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An Efficient One-Pot Synthesis of Pyrano- and Furoquinolines Employing 
Two Reusable Solid Acids as Heterogeneous Catalysts1
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Abstract: Two solid acids, Fe3+-K-10 montmorillonite clay and
HY-zeolite have been employed efficiently for single-step synthesis
of pyrano- or furoquinolines in high yields and high diastereoselec-
tivities by coupling of three components: anilines, benzaldehydes
and 3,4-dihydro-2H-pyran or 2,3-dihydrofuran. Both the heteroge-
neous catalysts are recoverable and recyclable.
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Pyranoquinoline derivatives are known to possess various
important biological properties such as antiallergic, anti-
inflammatory and estrogenic activities.2 Several bioactive
alkaloids contain a pyranoquinoline moiety.3 Generally
the pyranoquinolines are prepared by aza-Diels–Alder re-
actions of imines (derived from aromatic amines) with
3,4-dihydro-2H-pyran. Different Lewis acids are known
to catalyze such reactions.4 However, many of these
Lewis acids are not easily available or expensive, non-re-
usable and afford the mixture of products with unsatisfac-
tory yields. More importantly, several Lewis acids cannot
be utilized for single-step coupling of aldehydes, amines
and enol ethers because they will be decomposed or deac-
tivated by amines and water formed in the intermediate
imine formation step. This may be a reason for the limited
number of reported methods for one-pot coupling of these
three components, though various methods for multistep

coupling are known.4,5 However, many of the imines are
hygroscopic, unstable and difficult to purify and so the
process involving the preparation and purification of these
imines separately, and subsequent utilization of them for
coupling with enol ethers, are not advantageous. The
Lewis acid GdCl3, which was used earlier for one-pot
preparation of pyranoquinoline derivatives, was also not
shown to be reusable.5 Thus there is a need to develop ef-
ficient and economic processes for single step synthesis of
pyranoquinolines and related compounds.

In connection with our work on the development of novel
synthetic methodologies utilizing the solid acids such as
Fe3+-K-10 montmorillonite clay6a and HY-zeolite6b we
have recently observed that these two catalysts can effi-
ciently be employed for one-pot synthesis of pyrano- and
furoquinolines by coupling of the three components,
anilines (1), benzaldehydes (2) and 3,4-dihydro-2H-pyran
or 2,3-dihydrofuran (3) (Scheme 1).

Different anilines and benzaldehydes were treated with
3,4-dihydro-2H-pyran or 2,3-dihydrofuran to produce a
series of pyrano or furoquinolines (Table 1). Fe3+-K-10
clay catalyzed the reaction at room temperature while
HY-zeolite under reflux.7 The times required for the first
catalyst to complete the conversion were shorter (3–4 h)
than those required for the second catalyst (5–6 h). The
products (4 and 5) were obtained in high yield and high
diastereoselectivities. These were the mixture of trans-
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and cis-isomers that could be separated by column
chromatography over silica gel. The trans-isomer (4) was
the major and cis-isomer (5) minor in each conversion.
The ratio of the isomers produced in a reaction was deter-
mined by 1H NMR spectrum of the crude product and the
structures of the products were established from the spec-
tral (1H NMR and MS) data of the pure compounds.7 Pre-
viously the cycloaddition of N-benzylidiene aniline with

vinyl ethers in the presence of Fe3+-K-10 clay was
reported4c to form two products, one formed by [4+2] ad-
dition and the other by [2+2] addition. Here we could not
get any product derived by [2+2] addition of 3,4-dihydro-
2H-pyran or 2,3-dihydrofuran with the intermediate imi-
nes.

Table 1 Preparation of Pyrano- and Furoquinolines Using Solid Acids Fe3+-K-10 Clay and HY-Zeolitea 

Entry Aniline (1) Benzaldehyde (2) Olefin (3) Catalystb Time (h) Isolated yield (%) Product ratioc (4:5)

R1 R2 R3 R4 n

a H H H H 2 i 3.5 86 84:16

ii 5.0 82 87:13

b H H H OMe 2 i 4.0 90 91:09

ii 5.5 85 88:12

c H H H Cl 2 i 3.0 91 92:08

ii 5.0 86 89:11

d H H OCH2O 2 i 4.0 89 85:15

ii 5.5 83 84:16

e H H Cl Cl 2 i 3.0 92 90:10

ii 5.0 88 87:13

f H Cl H H 2 i 3.5 86 85:15

ii 5.5 84 86:14

g H Me H H 2 i 3.5 89 90:10

ii 5.0 81 87:12

h H Me H Cl 2 i 4.0 88 83:17

ii 6.0 83 79:21

i H OMe H H 2 i 4.0 85 80:20

ii 5.5 81 78:22

j Me H H H 2 i 4.0 76 74:26

ii 6.0 73 77:23

k H H H H 1 i 3.5 84 82:18

ii 5.5 79 84:16

l H H H OMe 1 i 4.0 91 89:11

ii 5.5 83 83:17

m H H H Cl 1 i 3.0 85 84:16

ii 5.0 82 87:13

n H H Cl Cl 1 i 3.0 88 89:11

ii 5.5 86 85:15

o H Me H H 1 i 3.5 87 88:12
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In the present protocol the imines generated in situ by con-
densation of anilines and benzaldehydes act as hetero-
dienes, which undergo aza-Diels–Alder reaction with 3,4-
dihydro-2H-pyran or 2,3-dihydrofuran in the presence of
Fe3+-K-10 clay or HY-zeolite to form the corresponding
pyrano- or furoquinolines. The synthesis could not be
achieved in absence of any of these catalysts.

The catalysts, Fe3+-K-10 montmorillonite clay and HY-
zeolite work under heterogeneous conditions. In recent
years, heterogeneous catalysts are gaining more impor-
tance due to environmental and economic considerations.
The first catalyst can easily be prepared8 from the readily
available and inexpensive FeCl3 and K-10 montmorillo-
nite clay while the second catalyst is commercially avail-
able.7 Both, the catalysts can safely be handled. They can
be recovered and reused for at least three times without
loosing their activity.

In conclusion, we have developed a very simple and effi-
cient method for one-step synthesis of pyrano- and furo-
quinolines by coupling of the three components, anilines,
benzaldehydes and dihydropyran or furan catalyzed by
two recyclable solid acids, Fe3+-K-10 clay and HY-zeo-
lite. The quinoline derivatives were formed in high yields
and high diastereoselectivities. The method is associated
with the benefits derived from both multicomponent cou-
pling and the utilization of heterocyclic recyclable cata-
lysts. We feel the present protocol will find important
applications for the synthesis of pyrano- and furoquino-
lines.
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dihydrofuran (0.1 mL) in MeCN or CH2Cl2 (10 mL) Fe3+-K-
10 clay or HY-zeolite (PQ Corporation, USA; 100 mg) was 
added. The mixture was stirred at r.t. with the first catalyst 
but refluxed with the second catalyst under N2 atmosphere. 
The reaction was monitored by TLC. After completion of the 
reaction, the mixture was filtered. The concentrated filtrate 
was subjected to column chromatography over silica gel and 
the column was eluted with hexane–EtOAc (20:1) to afford 
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and recycled.
All the prepared compounds are known. The spectral data of 
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ii 5.5 82 92:08

p H Me H Cl 1 i 4.0 84 80:20

ii 6.0 78 83:17

q H OMe H H 1 i 4.0 81 78:22

ii 5.5 77 79:21

r Me H H H 1 i 4.0 74 76:24

ii 6.0 71 75:25

a All the products were characterized from their spectral (1H NMR and MS) data.
b Catalyst: (i) Fe3+-K-10 clay, (ii) HY-zeolite.
c Product ratio was determined from the 1H NMR spectrum of the crude product.

Table 1 Preparation of Pyrano- and Furoquinolines Using Solid Acids Fe3+-K-10 Clay and HY-Zeolitea  (continued)

Entry Aniline (1) Benzaldehyde (2) Olefin (3) Catalystb Time (h) Isolated yield (%) Product ratioc (4:5)

R1 R2 R3 R4 n
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4b: solid, mp 146–147 °C. 1H NMR (200 MHz, CDCl3): d = 
7.32 (2 H, d, J = 8.0 Hz), 7.18 (1 H, d, J = 8.0 Hz), 7.04 (1 
H, t, J = 8.0 Hz), 6.84 (2 H, d, J = 8.0 Hz), 6.64 (1 H, t, 
J = 8.0 Hz), 6.45 (1 H, d, J = 8.0 Hz), 4.64 (1 H, d, J = 10.0 
Hz), 4.36 (1 H, d, J = 2.5 Hz), 4.06 (1 H, m), 3.97 (1 H, d, 
J = 3.0 Hz), 3.82 (3 H, s), 3.63 (1 H, t, J = 10.0 Hz), 2.02 (1 
H, m), 1.82 (1 H, m), 1.64 (1 H, m), 1.44 (1 H, m), 1.28 (1 
H, m). MS–FAB: m/z = 296 [M+ + 1].
5b: solid, mp 154–155 °C. 1H NMR (200 MHz, CDCl3): d = 
7.38 (1 H, d, J = 8.0 Hz), 7.30 (2 H, d, J = 8.0 Hz), 7.00 (1 
H, m), 6.82 (2 H, d, J = 8.0 Hz), 6.77 (1 H, t, J = 8.0 Hz), 
6.50 (1 H, d, J = 8.0 Hz), 5.26 (1 H, d, J = 3.0 Hz), 4.60 (1 
H, d, J = 3.0 Hz), 3.84 (1 H, m), 3.82 (3 H, s), 3.58 (1 H, m), 
3.22 (1 H, m), 2.04 (1 H, m), 1.58–1.30 (4 H, m). MS–FAB: 
m/z = 296 [M+ + 1].
4c: semi-solid. 1H NMR (200 MHz, CDCl3): d = 7.32 (4 H, 
s), 7.16 (1 H, d, J = 8.0 Hz), 7.04 (1 H, t, J = 8.0 Hz), 6.68 (1 
H, t, J = 8.0 Hz), 6.48 (1 H, d, J = 8.0 Hz), 4.67 (1 H, d, 
J = 10.0 Hz), 4.92 (1 H, d, J = 2.5 Hz), 4.05 (1 H, m), 3.95 
(1 H, br s), 3.68 (1 H, t, J = 10.0 Hz), 2.01 (1 H, m), 1.80 (1 
H, m), 1.63 (1 H, m), 1.44 (1 H, m), 1.22 (1 H, m). MS–FAB: 
m/z = 300 [M+ + 1].
5c: viscous. 1H NMR (200 MHz, CDCl3): d = 7.38 (1 H, d, 
J = 8.0 Hz), 7.35 (4 H, s), 7.02 (1 H, t, J = 8.0 Hz), 6.74 (1 
H, d, J = 8.0 Hz), 6.53 (1 H, d, J = 8.0 Hz), 5.24 (1 H, d, 
J = 8.0 Hz), 4.65 (1 H, d, J = 2.5 Hz), 3.72 (1 H, m), 3.55 

(1 H, m), 3.40 (1 H, m), 2.08 (1 H, m), 1.57–1.32 (4 H, m). 
MS–FAB: m/z = 300 [M+ + 1].
4d: solid, mp 152–153 °C. 1H NMR (200 MHz, CDCl3): d = 
7.18 (1 H, d, J = 8.0 Hz), 7.04 (1 H, t, J = 8.0 Hz), 6.92 (1 H, 
d, J = 2.5 Hz), 6.84–6.62 (3 H, m), 6.46 (1 H, d, J = 8.0 Hz), 
5.96 (2 H, s), 4.62 (1 H, d, J = 10.0 Hz), 4.36 (1 H, d, J = 3.5 
Hz), 4.10 (1 H, m), 3.98 (1 H, br s), 3.70 (1 H, m), 2.02 (1 H, 
m), 1.85–1.22 (4 H, m). MS–FAB: m/z = 310 [M+ + 1].
5d: solid, mp 160–161 °C. 1H NMR (200 MHz, CDCl3): d = 
7.38 (1 H, d, J = 8.0 Hz), 7.04 (1 H, t, J = 8.0 Hz), 6.92–6.76 
(4 H, m), 6.56 (1 H, d, J = 8.0 Hz), 5.96 (2 H, s), 5.24 (1 H, 
d, J = 6.0 Hz), 4.60 (1 H, d, J = 3.0 Hz), 3.78 (1 H, br s), 
3.60–3.38 (2 H, m), 2.05 (1 H, m), 1.60–1.38 (4 H, m). MS–
FAB: m/z = 310 [M+ + 1].
4m: solid, mp 147–148 °C. 1H NMR (200 MHz, CDCl3): 
d = 7.35 (4 H, s), 7.14 (1 H, d, J = 8.0 Hz), 7.05 (1 H, t, 
J = 8.0 Hz), 6.64 (1 H, d, J = 8.0 Hz), 6.42 (1 H, d, J = 8.0 
Hz), 4.58 (1 H, d, J = 5.0 Hz), 4.08 (1 H, m), 3.85–3.42 (3 H, 
m), 2.45 (1 H, m), 2.00 (1 H, m), 1.72 (1 H, m). MS–FAB: 
m/z = 286 [M+ + 1].
5m: solid, mp 152–153 °C. 1H NMR (200 MHz, CDCl3): 
d = 7.40 (1 H, d, J = 8.0 Hz), 7.36 (4 H, s), 7.05 (1 H, t, 
J = 8.0 Hz), 6.68 (1 H, t, J = 8.0 Hz), 5.25 (1 H, d, J = 8.0 
Hz), 4.65 (1 H, d, J = 3.0 Hz), 3.78 (1 H, br s), 3.62–3.40 (2 
H, m), 2.18 (1 H, m), 1.62–1.50 (2 H, m). MS–FAB: m/z = 
286 [M+ + 1].

(8) Laszlo, P.; Mathy, A. Helv. Chim. Acta 1987, 70, 557.
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