenosine Receptor Antagonist as a Clinical Candidate for Chronic Inflammatory Airway Diseases

Elfatih Elzein,**[†] Rao V. Kalla,[†] Xiaofen Li,[†] Thao Perry,[†] Art Gimbel,[‡] Dewan Zeng,[‡] David Lustig,[§] Kwan Leung,[§] and Jeff Zablocki[†]

Department of Bioorganic Chemistry, Department of Drug Research and Pharmacological Sciences, and Department of Pre-clinical Development, CV Therapeutics Inc., 3172 Porter Drive, Palo Alto, California 94304

Received November 28, 2007

Recently, we have reported a series of new 1,3-symmetrically ($R_1 = R_3$) substituted xanthines (**3** and **4**) which have high affinity and selectivity for the human adenosine A_{2B} receptors (hA_{2B} -AdoR). Unfortunately, this class of compounds had poor pharmacokinetic properties. This prompted us to investigate the effect of differential alkyl substitution at the *N*-1 and *N*-3 positions (N_1 -R $\neq N_3$ -R) on A_{2B} -AdoR affinity and selectivity; we had the dual objectives of enhancing affinity and selectivity for the A_{2B} -AdoR, as well as improving oral bioavailability. This effort has led to the discovery of compound **62**, that displayed high affinity and selectivity for the hA_{2B} -AdoR ($K_i = 22$ nM). In addition, compound **62** showed high functional potency in inhibiting the accumulation of cyclic adenosine monophosphate induced by 5'-*N*-ethylcarboxamidoadenosine in HEK- A_{2B} -AdoR and NIH3T3 cells with K_B values of 6 and 2 nM, respectively. In a single ascending-dose phase I clinical study, compound **62** had no serious adverse events and was well tolerated.

Introduction

Adenosine is an endogenous purine nucleoside present in every cell of the human body. Four distinct adenosine receptor subtypes have been identified to date, A₁, A_{2A}, A_{2B}, and A₃, all of which belong to the family of G-protein-coupled receptors characterized by 7-transmembrane-spanning helical domains.¹ Interaction of adenosine with its receptors initiates signal transduction pathways, including the classical adenylate cyclase effector system that utilizes cyclic adenosine monophosphate $(cAMP)^a$ as a second messenger. Activation of the A₁ and A₃ adenosine receptors (A1-AdoR and A3-AdoR) inhibits adenylate cyclase activity through activation of pertussis-sensitive G_i proteins and results in a decrease in intracellular levels of cAMP. On the other hand, activation of the A_{2A} and A_{2B} adenosine receptors (A2A-AdoR and A2B-AdoR) stimulates adenylate cyclase via activation of G_s proteins and leads to intracellular accumulation of cAMP. Coupling of adenosine receptors to other second messenger systems has also been described, for example, stimulation of phospholipase C (A1-, A2B-, and A3-AdoR's), activation of potassium and inhibition of calcium channels in cardiac muscles and neurons (A1-AdoR), mobilization of intracellular calcium (A₃-AdoR), and coupling to mitogenactivated protein kinase (all four receptors).²⁻⁴

Adenosine receptors have been recognized to play an important role in chronic inflammatory airway conditions such as asthma, chronic obstructive pulmonary disease (COPD), and fibrosis.^{5–7} The elevation of adenosine in bronchoalveolar lavage

fluid of asthmatics combined with its bronchoconstriction effect on airways in asthmatics has led to increased research into the contribution of adenosine in the pathology of inflammation and asthma.^{8,9} There is ample evidence now to provide support for the key role that adenosine and its A_{2B} receptors play in asthma.¹⁰⁻¹⁵ Theophylline (1), which has a well-established role in the therapy of asthma, selectively blocks the AMP-induced bronchoconstriction in asthmatics. The bronchodilating effect of theophylline and its structural analogue enprofylline (2) has been attributed to a selective antagonism of the A_{2B}-AdoR.¹⁶ In addition, the recent discovery that A2B-AdoR's are functionally active on both human airway smooth muscle cells (where they enhance cytokine and chemokine release) and lung fibroblast cells (where they promote differentiation to a myofibroblast phenotype) provides further support to the role of A2B-AdoR in inflammation and asthma.^{14,17} Therefore, antagonists at the A_{2B}-AdoR would provide a novel approach to the management and treatment of asthma and COPD.

Even though a number of high-affinity A2B-AdoR antagonists have been reported, only a few have shown high affinity and selectivity for the A2B-AdoR relative to the A1-, A2A-, and A₃-AdoR's.¹⁸⁻²¹ Recently, we have reported a series of new 1,3-symmetrically ($R_1 = R_3$) substituted xanthines (Figure 1, compounds 3 and 4), which have high affinity and selectivity for the A_{2B}-AdoR.²² Unfortunately, this class of compounds showed poor pharmacokinetic (PK) properties. The 1,3-diethyl analogue 3a showed greater affinity and selectivity for the A_{2B}-AdoR in comparison to the 1,3-dimethyl and dipropyl analogues 3b and 3c (Figure 1). However, when the 3-fluro substituent in the phenyl ring was replaced with a 3-trifluromethyl group, the 1,3-dimethyl analogue 4b displayed increased affinity and selectivity for the A_{2B}-AdoR ($K_i = 1$ nM) relative to the 1,3diethyl and dipropyl analogues 4a and 4c. This prompted us to further investigate the effect of differential alkyl substitution at the N-1 and N-3 positions (1,3-nonsymmetrical alkyl substitution, N-R₁ \neq N-R₃) on A_{2B}-AdoR affinity and selectivity, our overall objective being to expand upon the structure-activity relationship (SAR) of our 8-pyrazolyl xanthine scaffold, enhanc-

^{*} To whom correspondence should be addressed. Phone: (650) 384-8217. Fax: (650) 858-0390, E-mail: elfatih.elzein@cvt.com.

[†] Department of Bioorganic Chemistry.

^{*} Department of Drug Research and Pharmacological Sciences.

[§] Department of Pre-clinical Development.

^{*a*} Abbreviations: NECA, 5'-*N*-ethylcarboxamidoadenosine; HEK, human embryonic kidney; 3T3 cells, 3-day transfer inoculum 3×10^5 cells; cAMP, cyclic adenosine monophosphate; COPD, chronic obstructive pulmonary disease; PK, pharmacokinetic; SAR, structure—activity relationship; HEPES, 4-(2-hydroxyl)piperazine-1-ethanesulfonic acid; DMF, dimethyl formamide; DMA, dimethyl acetal; dAUC, dose-adjusted area under curve; CHO, chinese hamster ovary; CPX, 1,3-dipropyl-8-cyclopentylxanthine; I-AB-MECA, N⁶-(3-iodo-4-aminobenzyl)adenosine-5'-N-methyluronamide.

1 Theophylline

2 Enprofylline

 $\begin{array}{l} \mathbf{x}_{3} \\ \mathbf{3a} \ \mathbf{R}_{1} = \mathbf{R}_{3} = \mathrm{Et} \\ K_{1}(\mathbf{h}\mathbf{2}_{2\mathrm{B}}) = 5 \ \mathbf{n}\mathrm{M}; \ \mathbf{A}_{1}/\mathbf{A}_{2\mathrm{B}} = 76; \ \mathbf{A}_{2\mathrm{A}}/\mathbf{A}_{2\mathrm{B}} = 58; \ \mathbf{A}_{3}/\mathbf{A}_{2\mathrm{B}} = 91 \\ \mathbf{3b} \ \mathbf{R}_{1} = \mathbf{R}_{3} = \mathrm{Me} \\ K_{1}(\mathbf{h}\mathbf{A}_{2\mathrm{B}}) = 27 \ \mathbf{n}\mathrm{M}; \ \mathbf{A}_{1}/\mathbf{A}_{2\mathrm{B}} = 17; \ \mathbf{A}_{2\mathrm{A}}/\mathbf{A}_{2\mathrm{B}} = 7 \\ \mathbf{3c} \ \mathbf{R}_{1} = \mathbf{R}_{3} = \mathrm{propyl} \\ K_{1}(\mathbf{h}\mathbf{A}_{2\mathrm{B}}) = 14 \ \mathbf{n}\mathrm{M}; \ \mathbf{A}_{1}/\mathbf{A}_{2\mathrm{B}} = 13; \ \mathbf{A}_{2\mathrm{A}}/\mathbf{A}_{2\mathrm{B}} = 17; \ \mathbf{A}_{3}/\mathbf{A}_{2\mathrm{B}} = 4 \end{array}$

Figure 1. A_{2B}-AdoR antagonists.

ing affinity and selectivity for the A_{2B}-AdoR, as well as improving oral bioavailability. This effort has led to the discovery of compound **62**, which in a separate study inhibited pulmonary inflammation and injury in the lung of adenosine deaminase-deficient mice and in a model of bleomycin-induced lung injury.²³ In addition, compound **62** attenuated the airway reactivity induced by 5'-*N*-ethylcarboxamidoadenosine (NECA), AMP, or allergen in sensitized mice.²⁴ To our knowledge, this represented the first in vivo preclinical evidence that A_{2B}-AdoR antagonism may be of significant therapeutic value to the management of chronic lung diseases such as asthma and COPD. Herein, we describe the synthesis and SAR that led to the discovery of compound **62**.

In these new analogues, the substituent at the N-3 position was fixed to either a methyl or an ethyl group, whereas the substituent at the N-1 position was varied to include methyl, ethyl, propyl, isobutyl, and cyclopropyl methyl groups. Furthermore, the nature and position of substituents in the phenyl ring were limited to the 3-F and 3-CF₃, because in previous studies, these substituents bestowed the highest A2B-AdoR binding affinity and selectivity.²² In our discovery paradigm, the compounds were first screened to determine their A_{2B}-AdoR binding affinities. In general, compounds that displayed K_i values <100 nM were further screened for their A1- and A2A-AdoR's binding affinities, and compounds that showed >10-fold selectivity for the A_{2B}-AdoR over A₁- and A_{2A}-AdoR's were subsequently evaluated for their A₃-AdoR binding affinity. Our ultimate goal was to identify analogues that fulfill our targeted affinity and selectivity profile of $K_{iA2B} < 50$ nM and >25-fold selectivity over A1-, A2A-, and A3-AdoR's. Finally, analogues that met the targeted profile of affinity and selectivity were further evaluated for their functional activity and selectivity, as well as for their PK properties.

Chemistry

The synthesis of the target compounds is outlined in Schemes 1–3. Condensation of commercially available 1-methyl or 1-ethylurea with ethyl-2-cyanoacetate in the presence of NaOEt afforded 6-amino-1-methyluracil (6) or 6-amino-1-ethyluracil (45), respectively.²⁵ Intermediates 7-11 were generated in situ by using dimethyl formamide dimethyl acetal (DMF/DMA) in DMF at 40 °C. This step was followed by *N*-1-alkylation of the resulting formamidines with alkyl iodide and K₂CO₃ at 90 °C. Deprotection of the *N*,*N*-dimethylaminomethylene moiety

(formamidino) was efficiently achieved by using aqueous ammonia in methanol.²⁶ Transformation of the key intermediates 1,3-dialkyl-6-aminouracils (12-16 and 47-50) to the target compounds was achieved by following our previously reported literature procedures.²²

Results and Discussion

The A_{2B}-AdoR binding affinity and selectivity of the N-3methyl-substituted analogues are presented in Table 1. Compound 27 incorporated an unsubstituted 8-pyrazole ring and displayed modest binding affinity for the A_{2B}-AdoR ($K_i = 120$ nM). However, introducing a benzylic group at the N-1-pyrazole nitrogen, as in compound 28, resulted in a 60-fold increase in A_{2B}-AdoR binding affinity ($K_i = 2$ nM) relative to 27. In addition, compound 28 showed 130-, 36-, and 46-fold greater selectivity for the A_{2B}-AdoR over the A₁-, A_{2A}-, and A₃-AdoR's, respectively. The 3-F and 3-CF₃ benzyl-substituted analogues **29** and **30** exhibited comparable affinities ($K_i = 6$ nM) and selectivities for the A2B-AdoR. Therefore, introducing 3-F or 3-CF₃ substituent in the phenyl ring had no profound effect on affinity and selectivity in comparison to those of the unsubstituted analogue 28. Expanding the N-1-ethyl group in compound 28 to propyl, as in 31, resulted in a 10-fold loss in A_{2B}-AdoR binding affinity ($K_i = 19$ nM). Compound **31** also showed decreased selectivity for the A2B-AdoR over A1-, A2A-, and A3-AdoR's relative to 28. Similarly, increasing the length of the N_1 -alkyl chain in compound **29** from ethyl to propyl group, as in 33, adversely affected both A2B-AdoR affinity and selectivity. However, the N-1-propyl analogue of **30**, compound **32**, showed acceptable A_{2B}-AdoR binding affinity and selectivity that fit the target profile of affinity and selectivity. Further expanding the N-1-ethyl group in compounds 28 and 29 to n-butyl group resulted in a profound loss in A2B-AdoR binding affinity and selectivity (34 and 35). When the same structural modifications were applied to compound **30** that incorporated $3-CF_3$ group, A2B-AdoR binding affinity and selectivity were not compromised (30 vs 36). This trend is similar to the one that was observed earlier when comparing compound 30 to compound 32. This suggested that the 3-CF₃ group is the favored substituent as the size of the N-1-alkyl chain is extended from two to three carbons. Introducing sterically demanding substituents (isobutyl or cyclopropyl methyl) at the N-1-position yielded analogues with decreased A2B-AdoR affinity and selectivity relative to the N-1-ethyl analogues (37-43). In this series of N-3-methyl-

Scheme 1^a

^a Reagents and conditions: (a) ethyl 2-cyanoacetate, NaOEt, EtOH, reflux; (b) DMF/DMA, DMF, 40 °C; (c) alkyl iodide, K₂CO₃, DMF; (d) MeOH/28% NH₄OH, rt; (e) 50% aq AcOH, NaNO₂, 70 °C; (f) 13% aq NH₄OH, Na₂S₂O₄, 70 °C; (g) EDCI, MeOH; (h) 10% NaOH, MeOH, reflux.

substituted analogues, it appears that the SAR around the *N*-1-position is relatively well defined. In general, having an ethyl group at the *N*-1-position confers an enhanced A_{2B} -AdoR binding affinity and selectivity, whereas larger or branched alkyl substituents are detrimental to A_{2B} -AdoR binding affinity and selectivity.

Replacing the N-3 methyl group in compound 28 with an ethyl group yielded compound 60 (Table 2) that showed 15fold less A_{2B}-AdoR binding affinity ($K_i = 31$ nM) compared to 28. Furthermore, compound 60 showed <10-fold selectivity for the A2B-AdoR over A1- and A2A-AdoR's. However, when 3-CF3 substituent was introduced in the phenyl ring (62, $K_i = 22 \text{ nM}$), significant enhancement in selectivity for the A_{2B}-AdoR over the A₁-, A_{2A}-, and A₃-AdoR's was achieved relative to the unsubstituted analogue 60. Compound 62 displayed A_{2B}-AdoR selectivity ratios of 88, 149, and 48 over A1-, A2A-, and A3-AdoR's, respectively. The 3-F analogue **61** showed less A_{2B} -AdoR binding affinity and selectivity compared to 62. With the exception of compound 68 (i-butyl), replacing the N-1-propyl group in compound 62 with sterically demanding groups (isobutyl and cyclopropyl methyl) resulted in a significant loss in A_{2B}-AdoR selectivity over other AdoR subtypes, which is consistent with the early findings that steric factors at the *N*-1-position may play a crucial role in determining the binding affinity and selectivity for the A_{2B} -AdoR.

At this juncture, among the 27 compounds we synthesized, eight compounds (28-30, 32, 36, 61, 62, and 68) showed the targeted A_{2B}-AdoR affinity ($K_i \le 50$ nM) and selectivity profile and were therefore screened for their drug-like properties. During the course of the study, we observed that compounds that incorporated N-3 methyl group (28-30, 32, and 36) had a less-favorable PK profile than the corresponding N-3-ethyl analogues (61, 62, and 68) when dosed orally to rats. Furthermore, within the N-3-ethyl class of compounds, analogue 62 showed a better selectivity profile than compounds **61** and **68**, and hence, compound 62 was selected for further structural optimization in order to enhance its PK properties. We chose to replace the 3-CF₃ phenyl ring in compound 62 with a basic functionality such as 2-pyridyl and 3-pyridyl groups (69 and 70, Table 3), and this, in turn, resulted in significant compromise to selectivity for the A_{2B}-AdoR. However, the 3-pyridyl analogue (70, $K_i = 22$ nM) showed better A_{2B}-AdoR affinity and selectivity profile than the 2-pyridyl analogue (69, $K_i = 46$ nM) and was subjected to additional structural modifications.

Scheme 2^a

^{*a*} Reagents and conditions: (a) ethyl 2-cyanoacetate, NaOEt, EtOH, reflux; (b) DMF/DMA, DMF, 40 °C; (c) alkyl iodide, K₂CO₃, DMF; (d) MeOH/28% NH₄OH, rt; (e) 50% aq AcOH, NaNO₂, 70 °C; (f) 13% aq NH₄OH, 10% Pd/C, 30 psi; (g) EDCI, MeOH; (h) 10% NaOH, MeOH, reflux.

Scheme 3^a

^a Reagents and conditions: (k) DMF, K₂CO₃, 80 °C, 18 h; (l) 3 N HCl, EtOH, 80 °C, 18 h.

Introducing a CH₃ group into the 6-position of the pyridyl ring of compound **70** had no effect on A_{2B}-AdoR binding affinity (**71**, $K_i = 45$ nM). However, introducing an electron-withdrawing group at the 6-position of the pyridyl ring of **70** yielded substantial increase in both A_{2B}-AdoR binding affinity and selectivity relative to **70** (**72**, $K_i = 18$ nM). Exchanging the *N*-1-

propyl group in compound **72** with isobutyl or cyclopropyl methyl groups (**73** and **74**) had no appreciable effect on A_{2B} -AdoR binding affinity. Not surprisingly, all attempts to prepare salt forms of the analogues that fulfilled the targeted profile of affinity and selectivity (**72** and **74**) were unsuccessful, and this can be attributed to the strong electron-withdrawing ability of

Table 1. Binding Affinities of N-3-Methyl-xanthine Derivatives for the A2B-, A1-, A2A-, and A3-AdoR's

				K _i 1	ıM ^a				
Compd	Rı	R ₂	(hA _{2B}) ^b	$(hA_1)^c$	(hA _{2A}) ^d	(hA ₃) ^e	A_1/A_{2B}	A_{2A}/A_{2B}	A_3/A_{2B}
27	CH ₃ -CH ₂ -	Н	120	NT	NT	NT	NT	NT	NT
28	CH ₃ -CH ₂ -	Bn	2	260	73	92	130	36	46
29	CH ₃ -CH ₂ -	3-F-Bn	6	350	231	282	58	38	47
30	CH ₃ -CH ₂ -	3-CF ₃ -Bn	6	274	234	262	45	39	43
31	CH ₃ -(CH ₂) ₂ -	Bn	19	582	125	NT	30	6	NT
32	CH ₃ -(CH ₂) ₂ -	3-CF ₃ -Bn	14	441	450	408	31	32	29
33	CH ₃ -(CH ₂) ₂ -	3-F-Bn	13	290	139	95	22	10	7
34	CH ₃ -(CH ₂) ₃ -	Bn	30	416	247	NT	13	8	NT
35	CH ₃ -(CH ₂) ₃ -	3-F-Bn	26	305	217	NT	11	8	NT
36	CH ₃ -(CH ₂) ₃ -	3-CF ₃ -Bn	11	427	481	453	38	43	41
37	\mathbf{X}	Н	42	376	1390	NT	9	33	NT
38	\times	Bn	21	347	408	204	16	19	9
39	\mathbf{X}	3-F-Bn	60	352	301	107	6	5	2
40	\mathbf{X}	3-CF ₃ -Bn	199	617	633	NT	3	3	NT
41	\sum	Bn	11	154	149	91	14	13	8
42	\sim	3-F-Bn	7	185	73	35	26	10	5
43	\succ	3-CF ₃ -Bn	21	167	312	160	8	15	7

^{*a*} NT, not tested. 95% confidence limits were generally $\pm 15\%$ of the mean value. ^{*b*} Binding affinity for hA_{2B}-AdoR was determined by using HEK-A_{2B} cells with 4-(2-(7-amino-2-(furan-2-yl)-[1,2,4] triazolo[1,5-a][1,3,5]triazin-5-ylamino)ethyl)phenol (**82**, ³HZM241385)³² as the radioligand. ^{*c*} Binding affinity for hA₁-AdoR was determined by using CHO-A₁ cells with ³H-CPX as the radioligand. ^{*d*} Binding affinity for hA_{2A}-AdoR was determined by using HEK-A_{2A} cells with compound **82** as the radioligand. ^{*e*} Binding affinity for hA₃-AdoR was determined by using CHO-A₃ cells with ¹125-AB-MECA as the radioligand.

the CF₃ group, which in turn decreases the basicity of the pyridine nitrogen. Oxidation of a pyridyl nitrogen to an *N*-oxide can have various effects on drug-like behavior,²⁷ often producing drugs with good oral bioavailability, PK, solubility, and metabolic stability.^{28,29} Accordingly, we synthesized the *N*-oxide analogue **75** that showed much diminished A_{2B}-AdoR binding affinity.

Encouraged by the success of replacing the phenyl moiety with a six-membered heteroaryl (pyridine), we sought to assess the effect of introducing five-membered heteroaryls in place of the phenyl or the pyridine ring in order to further expand our SAR. This strategy has served us well in the past without compromising A_{2B} -AdoR affinity or selectivity.³⁰ We prepared analogues that contained either 5-phenyl-1,2,4-oxadiazole (**77** and **78**, Table 4), 3-phenyl-1,2,4-oxadiazole (**79**), or 5-phenyl-isoxazole (**80** and **81**). In addition, 4-Cl or 4-CF₃ substituents were introduced in the phenyl ring, because they were found to be conducive to high A_{2B} -AdoR affinity and selectivity in similar

classes of compounds.³⁰ The 5-(4-Cl-phenyl)-1,2,4-oxadiazole analogue showed weak binding affinity for the A_{2B}-AdoR (77, $K_i = 335$ nM); however, replacing the 4-Cl substituent with a 4-CF₃ group brought about >13-fold improvement in binding affinity and selectivity for the A_{2B}-AdoR (78, $K_i = 24$ nM). In addition, compound 78 displayed >200-fold selectivity for the A2B-AdoR relative to the A1-, A2A-, and A3-AdoR's. Remarkably, compound **79** ($K_i = 16$ nM) showed 20-fold greater affinity and much improved selectivity than its regioisomer 77. The 4-Cl isoxazole analogue 81 could be envisioned as a direct analogue of the oxadiazole 77, where the 4-nitrogen atom in the 5-phenyl-1,2,4-oxadiazole ring was isosterically replaced with a carbon atom. Although compound 81 showed poor A2B-AdoR selectivity, similarly to 77, the $4-CF_3$ analogue 80 exhibited good affinity and selectivity for the A2B-AdoR, a trend similar to that observed in the 3-phenyl-1,2,4-oxadiazole series when the 4-Cl group was replaced with a 4-CF3 group (77 vs 78). Unfortunately, compounds that incorporated oxadiazole or isoxazoles

			$K_i n M^a$							
Compd	R ₁	R ₂	(hA _{2B}) ^b	$(hA_1)^c$	$(hA_{2\Lambda})^d$	(hA ₃) ^c	$A_{\rm l}/A_{\rm 2B}$	A _{2A} /A _{2B}	A_3/A_{2B}	
59	CH ₃ -(CH ₂) ₂ -	Н	49	178	496	NT	4	10	NT	
60	CH ₃ -(CH ₂) ₂ -	Bn	31	275	261	NT	9	8	NT	
61	CH ₃ -(CH ₂) ₂ -	3-F-Bn	35	1200	2500	950	34	71	27	
62	CH ₃ -(CH ₂) ₂ -	3-CF ₃ -Bn	22	1940	3280	1070	88	149	48	
63	\sim	Н	38	76	234	NT	2	6	NT	
64	\sim	Bn	27	314	181	NT	11	6	NT	
65	\sim	3-CF ₃ -Bn	22	218	272	326	10	12	15	
66	\succ	Н	141	348	1220	NT	2	9	NT	
67	\succ	3-F-Bn	31	1480	3850	324	47	124	10	
68	\succ	3-CF ₃ -Bn	11	631	1090	250	57	99	23	

^{*a*} NT, not tested. 95% confidence limits were generally $\pm 15\%$ of the mean value. ^{*b*} Binding affinity for hA_{2B}-AdoR was determined by using HEK-A_{2B} cells with compound **82** as the radioligand. ^{*c*} Binding affinity for hA₁-AdoR was determined by using CHO-A₁ cells with ³H-CPX as the radioligand. ^{*d*} Binding affinity for hA_{2A}-AdoR was determined by using HEK-A_{2A} cells with compound **82** as the radioligand. ^{*e*} Binding affinity for hA₃-AdoR was determined by using CHO-A₃ cells with ¹125-AB-MECA as the radioligand.

were not further pursued because of their low oral bioavailability in rats (see Supporting Information).

Among all the compounds that displayed the targeted A_{2B}-AdoR affinity and selectivity, compound 62 had the best PK profile in rats. When dosed orally to rats at 2 mg/kg, 62 had excellent systemic exposure with $t_{1/2}$ of 4 h, C_{max} and doseadjusted area under curve (dAUC) >1100 ng/mL and 6500 ng•h/mL, respectively (Table 5). The functional potency of 62 for human and mouse A2B-AdoR was also determined by using cAMP assay in HEK-AA2B (human) and NIH3T3 (mouse) cells.²³ In HEK-A_{2B} cells, **62** was found to be a potent antagonist for the NECA-induced increase in cAMP mediated by the human A_{2B} -AdoR with a K_B value of 6 nM. Compound 62 also antagonized the NECA-induced cAMP accumulation in NIH-3T3 cells with a $K_{\rm B}$ value of 2 nM. Furthermore, compound 62 showed no significant inhibition $(10 \,\mu\text{M})$ when screened against other receptors, ion channels, transporters, and enzymes in a broad Cerep screening panel that consisted of 68 receptors and 16 enzymes.³¹ In addition to compound **62**, the pyridyl analogue 72 also fulfilled the targeted affinity, selectivity, and PK profile. When dosed orally (2 mg/Kg) to rats, **72** displayed C_{max} of 5300 $ng \cdot h/mL$ and dAUC > 670 ng/mL (Table 5). However, compound 72 showed 15-fold less potency than 62 in inhibiting accumulation of NECA-induced cAMP in NIH-3T3 cells with a $K_{\rm B}$ value of 36 nM (Figure 2).

Recent studies have shown that compound **62** inhibited the airway inflammation and airway reactivity induced by allergen or AMP in mouse model of asthma. In addition, compound **62** attenuated pulmonary inflammation and lung injury of adenosine deaminase-deficient mice and in a model of bleomycin-induced

lung injury.^{23,24} These findings provided further support for the hypothesis that A_{2B}-AdoR signaling contributes to the proinflammatory and profibrotic activities associated with chronic lung diseases.

In summary, we have synthesized a series of novel potent A2B-AdoR antagonists with high affinity and selectivity. Compound **62** displayed high affinity ($K_i = 22 \text{ nM}$) and selectivity for the A2B-AdoR relative to the A1-, A2A-, and A3-AdoR's and good PK profile in rats. In addition, compound 62 showed high potency in inhibiting the accumulation of NECA-induced cAMP in HEK-A_{2B}-AdoR and NIH3T3 cells, with $K_{\rm B}$ values of 6 and 2 nM, respectively. To our knowledge, compound 62 is the first A2B-AdoR antagonist to demonstrate in vivo preclinical evidence that A_{2B}-AdoR antagonism may be of significant therapeutic value to the management of chronic lung diseases such as asthma, COPD, and pulmonary fibrosis. In a single ascendingdose phase I clinical study, compound 62 had no serious adverse events and was well tolerated, and we may soon have a definitive answer regarding the effect of A2B-AdoR antagonism on chronic inflammatory lung diseases.

Experimental Section

Commercial chemicals and solvents were of reagent grade and were used without further purification. All reported yields are of isolated products and are not optimized. The following abbreviations are used for reagents and solvents: Whatman silica gel (60 Å, 230–400 mesh) was used for column chromatography. Analtech thin-layer chromatography plates (20 × 20 cm, 2000 μ m) were used for preparative thin-layer chromatography. Proton NMR (¹H NMR) spectra were recorded on a Varian Gemini-400 spectrometer

Table 3. Binding Affinities of N-3-Ethyl-xanthine Derivatives for the A2B-, A1-, A2A-, and A3-AdoR's (69-75)

				K_{i} 1	nM ^α					
Compd	R ₁	R_2	$(hA_{2B})^b$	$(hA_1)^c$	$(hA_{2\Lambda})^d$	$(hA_3)^c$	A_1/A_{2B}	$A_{2\Lambda}\!/A_{2B}$	A ₃ /A _{2B}	
69	CH ₃ -(CH ₂) ₂ -	2-pyridyl	46	410	411	NT	9	9	NT	
70	CH ₃ -(CH ₂) ₂ -	3-pyridyl	22	522	312	NT	23	14	NT	
71	CH ₃ -(CH ₂) ₂ -	3-(6-CH ₃)pyridyl	45	1520	670	290	33	15	6	
72	CH ₃ -(CH ₂) ₂ -	3-(6-CF ₃)pyridyl	18	2500	2250	440	139	125	24	
73	\succ	3-(6-CF ₃)pyridyl	20	3590	5410	350	180	270	17	
74	\sim	3-(6-CF ₃)pyridyl	16	1280	2280	400	80	142	25	
75	CH ₃ -(CH ₂) ₂ -	3-pyridyl- N- oxide	506	1120	1950	NT	2	4	NT	

^{*a*} NT, not tested. 95% confidence limits were generally $\pm 15\%$ of the mean value. ^{*b*} Binding affinity for hA_{2B}-AdoR was determined by using HEK-A_{2B} cells with compound **82** as the radioligand. ^{*c*} Binding affinity for hA₁-AdoR was determined by using CHO-A₁ cells with ³H-CPX as the radioligand. ^{*d*} Binding affinity for hA_{2A}-AdoR was determined by using HEK-A_{2A} cells with compound **82** as the radioligand. ^{*e*} Binding affinity for hA₃-AdoR was determined by using CHO-A₃ cells with ¹125-AB-MECA as the radioligand.

Table 4. Binding Affinities of N-3-Ethyl-xanthine Derivatives for the A_{2B}-, A₁-, A_{2A}-, and A₃-AdoR's (77-81)

 $\begin{array}{c} & & \\ & &$

						K_i ,	nM ^a				
compd	R_1	Х	Y	Ζ	$(hA_{2B})^b$	$(hA_1)^c$	$(hA_{2A})^d$	(hA ₃) ^c	hA1/A2B	A_{2A}/A_{2B}	A_3/A_{2B}
77	4-Cl	Ν	Ν	0	335	>6000	>5000	NT	>18	>15	Ν
78	$4-CF_3$	Ν	Ν	0	24	>6000	>5000	>9000	>250	>208	>375
79	4-C1	0	Ν	Ν	16	910	3780	413	56	236	25
80	$4-CF_3$	Ν	С	0	25	2190	2370	3810	87	94	152
81	4-Cl	Ν	С	0	42	200	781	NT	5	18	NT

^{*a*} NT, not tested. 95% confidence limits were generally $\pm 15\%$ of the mean value. ^{*b*} Binding affinity for hA_{2B}-AdoR was determined by using HEK-A_{2B} cells with compound **82** as the radioligand. ^{*c*} Binding affinity for hA₁-AdoR was determined by using CHO-A₁ cells with ³H-CPX as the radioligand. ^{*d*} Binding affinity for hA_{2A}-AdoR was determined by using HEK-A_{2A} cells with compound **82** as the radioligand. ^{*e*} Binding affinity for hA₃-AdoR was determined by using CHO-A₃ cells with ¹²⁵I-AB-MECA as the radioligand.

 Table 5. PK Properties of Compounds 62 and 72 in Sprague–Dawley Rats^a

compd	oral dose (mg/kg)	dAUC (ng•h/mL) ^b	C_{\max} (ng/mL) ^b	$t_{1/2}$ (h) ^b
62	2.0	6500	1110	4.25
72	2.0	5300	671	9.7

^{*a*} PO formulation: DMSO/ethanol/PEG300/0.1% *N*-methylglucamine (2.5/10/20/67.5, v/v/v/v). ^{*b*} Values are average of n = 3.

(400 MHz). Chemical shifts are reported in δ units (parts per million, ppm) downfield from tetramethylsilane and are assigned as singlet (s), doublets (d), doublet of doublets (dd), triplets (t), quartet (q), multiplets (m), and broad (br). Coupling constants (J) are reported in hertz (Hz). Mass spectra (MS) were recorded on a Micromass LCZ instrument (electron spray ionization, ESI). Elemental analysis data for final compounds were obtained from Desert Analytics and were within $\pm 0.4\%$ of the theoretical values for formulas given.

6-Amino-1-methylpyrimidine-2,4(1*H***,3***H***)-dione (6). Sodium (10 g, 434 mmol) was dissolved in anhydrous ethanol (300 mL). To the solution was added ethyl 2-cyanoacetate (24.5 g, 217 mmol) and then 1-methylurea (16 g, 217 mmol), and the mixture was stirred at reflux for 24 h. The solvent was evaporated under reduced pressure, and the residue was dissolved in 50 mL of water. The pH of the solution was adjusted to 7 by using concentrated HCl. The yellow solid formed was collected by filtration, washed with water, and dried under vacuum to afford 28.5 g of 6 (95% yield). ¹H NMR (CD₃OD): \delta 3.32 (s, 3H), 4.82 (s, 1H); MS** *m/z* **142 (M + H)⁺.**

N'-(1-Alkyl-1,2,3,6-tetrahydro-3-methyl-2,6-dioxopyrimidin-4-yl)-*N*,*N*-dimethylformamidine (7–11). General Procedure. To a suspension of 6 (5 g, 35 mmol) in DMF (170 mL) was added DMF/DMA (17 mL). The mixture was heated at 40 °C for 1 h. After disappearance of the starting material (TLC, DCM/MeOH 10:1), K₂CO₃ (7.2 g, 52 mmol) was added. Then, alkyl iodide (52 mmol) was added, and the mixture was further heated at 90 °C for

Figure 2. (A) Concentration–response curves of NECA-induced increases in cAMP in the absence or presence of increasing concentrations of 72. Mouse NIH/3T3 cells were treated with NECA (1 nM to 100 μ M) in the absence or presence of increasing concentrations of compound 72, and cAMP accumulation was measured. Data are mean \pm SEM from three experiments performed in duplicate. (B) Schild plot. DR = 1, concentration ratio = 1.

18 h. The solvent was removed, and the residue was treated with 50 mL of water. The resulting precipitate was filtered, washed with water, and air-dried to afford the products in 69–77% yields.

N'-(1-Ethyl-1,2,3,6-tetrahydro-3-methyl-2,6-dioxopyrimidin-4-yl)-*N*,*N*-dimethylformamidine (7). Yield 6.0 g (77%, over 2 steps); MS m/z 245 (M + H)⁺.

N'-(1,2,3,6-Tetrahydro-3-methyl-2,6-dioxo-1-propylpyrimidin-4-yl)-*N*,*N*-dimethylformamidine (8). Yield 6.2 g (75%, over 2 steps); MS m/z 239 (M + H)⁺.

N'-(**1-Butyl-1,2,3,6-tetrahydro-3-methyl-2,6-dioxopyrimidin-4-yl**)-*N*,*N*-dimethylformamidine (9). Yield 6.0 g (69%, over 2 steps); MS m/z 253 (M + H)⁺.

N'-(1,2,3,6-Tetrahydro-1-isobutyl-3-methyl-2,6-dioxopyrimidin-4-yl)-*N*,*N*-dimethylformamidine (10). Yield 6.1 g (73%, over 2 steps); MS m/z 253 (M + H)⁺.

N'-(1-(Cyclopropylmethyl)-1,2,3,6-tetrahydro-3-methyl-2,6-dioxopyrimidin-4-yl)-*N*,*N*-dimethylformamidine (11). Yield 6.1 g (70%, over 2 steps); MS m/z 251 (M + H)⁺.

1-Methyl-3-alkyl-6-aminouracils (12–16). General Procedure. A solution of the formamidino derivatives (7–11, 20 mmol) in MeOH (70 mL) was treated with 120 mL ammonium hydroxide (28%), and the mixture was stirred at ambient temperature for 48 h. The solvent was evaporated, and the residue was purified by using column chromatography (DCM/MeOH 15:1) to yield the products in 66–70% yields.

6-Amino-3-ethyl-1-methylpyrimidine-2,4(1*H***,3***H***)-dione (12). Yield 2.2 g (66%); ¹H NMR (CD₃OD): \delta 1.11 (t, 3H), 3.36 (s, 3H), 3.72 (q, 2H), 4.82 (s, 1H); MS** *m/z* **170 (M + H)⁺.**

6-Amino-1-methyl-3-propylpyrimidine-2,4(1*H*,3*H*)-dione (13). Yield 2.5 g (69%); MS m/z 184 (M + H)⁺.

6-Amino-3-butyl-1-methylpyrimidine-2,4(1*H*,3*H*)-dione (14). Yield 2.6 g (66%); MS m/z 198 (M + H)⁺.

6-Amino-3-isobutyl-1-methylpyrimidine-2,4(1*H***,3***H***)-dione (15). Yield 2.7 g (70%); MS m/z 198 (M + H)⁺.**

6-Amino-3-(cyclopropylmethyl)-1-methylpyrimidine-2,4(1*H***,3***H***)-dione (16). Yield 2.6 g (67%); MS** *m***/***z* **196 (M+H)⁺.**

6-Amino-1-methyl-5-nitroso-3-alkylyrimidine-2,4(1H,3H)-dione (17–21). General Procedure. A solution of 1-methyl-3-alkyl-6-aminouracils (12–16, 10 mmol) in 50% aqueous AcOH (50 mL) was prepared by heating the mixture at 70 °C. To the solution was added NaNO₂ (2 g, 30 mmol) in portions, and the mixture was stirred at 70 °C for 1.5 h. The mixture was concentrated, and the dark-orange solid formed was collected by filtration and washed with water to afford compounds 17–21 that were used without further purification.

6-Amino-3-ethyl-1-methyl-5-nitrosopyrimidine-2,4(1*H*,3*H*)-dione (17). Yield 1.7 g (86%); MS m/z 199 (M + H)⁺.

6-Amino-1-methyl-5-nitroso-3-propylpyrimidine-2,4(1*H***,3***H***)-dione (18).** Yield 1.9 g (92%); MS m/z 213 (M + H)⁺. **6-Amino-3-butyl-1-methyl-5-nitrosopyrimidine-2,4**(1*H*,3*H*)**dione** (19). Yield 2.0 g (88%); MS m/z 227 (M + H)⁺.

6-Amino-3-isobutyl-1-methyl-5-nitrosopyrimidine-2,4(1H,3H)dione (20). Yield 1.9 g (86%); MS m/z 227 (M + H)⁺.

6-Amino-3-(cyclopropylmethyl)-1-methyl-5-nitrosopyrimidine-2,4(1*H***,3***H***)-dione (21). Yield 2.1 g (95%); MS** *m***/***z* **225 (M + H)⁺.**

5,6-Diamino-3-alkyl-1-methylpyrimidine-2,4(1 *H*,**3** *H*)-**dione** (22–26). The synthesis of compounds 22–26 was acomplished by using on of the following methods.

Method A. A solution of 6-amino-1-methyl-5-nitrosouracils (17-21, 8 mmol) in 13% aqueous ammonium hydroxide was prepared by heating the mixture to 70 °C. To the solution was added Na₂S₂O₄ (2.8 g, 24 mmol) in small portions at 70 °C over a period of 20 min, while the mixture was vigorously stirred. The volume of the solution was reduced under vacuum until the product started to crystallize. The mixture was cooled to room temperature, and the precipitate was collected by filtration and washed with cold water to afford the diamines 22–26. The products were sensitive to moisture and hence were carried immediately to the next step.

Method B. A solution of 6-amino-1-methyl-5-nitrosouracils (17-21, 8 mmol) in 20 mL MeOH was prepared by heating the mixture to 70 °C. To the solution was added 10% Pd/C, and the mixture was hydrogenated at 25 psi for 1.5 h. The mixture was filtered through celite and washed with MeOH. The solvent was evaporated, and the products were taken immediately to the next step.

8-(1-Benzyl-1 *H*-pyrazol-4-yl)-3-methyl-1-alkyl-1 *H*-purine-2,6(3*H*,7*H*)-dione (27–43). General Procedure. 5,6-Diamino-3alkyl-1-methylpyrimidine-2,4(1*H*,3*H*)-dione (22–26, 1.0 mmol) were suspended in 15 mL of MeOH. To the suspension was added 1-substituted-1 *H*-pyrazole-4-carboxylic acid (I, 1.3 mmol) and then EDCI (1.3 mmol, 0.25 g). The mixture was stirred at room temperature for 24 h. TLC (DCM/MeOH 10:1) showed no starting material. The solvent was evaporated, and the residue was purified by using Biotage (DCM/MeOH 20:1) to afford the *N*-(6-amino-3alkyl-1,2,3,4-tetrahydro-1-benzyl-2,4-dioxopyrimidin-5-yl)-1-methyl-1*H*-pyrazole-4-carboxamides **II**.

The carboxamides (II, 0.3 mmol) were dissolved in a mixture of 1:2 MeOH/10% NaOH. The solution was stirred at 100 °C for 3-5 h. The MeOH was evaporated, and the aqueous solution was acidified to pH 4–5 by using concentrated HCl. The precipitate formed was collected by filtration, washed with water and ether, and air-dried under vacuum to afford compounds 27–43.

1-Ethyl-3-methyl-8-(*1H*-**pyrazol-4-yl**)-*1H*-**purine-2,6**(*3H*,7*H*)**dione** (27). Yield 0.06 g, 76%. ¹H NMR (DMSO-*d*₆): δ 1.13 (t, *J* = 8.0 Hz, 3H), 3.47 (s, 3H), 3.93 (q, *J* = 8.0 Hz,2H), 8.21 (s, 1H), 13.48 (s, 1H); MS *m*/*z* 261 (M + H)⁺ Anal. (C₁₁H₁₂N₆O₂.H₂O) C, H, N. **8-(1-Benzyl-1***H***-pyrazol-4-yl)-1-ethyl-3-methyl-1***H***-purine-2,6(3***H***,7***H***)-dione (28).** Yield 0.08 g, 80%. ¹H NMR (DMSO-*d*₆): δ 1.12 (t, *J* = 8.0 Hz, 3H), 3.45 (s, 3H), 3.92 (d, *J* = 8.0 Hz, 2H), 5.40 (s, 2H), 7.29–7.39 (m, 5H), 8.09 (s, 1H), 8.45 (s, 1H), 13.53 (s, 1H); MS *m*/z 351 (M + H)⁺; Anal. (C₁₈H₁₈N₆O₂) C, H, N.

8-(1-(3-Fluorobenzyl)-1*H***-pyrazol-4-yl)-1-ethyl-3-methyl-1***H***purine-2,6(3***H***,** *H***)-dione (29). Yield 0.09 g, 80%. ¹H NMR (DMSO-***d***₆): \delta 1.12 (t,** *J* **= 8.0 Hz, 3H), 3.35 (s, 3H), 3.84 (q,** *J* **= 8.0 Hz, 2H), 5.43 (s, 2H),7.12–7.18 (m, 3H), 7.39–7.44 (m, 1H), 8.11 (s, 1H), 8.49 (s, 1H), 13.55 (s, 1H); MS** *m***/***z* **369 (M + H)⁺; Anal. (C₁₈H₁₇FN₆O₂) C, H, N.**

8-(1-(3-(Trifluoromethyl)benzyl)-1*H***-pyrazol-4-yl)-1-ethyl-3methyl-1***H***-purine-2,6(3***H***,7***H***)-dione (30). Yield 0.11 g, 84%. ¹H NMR (DMSO-***d***₆): \delta 1.13 (t,** *J* **= 8.0 Hz, 3H), 3.46 (s, 3H), 3.92 (q,** *J* **= 8.0 Hz, 2H), 5.52 (s, 2H), 7.58–7.70 (m, 4H), 8.11 (s, 1H), 8.52 (s, 1H), 13.54 (s, 1H); MS** *m***/***z* **419 (M + H)⁺; Anal. (C₁₉H₁₇F₃N₆O₂) C, H, N.**

8-(1-Benzyl-1*H***-pyrazol-4-yl)-3-methyl-1-propyl-1***H***-purine-2,6(3***H***,7***H***)-dione (31).** Yield 0.09 g, 79%. ¹H NMR (DMSO-*d*₆): δ 0.87 (t, J = 8.0 Hz, 3H), 1.60–1.50 (m, 2H), 3.45 (s, 3H), 3.84 (d, J = 4.0 Hz, 2H), 5.39 (s, 2H), 7.40–7.20 (m, 5H), 8.09 (s, 1H), 8.45 (s, 1H), 13.53 (s, 1H); MS *m*/*z* 363.16 (M – H)⁺; Anal. (C₁₉H₂₀N₆O₂.H₂O) C, H, N.

8-(1-(3-(Trifluoromethyl)benzyl)-1*H***-pyrazol-4-yl)-3-methyl-1-propyl-1***H***-purine-2,6(3***H***,7***H***)-dione (32). Yield 0.11 g, 85%. ¹H NMR (DMSO-d_6): \delta 0.86 (t, J = 8.0 Hz, 3H), 1.65–1.45(m, 2H), 3.43 (s, 3H), 3.82 (d, J = 8.0 Hz, 2H), 5.48 (s, 2H), 7.80–7.50 (m, 4H), 7.98 (s, 1H), 8.34 (s, 1H), 13.50 (s, 1H); MS** *m***/***z* **433 (M + H)⁺; Anal. (C₂₀H₁₉F₃N₆O₂) C, H, N.**

8-(1-(3-Fluorobenzyl)-1*H***-pyrazol-4-yl)-3-methyl-1-propyl-1***H***-purine-2,6(3***H***,7***H***)-dione (33). Yield 0.09 g, 87%. ¹H NMR (DMSO-***d***₆): \delta 0.87 (t,** *J* **= 8.0 Hz, 3H), 1.60–1.50 (m, 2H), 3.45 (s, 3H), 3.84 (d,** *J* **= 8.0 Hz, 2H), 5.42 (s, 2H), 7.20–7.00 (m, 3H), 7.50–7.36 (m, 1H), 8.06 (s, 1H), 8.43 (s, 1H), 13.54 (s, 1H); MS** *m***/z 383 (M + H)⁺; Anal. (C₁₉H₁₉FN₆O₂) C, H, N.**

8-(1-Benzyl-1*H***-pyrazol-4-yl)-1-butyl-3-methyl-1***H***-purine-2,6(3***H***,7***H***)-dione (34).** Yield 0.09 g, 79%. ¹H NMR (DMSO-*d*₆): δ 0.90 (t, *J* = 8.0 Hz, 3H), 1.40–1.20 (m, 2H), 1.60–1.50 (m, 2H), 3.44 (s, 3H), 3.87 (t, *J* = 8.0 Hz, 2H), 5.39 (s, 2H), 7.45–7.25 (m, 5H), 8.05 (s, 1H), 8.40 (s, 1H); MS *m*/*z* 379 (M + H)⁺; Anal. (C₂₀H₂₂N₆O₂) C, H, N.

8-(1-(3-Fluorobenzyl)-1*H***-pyrazol-4-yl)-1-butyl-3-methyl-1***H***purine-2,6(3***H***,7***H***)-dione (35). Yield 0.10 g, 88%. ¹H NMR (DMSO-d_6): \delta 0.90 (t, J = 8.0 Hz, 3H), 1.40–1.20 (m, 2H), 1.60–1.50 (m, 2H), 3.46 (s, 3H), 3.90 (t, J = 8.0 Hz, 2H), 5.44 (s, 2H), 7.25–7.10 (m, 3H), 7.50–7.35 (m, 1H), 8.12 (s, 1H), 8.50 (s, 1H), 13.55 (s, 1H); MS m/z 397 (M + H)⁺; Anal. (C₂₀H₂₁FN₆O₂0.5H₂O) C, H, N.**

8-(1-(3-(Trifluoromethyl)benzyl)-1*H***-pyrazol-4-yl)-1-butyl-3methyl-1***H***-purine-2,6(3***H***,7***H***)-dione(36). Yield 0.11 g, 82%. ¹H NMR (DMSO-***d***₆): \delta 0.90 (t, J = 8.0 Hz, 3H), 1.40–1.20 (m, 2H), 1.60–1.50(m, 2H), 3.46 (s, 3H), 3.88 (t, J = 8.0 Hz, 2H), 5.53 (s, 2H), 7.80–7.50 (m, 4H), 8.12 (s, 1H), 8.53 (1H), 13.50 (s, 1H); MS** *m***/z 447 (M + H)⁺; Anal. (C₂₁H₂₁F₃N₆O₂) C, H, N.**

1-Isobutyl-3-methyl-8-(1*H***-pyrazol-4-yl)-1***H***-purine-2,6(3***H***,7***H***)dione (37). Yield 0.06 g, 73%. ¹H NMR (DMSO-d_6): δ 0.82 (d, J = 8.0 Hz, 6H), 2.02–2.09 (m, 1H), 3.45 (s, 3H), 3.72 (d, J = 8.0 Hz, 2H), 8.19 (s, 2H); MS m/z 289 (M + H)⁺; Anal. (C₁₃H₁₆N₆O₂.HCl) C, H, N.**

8-(1-Benzyl-1*H***-pyrazol-4-yl)-1-isobutyl-3-methyl-1***H***-purine-2,6(3***H***,7***H***)-dione (38).** Yield 0.09 g, 83%. ¹H NMR (DMSO-*d*₆): $\delta 0.84$ (d, J = 8.0 Hz, 6H), 2.02–2.09 (m, 1H), 3.45 (s, 3H), 3.74 (d, J = 8.0 Hz, 2H), 5.40 (s, 2H), 7.29–7.39 (m, 5H), 8.09 (s, 1H), 8.46 (s, 1H), 13.52 (s, 1H); MS *m*/*z* 379 (M + H)⁺; Anal. (C₂₀H₂₂N₆O₂.H₂O) C, H, N.

8-(1-(3-Fluorobenzyl)-1*H***-pyrazol-4-yl)-1-isobutyl-3-methyl-1***H***-purine-2,6(3***H***,7***H***)-dione (39). Yield 0.09 g, 88%.¹H NMR (DMSO-d_6): \delta 0.84 (d, J = 8.0 Hz, 6H), 2.05–2.08 (m, 1H), 3.46 (s, 3H), 3.74 (m, J = 8.0 Hz, 2H), 5.43 (s, 2H), 7.12–7.16 (m, 3H), 7.41–7.42 (m, 1H) 8.11 (s, 1H), 8.50 (s, 1H), 13.52 (s, 1H); MS m/z 397 (M + H)⁺; Anal. (C₂₀H₂₁FN₆O₂0.5H₂O) C, H, N.** **8-(1-(3-(Trifluoromethyl)benzyl)-1***H***-pyrazol-4-yl)-1-isobutyl-3-methyl-1***H***-purine-2,6(3***H***,7***H***)-dione (40). Yield 0.11 g, 80%. ¹H NMR (DMSO-d_6): \delta 0.83 (d, J = 8.0 Hz, 6H), 2.02–2.09 (m, 1H), 3.45 (s, 3H), 3.71 (d, J = 8.0 Hz, 2H), 5.52 (s, 2H), 7.57–7.70 (m, 4H), 8.12 (s, 1H), 8.53 (s, 1H), 13.54 (s, 1H); MS** *m***/***z* **447 (M + H)⁺; Anal. (C₂₁H₂₁F₃N₆O₂.H₂O) C, H, N.**

8-(1-Benzyl-1*H***-pyrazol-4-yl)-1-(cyclopropylmethyl)-3-methyl-1***H***-purine-2,6(3***H***,7***H***)-dione (41). Yield 0.09 g, 80%. ¹H NMR (DMSO-d_6): \delta 0.50–0.20 (m, 4H), 1.30-.10 (m, 1H), 3.47 (s, 3H), 3.77 (d, J = 4.0 Hz, 2H), 5.40 (s, 2H), 7.50–7.15 (m, 5H), 8.08 (s, 1H), 8.44 (s, 1H), 13.52 (s, 1H); MS m/z 377 (M + H)⁺; Anal. (C₂₀H₂₀N₆O₂) C, H, N.**

8-(1-(3-Fluorobenzyl)-1*H***-pyrazol-4-yl)-1-(cyclopropylmethyl)-3-methyl-1***H***-purine-2,6(3***H***,7***H***)-dione (42). Yield 0.08 g, 77%. ¹H NMR (DMSO-d_6): \delta 0.45–0.25 (m, 4H), 1.30–1.15 (m, 1H), 3.45 (s, 3H), 3.76 (d, J = 4.0 Hz, 2H), 5.41 (2H), 7.25–7.00 (m, 3H), 7.50–7.35 (m, 1H), 8.02 (s, 1H), 8.38 (s, 1H), 13.53 (s, 1H); MS m/z 395 (M + H)⁺; Anal. (C₂₀H₁₉FN₆O₂.HCl) C, H, N.**

8-(1-(3-(Trifluoromethyl)benzyl)-1*H***-pyrazol-4-yl)-1-(cyclopropylmethyl)-3-methyl-1***H***-purine-2,6(3***H***,7***H***)-dione (43). Yield 0.11 g, 81%. ¹H NMR (DMSO-d_6): \delta 0.50–0.25 (4H), 1.30–1.10 (m, 1H), 3.47 (s, 3H), 3.78 (s, 2H), 5.53 (s, 2H), 7.75–7.55 (m, 4H), 8.13 (s, 1H), 8.54 (s, 1H), 13.52 (s, 1H); MS** *m***/***z* **445 (M + H)⁺; Anal. (C₂₁H₁₉F₃N₆O₂.2HCl) C, H, N.**

6-Amino-1-ethylpyrimidine-2,4(1*H***,3***H***)-dione (45). Sodium (5.2 g, 226 mmol) was dissolved in anhydrous ethanol (150 mL). To the solution was added ethyl 2-cyanoacetate (12.8 g, 113 mmol) and then 1-ethylurea (10 g, 113 mmol), and the mixture was stirred at reflux for 24 h. The solvent was evaporated under reduced pressure, and the residue was dissolved in 50 mL water. The pH of the solution was adjusted to 7 by using concentrated HCl. The yellow solid formed was collected by filtration, washed with water, and dried under vacuum to afford 16.7 g of 45** (95% yield). ¹H NMR (DMSO-*d*₆): δ 1.16 (t, 3H), 3.95 (q, 2H), 4.50 (s, 1H), 6.78 (br s, 2H), 10.36 (s, 1H); MS *m*/*z* 156 (M + H)⁺.

N'-(3-Ethyl-1,2,3,6-tetrahydro-2,6-dioxopyrimidin-4-yl)-*N*,*N*-dimethylformamidine (46). To a suspension of 45 (15 g, 96 mmol) in DMF (300 mL) was added DMF/DMA (60 mL). The mixture was heated at 40 °C untill disappearance of starting material was observed (1–3 h, TLC, DCM/MeOH 10:1). The solvent was removed under reduced pressure, and the residue was treated with 40 mL EtOH. The solid formed was collected by filtration and washed with EtOH and then with ether to afford 16.5 g of 46 (82% yield) that was used without further purification. MS *m*/*z* 211 (M + H)⁺.

6-Amino-1-ethyl-3-alkylpyrimidine-2,4(1*H*,3*H*)-dione (47–50). General procedure. The formamidine 46 (2.0 g, 9.5 mmol) was dissolved in 40 mL DMF. To the solution was added the corresponding alkyl iodide (10.45 mmol) and then K_2CO_3 (1.7 g, 12.3 mmol), and the mixture was heated at 40 °C for 5 h. The solvent was evaporated, and the residue was dissolved in a 40 mL solution containing a 1:2 mixture of MeOH and 28% ammonium hydroxide. The mixture was stirred at ambient temperature for 48 h. The solvent was evaporated, and the residue was purified by using column chromatography (DCM/MeOH 15:1) to yield the compounds 47–50 in 68–73% yields over two steps.

6-Amino-1-ethyl-3-propylpyrimidine-2,4(1*H*,3*H*)-dione (47). Yield 1.3 g, 68%; MS m/z 198 (M + H)⁺.

6-Amino-3-butyl-1-ethylpyrimidine-2,4(1*H*,3*H*)-dione (48). Yield 1.2 g, 63%; MS m/z 212 (M + H)⁺.

6-Amino-1-ethyl-3-isobutylpyrimidine-2,4(1*H*,3*H*)-dione (49). Yield 1.3 g, 64%; MS m/z 212 (M + H)⁺.

6-Amino-3-(cyclopropylmethyl)-1-ethylpyrimidine-2,4(1*H***,3***H***)-dione (50).** Yield 1.5 g, 73%; MS m/z 210 (M + H)⁺.

6-Amino-3-alkyl-1-ethyl-5-nitrosopyrimidine-2,4(1*H*,3*H*)-dione (51–54). General Procedure. A solution of 1-ethyl-3-alkyl-6-aminouracils (47–50, 5 mmol) in 50% aqueous AcOH (25 mL) was prepared by heating the mixture at 70 °C. To the solution was added NaNO₂ (1 g, 15 mmol) in portions, and the mixture was stirred at 70 °C for 1.5 h. The mixture was concentrated, and thedark orange solid formed was collected by filtration and washed with water to afford compounds 51-54 (88–93% yield) that were used without further purification.

6-Amino-1-ethyl-5-nitroso-3-propylpyrimidine-2,4(1*H*,3*H*)-dione (51). Yield 1.1 g, 92%; MS m/z 227 (M + H)⁺.

6-Amino-3-butyl-1-ethyl-5-nitrosopyrimidine-2,4(1*H*,3*H*)-**dione (52).** Yield 1.0 g, 88%; MS m/z 241 (M + H)⁺.

6-Amino-1-ethyl-3-isobutyl-5-nitrosopyrimidine-2,4(1*H*,3*H*)-**dione (53).** Yield 1.0 g, 88%; MS m/z 241 (M + H)⁺.

6-Amino-3-(cyclopropylmethyl)-1-ethyl-5-nitrosopyrimidine-2,4(1*H*,3*H*)-dione (54). Yield 1.1 g, 93%; MS m/z 239 (M + H)⁺.

5,6-Diamino-1-ethyl-3-alkyl-pyrimidine-2,4(1H,3H)-dione(55–58). A solution of 6-amino-1-ethyl-3-alkyl-5-nitrosouracils (**51–54**, 3 mmol) in 15 mL MeOH was prepared by heating the mixture at 70 °C. To the solution was added 10% Pd/C, and the mixture was hydrogenated at 25 psi for 1.5 h. The mixture was filtered through celite and washed with MeOH. The solvent was evaporated, and the products were taken immediately to the next step without further purification.

8-(1-Benzyl-1H-pyrazol-4-yl)-3-ethyl-1-alkyl-1H-purine-2,6(3H,7H)-dione (59–75). General Procedure. 5,6-Diamino-3alkyl-1-ethylpyrimidine-2,4(1H,3H)-dione (**55–58**, 1.0 mmol) were suspended in 15 mL of MeOH. To the suspension was added 1-substituted-1*H*-pyrazole-4-carboxylic acid (**I**, 1.3 mmol) and then EDCI (1.3 mmol, 0.25 g). The mixture was stirred at rom temperature for 24 h. TLC (DCM/MeOH 10:1) showed no starting material. The solvent was evaporated, and the residue was purified by using Biotage (DMC/MeOH 20:1) to afford the *N*-(6-amino-3alkyl-1,2,3,4-tetrahydro-1-benzyl-2,4-dioxopyrimidin-5-yl)-1-methyl-1*H*-pyrazole-4-carboxamides **II**.

The carboxamides (II, 0.3 mmol) were dissolved in a mixture of 1:2 MeOH/10% NaOH. The solution was stirred at 100 °C for 3-5 h. The MeOH was evaporated, and the aqueous solution was acidified to pH 4–5 by using concentrated HCl. The precipitate formed was collected by filtration, washed with water and ether, and air-dried under vacuum to afford compounds **59-75** in 65–85%.

3-Ethyl-1-propyl-8-(1*H***-pyrazol-4-yl)-1***H***-purine-2,6(3***H***,7***H***)dione (59). Yield 0.06 g, 70%. ¹H NMR (DMSO-d₆): \delta 0.87 (t,** *J* **= 8.0 Hz, 3H), 1.24 (t,** *J* **= 8.0 Hz, 3H), 1.52–1.61 (m, 2H), 3.82–3.86 (m, 2H), 4.05 (q,** *J* **= 8.0 Hz, 2H), 8.14 (s, 1H), 8.35 (s, 1H), 13.32 (s, 1H), 13.52 (s, 1H); MS** *m***/***z* **289 (M + H)⁺; Anal. (C₁₃H₁₆N₆O₂) C, H, N.**

8-(1-Benzyl-1*H***-pyrazol-4-yl)-3-ethyl-1-propyl-1***H***-purine-2,6(3***H***,7***H***)-dione (60).** Yield 0.09 g, 80%. ¹H NMR (DMSO-d₆): δ 0.87 (t, J = 8.0 Hz, 3H), 1.24 (t, J = 8.0 Hz, 3H), 1.52–1.61 (m, 2H), 3.82–3.86 (m, 2H), 4.05 (q, J = 8.0 Hz, 2H), 5.40 (s, 2H), 7.21–7.33 (m, 5H), 8.13 (s, 1H), 8.47 (s, 1H), 13.55 (s, 1H); MS m/z 379 (M + H)⁺; Anal. (C₂₀H₂₂N₆O₂.0.5H₂O) C, H, N.

8-(1-(3-Fluorobenzyl)-1*H*-pyrazol-4-yl)-3-ethyl-1-propyl-1*H*-purine-2,6(3*H*,7*H*)-dione (61). Yield 0.10 g, 81%. ¹H NMR (DMSO- d_6): δ 0.87 (t, J = 8.0 Hz, 3H), 1.24 (t, J = 8.0 Hz, 3H), 1.52–1.61 (m, 2H), 3.82–3.86 (m, 2H), 4.05 (q, J = 8.0 Hz, 2H), 5.40 (s, 2H), 7.12–7.18 (m, 3H), 7.40–7.46 (m, 1H), 8.12 (s, 1H), 8.52 (s, 1H), 13.55 (s, 1H); MS m/z 397 (M + H)⁺; Anal. (C₂₀H₂₁FN₆O₂) C, H, N.

8-(1-(3-(Trifluoromethyl)benzyl)-1*H***-pyrazol-4-yl)-3-ethyl-1propyl-1***H***-purine-2,6(3***H***,7***H***)-dione (62). Yield 0.11 g, 82%. ¹H NMR (DMSO-***d***₆): \delta 0.87 (t,** *J* **= 8.0 Hz, 3H), 1.24 (t,** *J* **= 8.0 Hz, 3H), 1.52–1.61 (m, 2H), 3.82–3.86 (m, 2H), 4.05 (q,** *J* **= 8.0 Hz, 2H), 5.52 (s, 2H), 7.58–7.64 (m, 2H), 7.68–7.72; MS** *m***/***z* **447 (M + H)⁺; Anal. (C₂₁H₂₁F₃N₆O₂) C, H, N.**

1-(Cyclopropylmethyl)-3-ethyl-8-(1*H***-pyrazol-4-yl)-1***H***-purine-2,6(3***H***,7***H***)-dione (63).** Yield 0.06 g, 71%. ¹H NMR (DMSO-*d*₆): δ 0.35–0.48 (m, 4H), 1.20–1.28 (m, 4H), 3.80 (d, *J* = 8.0 Hz, 2H), 4.10 (q, *J* = 8.0 Hz, 2H), 8.18 (s, 1H), 8.36 (s, 1H), 13.32 (s, 1H), 13.50 (s, 1H); MS *m*/*z* 301 (M + H)⁺; Anal. (C₁₄H₁₆N₆O₂) C, H, N.

8-(1-Benzyl-1*H***-pyrazol-4-yl)-1-(cyclopropylmethyl)-3-ethyl-1***H***-purine-2,6(3***H***,7***H***)-dione (64). Yield 0.10 g, 84%. ¹H NMR (DMSO-d_6): \delta 0.35–0.48 (m, 4H), 1.20–1.26 (m, 4H), 3.80 (d, J = 8.0 Hz, 2H), 4.06 (q, J = 8.0 Hz, 2H), 5.48 (s, 2H), 7.12–7.19** (m, 2H), 7.50–7.57 (m, 2H), 8.12 (s, 1H), 8.52 (s, 1H), 13.55 (s, 1H); MS m/z 409 (M + H)⁺; Anal. (C₂₁H₂₁FN₆O₂0.5H₂O) C, H, N.

8-(1-(3-(Trifluoromethyl)benzyl)-1-pyrazol-4-yl)-1-(cyclopropylmethyl)-3-ethyl-1*H***-purine-2,6(3***H***,7***H***)-dione (65). Yield 0.11 g, 82%. ¹H NMR (DMSO-d_6): \delta 0.35–0.48 (m, 4H), 1.20–1.26 (m, 4H), 3.80 (d, J = 8.0 Hz, 2H), 4.06 (q, J = 8.0 Hz, 2H), 5.52 (s, 2H), 7.58–7.64 (m, 2H), 7.68–7.72 (m, 2H), 8.13 (s, 1H), 8.55 (s, 1H), 13.56 (s, 1H); MS m/z 459 (M + H)⁺; Anal. (C₂₂H₂₁F₃N₆O₂) C, H, N.**

3-Ethyl-1-isobutyl-8-(1*H***-pyrazol-4-yl)-1***H***-purine-2,6(3***H***,7***H***)dione (66). Yield 0.06 g, 71%. ¹H NMR (DMSO-***d***₆): \delta 0.88 (d,** *J* **= 8.0 Hz, 6H), 1.26 (t,** *J* **= 8.0 Hz, 3H), 2.06–2.12 (m, 1H), 3.76 (d,** *J* **= 8.0 Hz, 2H), 4.08 (q,** *J* **= 8.0 Hz, 2H), 8.12 (s, 1H), 8.40 (s, 1H), 13.42 (s, 1H), 13.49 (s, 1H); MS** *m***/***z* **303 (M + H)⁺; Anal. (C₁₄H₁₈N₆O₂) C, H, N.**

8-(1-(3-Fluorobenzyl)-1H-pyrazol-4-yl)-3-ethyl-1-isobutyl-1H-purine-2,6(3H,7H)-dione (67). Yield 0.10 g, 83%. ¹H NMR (DMSO-*d*₆): δ 0.86 (d, *J* = 8.0 Hz, 6H), 1.26 (t, *J* = 8.0 Hz, 3H), 2.04–2.10 (m, 1H), 3.75 (d, *J* = 8.0 Hz, 2H), 4.05 (q, *J* = 8.0 Hz, 2H), 5.45 (s, 2H), 7.12–7.18 (m, 3H), 7.40–7.46 (m, 1H), 8.12 (s, 1H), 8.52 (s, 1H), 13.55 (s, 1H); MS *m*/*z* 411 (M + H)⁺; Anal. (C₂₁H₂₃FN₆O₂) C, H, N.

8-(1-(3-(Trifluoromethyl)benzyl)-1*H***-pyrazol-4-yl)-3-ethyl-1isobutyl-1***H***-purine-2,6(3***H***,7***H***)-dione (68). Yield 0.11 g, 81%. ¹H NMR (DMSO-d_6): \delta 0.86 (d, J = 8.0 Hz, 6H), 1.26 (t, J = 8.0 Hz, 3H), 2.04–2.10 (m, 1H), 3.75 (d, J = 8.0 Hz, 2H), 4.05 (q, J = 8.0 Hz, 2H), 5.55 (s, 2H), 7.61–7.64 (m, 2H), 7.68–7.71 (m, 2H), 8.12 (s, 1H), 8.58 (s, 1H), 13.57 (s, 1H); MS** *m***/***z* **461 (M + H)⁺; Anal. (C₂₂H₂₃F₃N₆O₂) C, H, N.**

3-Ethyl-1-propyl-8-(1-((pyridin-2-yl)methyl)-1*H*-pyrazol-4**yl)-1***H*-purine-2,6(3*H*,7*H*)-dione (69). Yield 0.08 g, 73%. ¹H NMR (DMSO- d_6): δ 0.87 (t, J = 8.0 Hz, 3H), 1.24 (t, J = 8.0 Hz, 3H), 1.52–1.61 (m, 2H), 3.82–3.86 (m, 2H), 4.05 (q, J = 8.0 Hz, 2H), 5.65 (s, 2H), 7.35–7.39 (m, 1H), 7.54–7.58 (m, 1H), 8.03–8.07 (m, 1H), 8.15 (s, 1H), 8.55 (s, 1H), 8.68–8.70 (m, 1H); MS *m*/*z* 379 (M + H)⁺; Anal. (C₁₉H₂₁N₇O₂) C, H, N.

3-Ethyl-1-propyl-8-(1-((pyridin-3-yl)methyl)-1*H*-pyrazol-4**yl)-1***H*-purine-2,6(3*H*,7*H*)-dione (70). Yield 0.08 g, 73%. ¹H NMR (DMSO- d_6): δ 0.87 (t, J = 8.0 Hz, 3H), 1.24 (t, J = 8.0 Hz, 3H), 1.52–1.61 (m, 2H), 3.82–3.86 (m, 2H), 4.05 (q, J = 8.0 Hz, 2H), 5.65 (s, 2H), 7.25–7.29 (m, 1H), 7.44–7.48 (m, 3H), 8.50–8.53 (m, 2H); MS m/z 379 (M + H)⁺; Anal. (C₁₉H₂₁N₇O₂) C, H, N.

3-Ethyl-8-(1-((6-methylpyridin-3-yl)methyl)-1H-pyrazol-4-yl)-1-propyl-1H-purine-2,6(3H,7H)-dione (71). Yield 0.08 g, 65%. ¹H NMR (DMSO- d_6): δ 0.87 (t, J = 8.0 Hz, 3H), 1.24 (m, J = 8.0 Hz, 3H), 1.55–1.60 (m, 2H), 2.68 (s, 3H), 3.82–3.86 (m, 2H), 4.05 (q, J = 8.0 Hz, 2H), 5.58 (s, 2H), 7.78 (d, J = 0.72 Hz, 1H), 8.18 (s, 1H), 8.20 (d, J = 0.72 Hz, 1H), 8.59 (s, 1H), 8.77 (s, 1H), 13.62 (s, 1H); MS *m*/*z* 394 (M + H)⁺; Anal. (C₂₀H₂₃N₇O₂.HCl) C, H, N.

3-Ethyl-8-(1-((6-(trifluoromethyl)pyridin-3-yl)methyl)-1*H***-pyrazol-4-yl)-1-propyl-1***H***-purine-2,6(3***H*,7*H*)-**dione (72).** Yield 0.09 g, 65%. ¹H NMR (DMSO-*d*₆): δ 0.87 (t, *J* = 8.0 Hz, 3H), 1.24 (m, 3H, *J* = 8.0 Hz), 1.55–1.60 (m, 2H), 3.82–3.86 (m, 2H), 4.05 (q, *J* = 8.0 Hz, 2H), 5.59 (s, 2H), 7.91–7.95 (m, 2H), 8.14 (s, 1H), 8.59 (s, 1H), 8.76 (s, 1H); MS *m*/*z* 448 (M + H)⁺; Anal. (C₂₀H₂₀F₃N₇O₂) C, H, N.

3-Ethyl-8-(1-((6-(trifluoromethyl)pyridin-3-yl)methyl)-1*H***-pyrazol-4-yl)-1-isobutyl-1***H***-purine-2,6(3***H*,7*H*)-dione (73). Yield 0.09 g, 66%. ¹H NMR (DMSO- d_6): δ 0.84 (d, J = 8.0 Hz, 6H), 1.26 (t, J = 8.0 Hz, 3H), 2.04–2.10 (m, 1H), 3.75 (d, J = 8.0 Hz, 2H), 4.05 (q, J = 8.0 Hz, 2H), 5.58 (s, 2H), 7.88–7.91 (m, 2H), 8.10 (s, 1H), 8.57 (s, 1H), 8.74 (s, 1H); MS *m*/*z* 462 (M + H)⁺; Anal. (C₂₁H₂₂F₃N₇O₂.HCl) C, H, N.

1-(Cyclopropylmethyl)-3-ethyl-8-(1-((6-(trifluoromethyl)pyridin-3-yl)methyl)-1H-pyrazol-4-yl)-1H-purine-2,6(3H,7H)-dione (74). Yield 0.09 g, 66%. ¹H NMR (DMSO-*d₆*): δ 0.35–0.48 (m, 4H), 1.20–1.26 (m, 4H), 3.80 (d, *J* = 8.0 Hz, 2H), 4.06 (q, *J* = 8.0 Hz, 2H), 5.61 (s, 2H), 7.91–7.98 (m, 2H), 8.18 (s, 1H), 8.58 (s, 1H), 8.77 (s, 1H); MS m/z 460 (M + H)⁺; (C₂₁H₂₀-F₃N₇O₂.HCl) C, H, N.

3-((4-(3-Ethyl-2,6-dioxo-1-propyl-2,3,6,7-tetrahydro-1*H***-purin-8-yl)-1***H***-pyrazol-1-yl)methyl)pyridine-1-oxide (75). Yield 0.09 g, 71%. ¹H NMR (DMSO-d_6): \delta 0.87 (t, J = 8.0 Hz, 3H), 1.24 (t, J = 8.0 Hz, 3H), 1.54–1.60 (m, 2H), 3.83–3.86 (m, 2H), 4.05 (q, J = 8.0 Hz, 2H), 5.41 (s, 2H), 7.23 (d, J = 8.0 Hz, 1H), 7.39–7.42 (m, 1H), 8.14 (s, 1H), 8.18 (d, J = 8.0 Hz, 1H), 8.22 (s, 1H), 8.56 (s, 1H), 13.59 (s, 1H); MS m/z 395 (M + H)⁺; Anal. (C₁₉H₂₁N₇O₂) C, H, N.**

3-Ethyl-8-(heteroaryl)methyl)-1H-pyrazol-4-yl)-1-propyl-1Hpurine-2,6(3H,7H)-dione (77–81). General Procedure. 3-Ethyl-1-propyl-8-(1*H*-pyrazol-4-yl)-7-((2-(trimethylsilyl)ethoxy)methyl)-1*H*-purine-2,6(3*H*,7*H*)-dione **76** (0.4 mmol, 0.17 g)²² was dissolved in 10 mL of anhydrous DMF. To the solution was added the compound **III** (0.48 mmol) and K₂CO₃ (0.06 g, 0.48 mmol). The mixture was heated at 80 °C for 18 h. The mixture was filtered to remove K₂CO₃, and the solvent was evaporated under reduced pressure. The residue was purified by using preparative TLC (DCM/ MeOH 10:1) to afford the SEM-protected derivatives of compounds **78–82**. Deprotection of the SEM group was achieved in 3N HCl to afford the target compounds in 65–73% yield.²²

8-(1-((5-(4-Chlorophenyl)-1,2,4-oxadiazol-3-yl)methyl)-1*H***-pyrazol-4-yl)-3-ethyl-1-propyl-1***H***-purine-2,6(3***H*,7*H*)-dione (77). Yield 0.13 g, 67%. ¹H NMR (DMSO-*d*₆): δ 0.87 (t, *J* = 8.0 Hz, 3H), 1.24 (t, *J* = 8.0 Hz, 3H), 1.55–1.60 (m, 2H), 3.83–3.86 (m, 2H), 4.05 (q, *J* = 8.0 Hz, 2H), 5.74 (s, 2H), 7.69 (d, *J* = 8.0 Hz, 2H), 8.13 (s, 1H), 8.58 (s, 1H), 13.62 (s, 1H); MS *m*/z 481 (M + H)⁺; Anal. (C₂₂H₂₁ClN₈O₃) C, H, N.

3-Ethyl-8-(1-((5-(4-(trifluoromethyl)phenyl)-1,2,4-oxadiazol-3-yl)methyl)-1H-pyrazol-4-yl)-1-propyl-1H-purine-2,6(3H,7H)dione (78). Yield 0.15 g, 73%. ¹H NMR (DMSO- d_6): δ 0.87 (t, J= 8.0 Hz, 3H), 1.24 (t, J = 8.0 Hz, 3H), 1.52–1.61 (m, 2H), 3.82–3.86 (m, 2H), 4.05 (q, J = 8.0 Hz, 2H), 5.80 (s, 2H), 8.00 (d, J = 8.0 Hz, 2H), 8.13 (s, 1H), 8.21 (d, J = 8.0 Hz, 2H), 8.58 (s, 1H), 13.57 (s, 1H); MS m/z 515 (M + H)⁺; Anal. (C₂₃H₂₁F₃N₈O₃.0.1H₂O) C, H, N.

8-(1-((3-(4-Chlorophenyl)-1,2,4-oxadiazol-5-yl)methyl)-1*H***-pyrazol-4-yl)-3-ethyl-1-propyl-1***H***-purine-2,6(3***H*,7*H*)-dione (79). Yield 0.13 g, 68%. ¹H NMR (DMSO-*d*₆): δ 0.87 (t, *J* = 8.0 Hz, 3H), 1.24 (t, *J* = 8.0 Hz, 3H), 1.55–1.60 (m, 2H), 3.83–3.87 (m, 2H), 4.03–4.08 (m, 2H), 6.00 (s, 2H), 7.62–7.65 (m, 2H), 7.97–8.00 (m, 2H), 8.18 (s, 1H), 8.64 (s, 1H); MS *m*/*z* 481 (M + H)⁺; Anal. (C₂₂H₂₁ClN₈O₃) C, H, N.

3-Ethyl-8-(1-((5-(4-(trifluoromethyl)phenyl)isoxazol-3-yl)methyl)-1*H***-pyrazol-4-yl)-1-propyl-1***H***-purine-2,6(3***H***,7***H***)-dione (80). Yield 0.13 g, 65%. ¹H NMR (DMSO-d_6): \delta 0.87 (t, J = 8.0 Hz, 3H), 1.24 (t, J = 8.0 Hz, 3H), 1.52–1.61 (m, 2H), 3.82–3.86 (m, 2H), 4.05 (q, J = 8.0 Hz, 2H), 5.65 (s, 2H), 7.20 (s, 1H), 7.92 (d, J = 8.0 Hz, 2H), 8.12 (d, J = 8.0 Hz, 2H), 8.18 (s, 1H), 8.60 (s, 1H); MS** *m***/***z* **514 (M + H)⁺; Anal. (C₂₄H₂₂F₃N₇O₃.) C, H, N.**

8-(1-((5-(4-Chlorophenyl)isoxazol-3-yl)methyl)-1*H***-pyrazol-4yl)-3-ethyl-1-propyl-1***H***-purine-2,6(3***H***,7***H***)-dione (81). Yield 0.13 g, 66%. ¹H NMR (DMSO-d_6): \delta 0.87 (t, J = 8.0 Hz, 3H), 1.24 (t, J = 8.0 Hz, 3H), 1.55–1.60 (m, 2H), 3.83–3.86 (m, 2H), 4.05 (q, J = 8.0 Hz, 2H), 5.60 (s, 2H), 7.03 (s, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.90 (d, J = 8.0 Hz, 2H), 8.14 (s, 1H), 8.55 (s, 1H), 13.61 (s, 1H); MS m/z 479 (M + H)⁺; Anal. (C₂₃H₂₂ClN₇O₃.) C, H, N.**

Radioligand Binding for A_{2B} Adenosine Receptor.²² Human A_{2B} adenosine receptor cDNA was stably transfected into HEK-293 cells (referred to as HEK-A_{2B} cells). Monolayer of HEK-A_{2B} cells were washed with PBS once and harvested in a buffer containing 10 mM HEPES (pH 7.4), 10 mM EDTA, and protease inhibitors. These cells were homogenized in polytron for 1 min at setting 4 and centrifuged at 29000*g* for 15 min at 4 °C. The cell pellets were washed once with a buffer containing 10 mM HEPES (pH 7.4), 1 mM EDTA, and protease inhibitors and were resuspended in the same buffer supplemented with 10% sucrose. Frozen aliquots were kept at -80 °C. Competition assays were started by mixing 10 nM compound **82** (Tocris Cookson) with various

concentrations of test compounds and 50 μ g membrane proteins in TE buffer (50 mM Tris and 1 mM EDTA) supplemented with 1 U/mL adenosine deaminase. The assays were incubated at 25 °C for 90 min under gentle agitation, stopped by filtration by using Packard Harvester, and washed four times with ice-cold TM buffer (10 mM Tris, 1 mM MgCl₂, pH 7.4). Nonspecific binding was determined in the presence of 10 μ M cold **82**. The affinities of compounds (i.e., K_i values) were calculated by using GraphPad software.

Radioligand Binding for A1, A2A, and A3 Adenosine Receptors.²² Human A₁, A_{2A}, and A₃ adenosine receptor cDNAs were stably transfected into either CHO or HEK-293 cells (referred to as CHO-A₁, HEK-A_{2A}, and CHO-A₃). Membranes were prepared from these cells by using the same protocol as described above. Competition assays were started by mixing 0.5 nM ³H-CPX (for CHO-A1) and 2 nM compound 82 (HEK-A2A) or 0.1 nM ¹²⁵I-AB-MECA (CHO-A₃) with various concentrations of test compounds, and the respective membranes in TE buffer (50 mM Tris and 1 mM EDTA fo CHO-A₁ and HEK-A_{2A}) or TEM buffer (50 mM Tris, 1 mM EDTA and 10 mM MgCl₂ for CHO-A₃) were supplemented with 1 Unit/mL adenosine deaminase. The assays were incubated at 25 °C for 90 min under gentle agitation, stopped by filtration by using Packard Harvester, and washed four times with ice-cold TM buffer (10 mM Tris, 1 mM MgCl₂, pH 7.4). Nonspecific binding was determined in the presence of $1 \,\mu\text{M}$ CPX (CHO-A₁), 1 μ M cold 82 (HEK-A_{2A}), and 1 μ M IB-MECA (CHO-A₃). The affinities of compounds (i.e., K_i values) were calculated by using GraphPad software.

Supporting Information Available: Table of elemental analysis and PK data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Fredholm, B. B.; Ijzerman, A. P.; Jacobson, K. A.; Klotz, K. N.; Linden, J. International union of pharmacology. XXXV. Nomenclature and classification of adenosine receptors. *Pharmacol. Rev.* 2001, *53*, 527–552.
- (2) Jacobson, K. A.; Gao, Z. Adenosine receptors as therapeutic targets. *Nat. Rev. Drug Discovery* 2006, *5*, 247–264.
- (3) Fossetta, J.; Deno, G.; Fan, X.; Du, X. K.; Bober, L.; Soude-Bermejo, A.; De Bouteiller, O.; Caux, C.; Lunn, C.; Lundell, D.; Palmer, R. K. Pharmacological analysis of calcium responses mediated by the human A₃ adenosine receptor in monocyte-derived dendritic cells and recombinant cells. *Mol. Pharmacol.* **2003**, *63*, 342–350.
- (4) Shneyvays, V.; Zinman, T.; Shainberg, A. Analysis of calcium responses mediated by the A₃ adenosine receptor in cultured newborn rat cardiac myocytes. *Cell Calcium* **2004**, *36*, 387–396.
- (5) Livingston, M.; Heaney, L. G.; Ennis, M. Adenosine, inflammation and asthma-a review. *Inflammation Res.* 2004, 53, 171–178.
- (6) Fozard, J. R. The case for a role for adenosine in asthma: Almost convincing. *Curr. Opin. Pharmacol.* 2003, *3*, 264–269.
- (7) Berge, M.; Hylkema, M.; Versluis, M.; Postma, D. S. Role of adenosine receptors in the treatment of asthma and chronic obstructive pulmonary disease: Recent developments. *Drugs R&D* 2007, *8*, 13–23.
- (8) Rorke, S.; Holgate, S. T. Targeting adenosine receptors: Novel therapeutic targets in asthma and chronic obstructive pulmonary disease. *Am. J. Respir. Med.* 2002, *1*, 99–105.
- (9) Akkari, R.; Burbiel, J. C.; Hockemeyer, J.; Mueller, C. E. Recent progress in the development of adenosine receptor ligands as antiinflammatory drugs. *Curr. Top. Med. Chem.* **2006**, *6*, 1375–1399.
- (10) Linden, J. New insights into the regulation of inflammation by adenosine. J. Clin. Invest. 2006, 116, 1835–1837.
- (11) Feoktistov, I.; Goldstein, A. E.; Ryzhov, S.; Zeng, D.; Belardinelli, L.; Voyno-Yasenetskaya, T.; Biaggioni, I. Differential expression of adenosine receptors in human endothelial cells. Role of A_{2B} receptors in angiogenic factor regulation. *Circ. Res.* **2002**, *90*, 531–538.
- (12) Ryzhov, S.; Goldstein, A. E.; Matafonov, A.; Zeng, D.; Biaggioni, I. Feoktistov adenosine-activated mast cells induce IgE synthesis by B lymphocytes: An A_{2B}-mediated process involving Th2 cytokines IL-4 and IL-13 with implications for asthma. *J. Immunol.* **2004**, *172*, 7726– 7733.
- (13) Feoktistov, I.; Ryzhov, S.; Zhong, H.; Goldstein, A. E.; Matafonov, A.; Zeng, D.; Biaggioni, I. Hypoxia modulates adenosine receptors in human endothelial and smooth muscle cells toward an A_{2B} angiogenic phenotype. *Hypertension* **2004**, *44*, 649–654.

- (14) Zhong, H.; Belardinelli, L.; Maa, T.; Feoktistov, I.; Biaggioni, I.; Zeng, D. A_{2B} adenosine receptors increase cytokine release by bronchial smooth muscle cells. *Am. J. Respir. Cell Mol. Biol.* **2004**, *30*, 118– 125.
- (15) Zhomg, H.; Wu, Y.; Belardinelli, L.; Zeng, D. A_{2B} adensoine receptors induce IL-19 from bronchial epithelial cells resulting in TNF-alpha increase. *Am. J. Respir. Cell Mol. Biol.* **2006**, *5*, 587–592.
- (16) Holgate, S. T. The identification of the adenosine A_{2B} receptor as a novel therapeutic target in asthma. *Br. J. Pharmacol.* **2005**, *145*, 1009– 1015.
- (17) Zhong, H.; Belardinelli, L.; Maa, T.; Zeng, D. Synergy between A_{2B} adenosine receptors and hypoxia in activating human lung fibroblasts. *Am. J. Respir. Cell Mol. Biol.* **2004**, *32*, 2–8.
- (18) Beukers, M. W.; Meurs, I.; Ijzerman, A. P. Structure-affinity relationships of adenosine A_{2B} receptor ligands. *Med. Res. Rev.* 2006, 26, 667–698.
- (19) Zablocki, J.; Elzein, E.; Kalla, R. A_{2B} adenosine receptor antagonists and their potential indications. *Expert Opin. Ther. Pat.* **2006**, *16*, 1347– 1357.
- (20) Cacciari, B.; Pastorin, G.; Bolcato, C.; Spalluto, G.; Bacilieri, M.; Moro, S. A_{2B} adenosine receptor antagonists: Recent developments. *Mini-Rev. Med. Chem.* 2005, *5*, 1053–1060.
- (21) Baraldi, P. G.; Tabrizi, M. A.; Preti, D.; Bovero, A.; Romagnoli, R.; Fruttarolo, F.; Zaid, N. A.; Moorman, A. R.; Varani, K.; Gessi, S.; Merighi, S.; Borea, P. A. Design, synthesis, and biological evaluation of new 8-heterocyclic xanthine derivatives as highly potent and selective human A_{2B} adenosine receptor antagonists. *J. Med. Chem.* **2004**, *47*, 1434–1447.
- (22) Kalla, R.; Elzein, E.; Perry, T.; Li, X.; Palle, V.; Varkhedkar, V.; Gimbel, A.; Maa, T.; Zeng, D.; Zablocki, J. Novel 1,3-disubstituted 8-(1-benzyl-1*H*-pyrazol-4-yl) xanthines: High affinity and selective A_{2B} adenosine receptor antagonists. *J. Med. Chem.* **2006**, *49*, 3682– 3692.
- (23) Sun, C.; Zhong, H.; Mohsenin, A.; Morschl, E.; Chunn, J. L.; Molina, J. G.; Belardinelli, L.; Zeng, D.; Blackburn, M. R. Role of A_{2B} adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury. *J. Clin. Invest.* **2006**, *116*, 2173–2182.
- (24) Mustafa, S. J.; Nadeem, A.; Fan, M.; Zhong, H.; Belardinelli, L.; Zeng, D. Effect of a specific and selective A_{2B} adenosine receptor antagonist on adenosine agonist AMP and allergen-induced airway responsiveness

and cellular influx in a mouse model of asthma. J. Pharmacol. Exp. Ther. 2007, 320, 1246–1251.

- (25) Sun, H.; Zhi, C.; Wright, G. E.; Ubiali, D.; Pregnolato, M.; Verri, A.; Focher, F.; Spadari, S. Molecular modeling and synthesis of inhibitors of Herpes Simplex virus type 1 uracil-DNA glycosylase. *J. Med. Chem.* **1999**, *42*, 2344–2350.
- (26) Priego, Eva.; Camarasa, M.; Perez-Perez, M. Efficient synthesis of *N*-3-substituted 6-aminouracil derivatives via *N*-6-[(dimethylamino)methylene] protection. *Synthesis* **2001**, *3*, 478–482.
- (27) Bickel, M. H. Pharmacology and biochemistry of N-oxide. *Pharmacol. Rev.* 1969, 21, 325–355.
- (28) Burgey, C. S.; Robinson, K. A.; Lyle, T. A.; Nantermet, P. G.; Selnick, H. G.; Isaacs, R. C. A.; Lewis, S. D.; Lucas, B. J.; Krueger, J. A.; Singh, R.; Miller-Stein, C.; White, R. B.; Wong, B.; LyleD, E. A.; Stranieri, M. T.; Cook, J. J.; McMasters, D. R.; Pellicore, J. M.; Pal, S.; Wallace, A. A.; Clayton, F. C.; Bohn, D.; Welsh, D. C.; Lynch, J. J.; Yan, Y.; Chen, Z.; Kuo, L.; Gardell, S. J.; Shafer, J. A.; Vacca, J. P. Pharmacokinetic optimization of 3-amino-6-chloropyrazinone acetamide thrombin inhibitors. Implementation of P3 pyridine N-Oxides to deliver an orally bioavailable series containing P1 N-Benzylamides. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 1353–1357.
- (29) Bell, I. M.; Erb, J. M.; Freidinger, R. M.; Gallicchio, S. N.; Guare, J. P.; Guidotti, M. T.; Halpin, R. A.; Hobbs, D. W.; Homnick, C. F.; Kuo, M. S.; Lis, E. V.; Mathre, D. J.; Michelson, S. R.; Pawluczyk, J. M.; Pettibone, D. J.; Reiss, D. R.; Vickers, S.; Williams, P. D.; Woyden, C. J. Development of orally active oxytocin Aantagonists: Studies on 1-(1-{4-[1-(2-methyl-1-oxidopyridin-3-ylmethyl)piperidin-4-ylox]-2-methoxybenzoyl}piperidin-4-yl)-1,4-dihydrobenz[d][1,3]-oxazin-2-one (L-372,662) and related pyridines. J. Med. Chem. 1998, 41, 2146–2163.
- (30) Elzein, E.; Kalla, R.; Li, X.; Perry, T.; Parkhill, E.; Palle, V.; Varkhedkar, V.; Gimbel, A.; Zeng, D.; Lustig, D.; Leung, K.; Zablocki, J. Novel 1,3-dipropyl-8-(1-heteroarylmethyl-1*H*-pyrazol-4-yl)xanthine derivatives as high affinity and selective A_{2B} adenosine receptor antagonists. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 302–306.
- (31) Cerep Diversity Profile Screening, Cerep: Paris.
- (32) Ongini, E.; Dionisotti, S.; Gessi, S.; Irenius, E.; Fredholm, B. B. Comparison of CGS 15943 and SCH 58261 as antagonists at human A₃ adenosine receptors. *Naunyn-Schmiedeberg's Arch. Pharmacol.* 1999, 359, 7–10.

JM7014815