

PII: S0040-4020(96)00898-8

Facile Syntheses of α-Bromo-α-Silyl Ketones and α-Bromoacylsilanes from *tert*-Butyldimethylsilyldibromomethane and Carbonyl Compounds

Hiroshi Shinokubo, Koichiro Oshima,* and Kiitiro Utimoto*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-01, Japan

Abstract: An addition of benzaldehyde to an ethereal solution of tert-butyldimethylsilyldibromomethyllithium, derived from t-BuMe₂SiCHBr₂ and lithium diisopropylamide, provided α -bromo- α silyl ketone. The use of ketone instead of aldehyde afforded α -bromo-acylsilane via a bromo silyl epoxide intermediate. Further treatment of the α -bromo- α -silyl ketone with butyllithium afforded lithium enolate which provided β -hydroxy- α -silyl ketone upon treatment with aldehyde in ether. The enolate gave α , β -unsaturated ketone or monosilyl ether of 2-acyl-1,3-diol in THF instead of ether. The use of isopropylmagnesium bromide in place of butyllithium also resulted in a formation of the corresponding magnesium enolate. Copyright © 1996 Elsevier Science Ltd

In the last two decades, both α -silyl ketone¹ (β -ketosilane) and acylsilane² have been extensively explored in organic synthesis. In many cases, they are prepared through a multistep operation involving oxidation of the corresponding hydroxysilane. We report here a facile and non-oxidative method for formation of α -bromo- α -silyl ketones and α -bromoacylsilanes³ from *tert*-butyldimethylsilyldibromomethyllithium and carbonyl compounds. We also describe the reductive formation of enolates from α -bromo- α -silyl ketones and their aldol-type reaction with aldehydes involving the 1,3-rearrangement of a silyl group (homo-Brook rearrangement) from carbon to oxygen.⁴

We have previously reported⁵ that treatment of a THF solution of *tert*-butyldimethylsilyldihalomethyllithium with aldehyde (R¹CHO) followed by an addition of a second aldehyde (R²CHO) and HMPA gave a monosilyl ether of 1,3-diol (R¹CH(OSiMe₂-*t*-Bu)CX₂CH(OH)R²). The use of ether instead of THF as a solvent has proved to change the reaction pathway dramatically and treatment of *tert*butyldimethylsilyldibromomethyllithium (1) with aldehyde (R¹CHO) gave α -bromo- α -silyl ketone (R¹COCHBrSiMe₂-*t*-Bu). Furthermore, the reaction of 1 with ketone (R²₂CO) under the same conditions afforded α -bromoacylsilane (R²₂CBrCOSiMe₂-*t*-Bu).

Treatment of tert-butyldimethylsilyldibromomethyllithium (1), derived from t-BuMe₂SiCHBr₂ and

lithium diisopropylamide, with benzaldehyde in ether at -78 °C provided α -bromo- α -silyl ketone **3a** in 76% yield upon warming the reaction mixture to room temperature. The representative results are shown in Scheme 1. Quenching the reaction mixture at -78 °C with dilute hydrochloric acid afforded a simple adduct (PhCH(OH)CBr₂SiMe₂-t-Bu) in 77 % yield.⁵ Thus, the reaction obviously involves initial formation of adducts **2** followed by 1,2-migration of hydrogen⁶ giving α -bromo- α -silyl ketones. The *tert*-butyl-dimethylsilyl group played a critical role in the formation of α -bromo- α -silyl ketones. Thus, the reaction of trimethylsilyldibromomethyllithium with benzaldehyde gave α -bromo-acetophenone and 2,2-dibromo-1-phenyl-2-trimethylsilylethanol in 29 % and 26 % yield, respectively and no α -bromo- α -silyl ketone was detected in the reaction mixture. The formation of α -bromo-actophenone might result from desilylation of α -bromo- α -trimethylsilylacetophenone during aqueous workup. The use of *tert*-butyldimethylsilyl-dichloromethyllithium resulted in a formation of complex mixtures.

Scheme 1
t-BuMe₂SiCBr₂ + R¹CHO
$$\xrightarrow{Et_2O}_{-78^{\circ}C}$$
 R¹ \xrightarrow{H}_{Br} $\xrightarrow{-r.t.}_{-LiBr}$ R¹ \xrightarrow{O}_{H}_{H} SiMe₂-t-Bu
1
R¹ = Ph 3a : 76% R¹ = c-C₆H₁₁ 3b : 72%
R¹ = PhCH=CH 3c : 62% R¹ = t-Bu 3d : 49%
R¹ = n-C₆H₁₃ 3e : 42%

The reaction of 1 with ketone such as cyclohexanone in place of aldehyde gave α -bromoacylsilane. The representative results are shown in Scheme 2. An addition of TMEDA increased the yield of the product, for example, from 54 % to 72 % in the case of **6a**. Interestingly, the addition of TMEDA did not accelerate the 1,3-rearrangement of the silvl group from carbon to negatively charged oxygen. The effect of TMEDA is quite different from that of HMPA which does cause 1,3-rearrangement.⁵ The reaction would proceed via bromo silvl epoxide which is so unstable as to rearrange into acylsilane.^{3h} This mechanism was supported by

Scheme 2
t-BuMe_2SiCBr₂
$$\xrightarrow{R_2CO}_{Et_2O}$$
 $\xrightarrow{R}_{Br} \xrightarrow{OLi}_{Br}$ SiMe₂-t-Bu $\xrightarrow{TMEDA}_{\rightarrow r.t.}$ $\begin{bmatrix} R \\ R \\ O \\ Br \end{bmatrix}$ $\xrightarrow{SiMe_2-t-Bu}_{G}$ \xrightarrow{Ga} : R = -(CH₂)₅- 72% (54%*)
 \xrightarrow{R}_{Br} $\xrightarrow{SiMe_2-t-Bu}_{Ga}$ \xrightarrow{Ga} : R = Ph 51%
* in the absence of TMEDA

the following experiment (Scheme 3). Treatment of 1-bromo-1-trimethylsilyl-1-octene with *m*-chloroperoxybenzoic acid in dichloromethane afforded α -bromoacylsilane (*n*-C₆H₁₃CHBrCOSiMe₃) in 50% yield. In the case of aldehyde (*vide supra*), no corresponding α -bromoacylsilane could be observed. Thus, the 1,2migration of hydrogen in the adduct 2 seems to be much faster than epoxide formation.

Then we turned our attention toward the reductive formation of enolate⁷ from α -bromo- α -silyl ketone. An addition of butyllithium to an ether solution of α -bromo- α -silyl ketone **3** at -78 °C caused a lithiumbromine exchange to afford an enolate 7⁸ which was quenched with dilute hydrochloric acid to give α -silyl ketone (R¹COCH₂SiMe₂-*t*-Bu) quantitatively. The sequential treatment of the enolate **7** with aldehyde in ether followed by quenching with acetic acid yielded β -hydroxy- α -silyl ketone **9**. An addition of HMPA to the adduct **8** before quenching provided only (*E*)- α , β -unsaturated ketone **10** with high stereoselectivity in good yield. Six examples are shown below (Scheme 4).

Again, the reaction solvent played a critical role in the reaction of enolate 7 with aldehydes. In THF, the reaction of enolate 7 with aldehyde (1.1 equiv) provided (*E*)- α , β -unsaturated ketone 10 directly without an addition of HMPA (Scheme 5). For instance, the enolate 7a (R¹ = Ph) or 7b (R¹ = *c*-C₆H₁₁) gave α , β -unsaturated ketone 10a or 10d in 84% or 79% yield, respectively, upon treatment with benzaldehyde or heptanal. An addition of an excess of PhCHO⁹ to 7a gave monosilyl ether of 2-acyl-1,3-diol 12a (R¹ = R² = Ph), derived from two molecules of aldehyde, in addition to α , β -unsaturated ketone 10a. The yield of 12a

H. SHINOKUBO et al.

increased with increase of the amount of benzaldehyde employed and the use of four molar equivalents of benzaldehyde per one mol of enolate gave a mixture of **10a** and **12a** in 23% and 73% yields, respectively. Thus, the 1,3-rearrangement¹⁰ of the silyl group ($8 \rightarrow 11$) takes place readily in THF and an addition of **11** to the second molecule of aldehyde competes with elimination of *t*-BuMe₂SiOLi to give α,β -unsaturated ketone.

In these reactions, α , β -unsaturated ketone does not arise from 1,2-elimination of silanoxide (Peterson elimination) from **8**. This was confirmed by the following experiment (Scheme 6). The reaction of magnesium enolate **13** with heptanal (*vide infra*) gave a diastereomeric mixture (56/44) of β -hydroxy- α -silyl ketone **9d.** It was anticipated that Peterson-type 1,2-elimination of silanoxide would proceed in *syn* fashion with high stereospecificity to afford a mixture of (*E*)- and (*Z*)- α , β -unsaturated ketone (*E*/*Z* = 56/44). However, treatment of the diastereomeric mixture **9d** with lithium diisopropylamide provided only (*E*)- α , β -unsaturated ketone could be explained by the relative stabilities of the rotamer **A** of the intermediate enolate **11** (R¹ = *c*-C₆H₁₁, R² = *n*-C₆H₁₃), which is more stable than **B** (Figure 1).¹⁰

Treatment of α -bromo- α -silyl ketone **3** with isopropylmagnesium bromide in ether gave magnesium enolate **13** in good yields. The reaction of the magnesium enolate with aldehydes afforded β -hydroxy- α -silyl ketone **9**¹² selectively in good yields (Scheme 7). No trace of α , β -unsaturated ketone could be observed in the reaction mixture. **1**,**3**-Rearrangement of the silyl group could not take place because of the lower nucleophilicity of magnesium alkoxide compared to lithium alkoxide.

Finally, one-pot synthesis of α,β -unsaturated ketone starting from *tert*-butyldimethylsilyldibromomethyllithium (1) was conducted. An addition of aldehyde to an ethereal solution of 1 gave α -bromo- α -silyl ketone which was further converted into lithium enolate with *sec*-BuLi¹⁵ and then treated with second aldehyde and subsequently with HMPA to afford α,β -unsaturated ketone **10a** or **10b** in 59% or 57% yield, respectively (Scheme 8).

Scheme 8

$$t\text{-BuMe}_{2}\text{SiCBr}_{2} \xrightarrow[L]{i} \frac{\text{R}^{1}\text{CHO}}{-78 \text{ }^{\circ}\text{C} \rightarrow \text{r.t.}} \begin{bmatrix} 0 \\ \text{R}^{1} \xrightarrow[Br]{} \text{SiMe}_{2}\text{-}t\text{-Bu} \\ \text{Br} & 3 \end{bmatrix} \xrightarrow[2]{1} \xrightarrow[2]{3} \text{-BuLi} \xrightarrow[2]{2} \text{R}^{2}\text{CHO} \\ \xrightarrow[3]{3} \text{HMPA} & 10 \end{bmatrix} \xrightarrow[1]{2} \xrightarrow[3]{2} \text{R}^{2}\text{CHO} \xrightarrow[3]{3} \text{HMPA} \xrightarrow[3]{3}$$

Experimental

Distillation of the products was performed by the use of Kugelrohr (Büchi), and boiling points are indicated by air-bath temperature without correction. Melting points were obtained on a Yanako MP-50929

melting point apparatus and are uncorrected. ¹H NMR and ¹³C NMR spectra were taken on a Varian GEMINI 300 spectrometer, CDCl₃ was used as a solvent, and chemical shifts being given in δ with tetramethylsilane as an internal standard. IR spectra were determined on a JASCO IR-810 spectrometer. The analyses were carried out at the Elemental Analysis Center of Kyoto University. Diethyl ether was dried over a slice of sodium. Tetrahydrofuran (THF) was freshly distilled from sodium benzophenone ketyl before use.

General Procedure for the Preparation of α -Bromo- α -silyl Ketones. An ethereal solution of *tert*butyldimethyl(dibromomethyl)silane (0.29 g, 1.0 mmol) was added to a solution of lithium diisopropylamide (1.2 mmol) in ether (3 ml) at -78 °C under argon atmosphere. After being stirred for 1 h at -78 °C, benzaldehyde (0.13 g, 1.2 mmol) in Et₂O (1 ml) was added and the reaction mixture was allowed to warm to ambient temperature over 10 h with stirring. The mixture was poured into saturated aqueous ammonium chloride and extracted with hexane (20 ml × 3). The combined organic layer were dried over Na₂SO₄ and concentrated *in vacuo*. Purification by silica-gel column chromatography gave 1-bromo-1-(*tert*butyldimethylsilyl)-2-phenyl-2-ethanone (**3a**, 0.24 g) in 76% yield: Mp 55–56 °C; IR (neat) 2952, 2926, 2856, 1676, 1465, 1448, 1261, 832, 732 cm⁻¹; ¹H NMR (CDCl₃) δ -0.01 (s, 3H), 0.24 (s, 3H), 0.95 (s, 9H), 4.90 (s, 1H), 7.40–7.65 (m, 3H), 7.90 (m, 2H); ¹³C NMR (CDCl₃) δ -6.11, 5.67, 17.96, 27.03, 35.73, 128.49, 128.77, 133.37, 136.61, 196.32. Found: C, 53.37; H, 6.79%. Calcd for C₁₄H₂₁BrOSi: C, 53.67; H, 6.76%.

1-Bromo-1-(*tert*-butyldimethylsilyl)-2-cyclohexyl-2-ethanone (**3b**): Bp 85 °C (0.5 Torr); IR (neat) 2926, 2852, 1703, 1685, 1450, 1251, 1000, 840, 824 cm⁻¹; ¹H NMR (CDCl₃) δ 0.10 (s, 3H), 0.23 (s, 3H), 0.96 (s, 9H), 1.15–1.95 (m, 10H), 2.65 (tt, J = 11.0, 3.1 Hz, 1H), 3.95 (s, 1H); ¹³C NMR (CDCl₃) δ –6.10, 17.78, 25.31, 25.69, 25.93, 26.99, 28.59, 29.71, 39.25, 50.05, 209.12. Found: C, 52.58; H, 8.67%. Calcd for C₁₄H₂₇BrOSi: C, 52.65; H, 8.52%.

1-Bromo-1-(*tert*-butyldimethylsilyl)-4-phenyl-3-buten-2-one (3c): Bp 100 °C (0.5 Torr); IR (neat) 2950, 2926, 2854, 1670, 1607, 1466, 1311, 1253, 1135, 1068, 980, 839, 823, 787 cm⁻¹; ¹H NMR (CDCl₃) δ 0.16 (s, 3H), 0.28 (s, 3H), 0.97 (s, 9H), 4.05 (s, 1H), 7.08 (d, J = 15.8 Hz, 1H), 7.35–7.60 (m, 5H), 7.66 (d, J = 15.8 Hz, 1H); ¹³C NMR (CDCl₃) δ -6.37, -5.97, 18.02, 26.85, 42.10, 122.95, 128.54, 128.95, 130.74, 134.29, 143.77, 194.70. Found: C, 56.46; H, 6.90%. Calcd for C₁₆H₂₃BrOSi: C, 56.63; H, 6.83%.

1-Bromo-1-(*tert*-butyldimethylsilyl)-3,3-dimethyl-2-butanone (3d): Bp 60 °C (0.5 Torr); IR (neat) 2958, 2856, 1698, 1465, 1366, 1251, 1209, 1053, 994, 842, 823, 779 cm⁻¹; ¹H NMR (CDCl₃) δ 0.03 (s, 3H), 0.32 (s, 3H), 0.97 (s, 9H), 1.22 (s, 9H), 4.18 (s, 1H); ¹³C NMR (CDCl₃) δ -5.95, -5.74, 17.60, 26.97, 27.05, 28.84, 46.00, 212.16. Found: C, 49.40; H, 8.60%. Calcd for C₁₂H₂₅BrOSi: C, 49.14; H, 8.59%.

1-Bromo-1-(*tert*-butyldimethylsilyl)-2-octanone (3e): Bp 82 °C (0.5 Torr); IR (neat) 2928, 2856, 1693, 1467, 1253, 838, 824, 775 cm⁻¹; ¹H NMR (CDCl₃) δ 0.11 (s, 3H), 0.24 (s, 3H), 0.87 (t, J = 7.5 Hz,

3H), 0.96 (s, 9H), 1.20–1.70 (br, 8H), 2.42 (ddd, J = 17.3, 8.2, 6.6 Hz, 1H), 2.78 (ddd, J = 17.3, 8.2, 6.6 Hz, 1H), 3.86 (s, 1H); ¹³C NMR (CDCl₃) δ –6.30, –5.95, 14.02, 17.83, 22.48, 24.15, 26.82, 28.81, 31.56, 41.28, 41.84, 206.66. Found: C, 52.43; H, 9.38%. Calcd for C₁₄H₂₉BrOSi: C, 52.32; H, 9.10%.

General Procedure for the Preparation of α -Bromoacylsilanes. An ethereal solution of *tert*butyldimethyl(dibromomethyl)silane (0.29 g, 1.0 mmol) was added to a solution of lithium diisopropylamide (1.2 mmol) in ether (3 ml) at -78 °C under argon atmosphere. After being sturred for 1 h at -78 °C, cyclohexanone (0.12 g, 1.2 mmol) in Et₂O (1 ml) and TMEDA (0.14 g, 1.2 mmol) were added and the reaction mixture was allowed to warm to ambient temperature over 10 h with stirring. The mixture was poured into saturated aqueous ammonium chloride and extracted with hexane (20 ml × 3). The combined organic layer were dried over Na₂SO₄ and concentrated *in vacuo*. Purification by silica-gel column chromatography gave 1-bromocyclohexyl *tert*-butyldimethylsilyl ketone (**6a**, 0.22 g) in 72% yield: Bp 105 °C (1 Torr); IR (neat) 2928, 2854, 1633, 1464, 1448, 1249, 1112, 837, 774, 738, 674 cm⁻¹; ¹H NMR (CDCl₃) δ 0.34 (s, 6H), 0.97 (s, 9H), 1.20–1.36 (m, 1H), 1.60–1.70 (m, 3H), 1.70–1.85 (m, 4H), 2.11 (m, 2H); ¹³C NMR (CDCl₃) δ -3.45, 17.34, 22.73, 25.18, 26.95, 34.31, 79.81, 233.34. Found: C, 51.06; H, 8.44%. Calcd for C ₁₃H₂₅BrOSi: C, 51.14; H, 8.25%.

2-Bromo-1-(*tert*-butyldimethylsilyl)-2-ethyl-1-butanone (**6b**): Bp 98 °C (1 Torr); IR (neat) 2930, 2882, 2856, 1635, 1463, 1249, 1097, 1015, 936, 821, 775, 676 cm⁻¹; ¹H NMR (CDCl₃) δ 0.34 (s, 6H), 0.92 (1, *J* = 7.2 Hz, 6H), 0.97 (s, 9H), 2.00 (dq, *J* = 14.7, 7.2 Hz, 2H), 2.07 (dq, *J* = 14.7, 7.2 Hz, 2H); ¹³C NMR (CDCl₃) δ -3.42, 9.77, 17.45, 26.97, 28.72, 84.01, 235.53. Found: C, 49.37; H, 8.87%. Calcd for C₁₂H₂₅BrOSi: C, 49.14; H, 8.59%.

2-Bromo-1-(*tert*-butyldimethylsilyl)-2,2-diphenyl-1-ethanone (6c): Mp 148-149 °C; IR (neat) 1649, 1445, 1365, 1252, 1020, 834, 776, 701, 676 cm⁻¹; ¹H NMR (CDCl₃) δ –0.03 (s, 6H), 0.99 (s, 9H), 7.20–7.30 (m, 4H), 7.30–7.40 (m, 6H); ¹³C NMR (CDCl₃) δ –3.79, 17.70, 27.27, 81.02, 128.07, 128.44, 130.35, 137.70, 227.13. Found: C, 61.67; H, 6.42%. Calcd for C₂₀H₂₅BrOSi: C, 61.69; H, 6.47%.

Preparation of Lithium Enolate and its Aldol-type Reaction in THF. Under argon atmosphere, to a solution of 1-bromo-1-(*tert*-butyldimethylsilyl)-2-phenyl-2-ethanone **3a** (0.16 g, 0.5 mmol) in THF (5 ml) was added butyllithium in hexane (1.60 M, 0.34 ml, 0.55 mmol) dropwise at -78 °C. After being stirred for 30 min, benzaldehyde (0.06 g, 0.55 mmol) in THF was added and the whole reaction mixture was stirred for another 1 h. Extractive workup (saturated aqueous ammonium chloride and ethyl acetate) followed by purification by silica-gel column chromatography gave phenyl 2-phenylethenyl ketone (**10a**, 0.18 g) in 85% yield. The use of large excess (4.0 equiv) of benzaldehyde afforded 2-(1-*tert*-butyldimethylsiloxy)benzyl-3-hydroxy-1,3-diphenyl-1-propanone (**12a**, 0.16 g) in 73% yield. **12a**: (mixture of two diastereomers) IR (neat) 3466, 3084, 3055, 2952, 2926, 2854, 1655, 1598, 1450, 1363, 1253, 1206, 1066, 937, 863, 836, 777, 699, 550 cm⁻¹; Major product: ¹H NMR (CDCl₃) δ -0.36 (s, 3H), -0.23 (s, 3H), 0.51 (s, 9H), 4.11 (dd, J = 2.7, 9.7

Hz, 1H), 4.43 (dd, J = 2.7, 10.4 Hz, 1H), 4.88 (d, J = 10.4 Hz, 1H), 5.37 (d, J = 9.7 Hz. 1H), 6.95-7.75 (m. 15H); ¹³C NMR (CDCl₃) δ -5.74, -4.84, 17.69, 25.31, 60.00, 72.72, 76.50, 124.90, 126.81, 127.00, 128.02, 128.45, 128.45, 128.52, 133.12, 138.67, 142.43, 142.49. Minor one: ¹H NMR (CDCl₃) δ -0.16 (s, 3H), 0.17 (s, 3H), 0.92 (s, 9H), 4.08 (dd, J = 9.5, 3.3 Hz, 1H), 4.61 (d, J = 9.5 Hz, 1H), 5.24 (d, J = 9.1 Hz, 1H), 5.46 (dd, J = 9.1, 3.3 Hz, 1H), 6.95-7.50 (m, 15H); ¹³C NMR (CDCl₃) δ -5.21, -4.63, 18.19, 25.79, 62.04, 72.14, 74.20, 125.14, 126.70, 126.81, 127.51, 127.67, 128.02, 132.62, 137.93, 142.17, 142.98. Found: C, 75.06; H, 7.80%. Calcd for C₂₈H₃₄O₃Si: C, 75.29; H, 7.67%.

Preparation of Magnesium Enolate and its Aldol-type Reaction. Under argon atmosphere, to a solution of 1-bromo-1-(*tert*-butyldimethylsilyl)-2-phenyl-2-ethanone **3a** (0.16 g, 0.5 mmol) in ether (5 ml) was added isopropylmagnesium bromide in ether (0.98 M, 0.61 ml, 0.6 mmol) dropwise at 0 °C. After being stirred for 1 h, the resulting purple solution was cooled to -78 °C and benzaldehyde (0.06 g, 0.6 mmol) in ether was added and the whole reaction mixture was stirred for another 1 h. Extractive workup (saturated aqueous ammonium chloride and ethyl acetate) followed by purification by silica-gel column chromatography gave 2-(*tert*-butyldimethylsilyl)-3-hydroxy-1,3-diphenyl-1-propanone (**9a**, 0.13 mg, 89:11 diastereomeric mixture) in 78% yield. **9a**: IR (neat) 3430, 2952, 2926, 2854, 1636, 1597, 1449, 1339, 1251, 1202, 1051, 1002, 840, 823, 789, 697 cm⁻¹; ¹H NMR (CDCl₃) δ –0.14 (s, 0.33H), –0.05 (s, 2.67H), 0.22 (s, 0.33H), 0.32 (s, 2.67H), 0.89 (s, 8.01H), 0.91 (s, 0.99H), 2.35 (bs, 0.11H), 3.91 (d, *J* = 2.4 Hz, 0.89H), 4.02 (d, *J* = 9.3 Hz, 0.11H), 5.23 (dd, *J* = 2.4, 9.6 Hz, 0.89H), 5.36 (d, *J* = 9.6 Hz, 0.89H), 5.39 (d, *J* = 9.3 Hz, 0.11H), 7.20–7.35 (m, 6H), 7.46 (m, 1H), 7.54 (m, 2H); ¹³C NMR (CDCl₃, *threo* isomer) δ –5.81, –5.27, 17.81, 26.83, 46.66, 74.13, 124.96, 126.95, 128.09, 128.33, 128.51, 132.99, 139.33, 145.78, 207.39. Found: C, 73.83; H, 8.36%. Calcd for C₂₁H₂₈O₂Si: C, 74.07; H, 8.29%.

2-(*tert***-Butyldimethylsilyl)-3-hydroxy-1-phenyl-1-nonanone (9b, 88:12 diastereomeric mixture**): IR (neat) 3464, 2928, 2854, 1637, 1467, 1414, 1345, 1251, 1199, 1002, 822, 725, 688 cm⁻¹; ¹H NMR (CDCl₃) δ –0.13 (s, 0.36H), –0.11 (s, 2.64H), 0.20 (s, 0.36H), 0.23 (s, 2.64H), 0.84 (t, *J* = 6.3 Hz, 3H), 0.86 (s, 7.92H), 0.88 (s, 1.08H), 1.20-1.40 (m, 6H), 1.40-1.64 (m, 4H), 2.08 (d, *J* = 4.5 Hz, 0.12H), 3.640 (d, *J* = 2.4 Hz, 0.88H), 3.641 (d, *J* = 7.8 Hz, 0.12H), 3.99 (m, 0.88H), 4.30 (m, 0.12H), 4.32 (d, *J* = 10.5 Hz, 0.88H), 7.47 (m, 2H), 7.58 (m, 1H), 7.87 (m, 2H); ¹³C NMR (CDCl₃, *threo* isomer) δ –5.78, –5.15, 13.91, 17.81, 22.43, 26.56, 26.88, 29.02, 31.67, 38.98, 44.08, 73.01, 128.30, 128.76, 133.21, 139.51, 207.59. Found: C, 72.46; H, 10.40%. Calcd for C₂₁H₃₆O₂Si: C, 72.36; H, 10.41%.

2-(tert-Butyldimethylsilyl)-1-cyclohexyl-3-hydroxy-3-phenyl-1-propanone(9c,72:28diastereomeric mixture):IR (neat) 3422, 2924, 2854, 1662, 1452, 1337, 1251, 1114, 1048, 1003, 947, 839,772, 698 cm $^{-1}$;¹H NMR (CDCl₃) δ -0.05 (s, 0.84H), 0.05 (s, 2.16H), 0.22 (s, 0.84H), 0.34 (s, 2.16H), 0.98(s, 2.52H), 1.04 (s, 6.48H), 1.20-1.80 (m, 10H), 2.03 (tt, J = 11.4, 3.3 Hz, 1H), 2.23 (d, J = 2.7 Hz, 0.28H),3.07 (d, J = 1.8 Hz, 0.72H), 3.18 (d, J = 9.3 Hz, 0.28H), 5.17 (dd, J = 9.3, 2.7 Hz, 0.28H), 5.59 (d, J = 10.2

Hz, 0.72H), 7.17–7.40 (m, 5H); ¹³C NMR (CDCl₃, *threo* isomer) δ –5.68, –5.12, 17.86, 24.82, 25.48, 26.06, 26.11, 26.87, 27.38, 50.71, 52.76, 73.90, 125.09, 126.88, 128.14, 146.14, 219.83. Found: C, 72.56; H, 9.84%. Calcd for C₂₁H₃₄O₂Si: C, 72.78; H, 9.89%.

2-(*tert*-Butyldimethylsilyl)-1-cyclohexyl-3-hydroxy-1-nonanone (9d, 56:44 diastereometric mixture): IR (neat) 3458, 2926, 2854, 1665, 1466, 1451, 1251, 1145, 1096, 1003, 839, 824cm⁻¹; ¹H NMR (CDCl₃) δ –0.05 (s, 1.32H), 0.01 (s, 1.68H), 0.21 (s, 1.32H), 0.22 (s, 1.68H), 0.86 (t, J = 6.6 Hz, 3H), 0.97 (s, 9H), 1.10-2.00 (m, 20H), 2.26 (tt, J = 11.4, 3.3 Hz, 1H), 2.34 (m, 0.44H), 2.82 (d, J = 2.1 Hz, 0.56H), 2.85 (d, J = 6.9 Hz, 0.44H), 3.76 (m, 0.56H), 4.04 (m, 0.44H), 4.42 (d, J = 10.2 Hz, 0.56H); ¹³C NMR (CDCl₃, *threo* isomer) δ –5.60, –5.01, 13.93, 17.81, 22.47, 24.96, 25.70, 26.30, 26.43, 26.62, 26.85, 29.09 29.62, 31.73, 39.32, 48.07, 52.76, 72.63, 220.84. Found: C, 71.39; H, 11.69%. Calcd for C₂₁H₄₂O₂Si: C, 71.12; H, 11.94%.

General Procedure for One-pot Synthesis of α,β -Unsaturated Ketones. An ethereal solution of *tert*-butyldimethyl(dibromomethyl)silane (0.29 g, 1.0 mmol) was added to a solution of lithium diisopropylamide (1.2 mmol) in ether (3 ml) at -78 °C under argon atmosphere. After being stirred for 1 h at -78 °C, benzaldehyde (0.13 g, 1.2 mmol) in Et₂O (1 ml) was added and the reaction mixture was allowed to warm to ambient temperature over 10 h to provide **3a**. The reaction mixture was cooled to -78 °C and *sec*-butyllithium (2.5 mmol) was added. After the reaction mixture was stirred at -78 °C for 1 h, benzaldehyde (3.0 mmol) was added. The mixture was stirred for another 30 min and then HMPA (2.5 mmol) was added. The resulting mixture was stirred at -78 °C for 1 h, then at 0 °C for 10 min and poured into saturated ammonium chloride. Extractive workup followed by silica-gel column chromatography gave phenyl 2-phenylethenyl ketone (**10a**, 0.12 g) in 59% yield.

References and Notes

 (a) Colvin, E. W. Silicon Reagents in Organic Synthesis, Academic Press: London, 1988: pp. 77-79. (b) Hudrlik, P. F.; Peterson, D. Tetrahedron Lett. 1972, 1785-1786. Idem J. Am. Chem. Soc . 1975, 97, 1464-1468. (c) Utimoto, K.; Obayashi, M. Nozaki, H. J. Org. Chem. 1976, 41, 2940-2941. (d) Obayashi, M.; Utimoto, K.; Nozaki, H. Tetrahedron Lett. 1978, 1383-1386; Idem Bull. Chem. Soc. Jpn. 1979, 52, 2646-2652. (e) Hudrlik, P. F.; Misra, R. N.; Withers, G. P.; Hudrlik, A. M.; Rona, R. J.; Arcoleo, J. P. Tetrahedron Lett. 1976, 1453-1456. (f) Sato, S.; Okada, H.; Matsuda, I.; Izumi, Y. Ibid. 1984, 25, 769-770 (g) Larson, G. L.; Hernandez, D.; de Lopez-Cepero, I. M.; Torres, L. E. J. Org. Chem. 1985, 50, 5260-5267 (h) Corey, E. J.; Rücker, C. Tetrahedron Lett. 1984, 25, 4345-4348. (i) Yamamoto, Y. Ohdoi, K.; Nakatani, M.; Akiba, K. Chem Lett. 1984, 1967-1968. (j) Fürstner, A.; Kollegger, G.; Weidmann, H. J. Organomet. Chem. 1991, 414, 295-305. (k) Enders, D.; Nakai, S. Chem. Ber. 1991, 124, 219-226. (l) Enders, D.; Ward, D.; Adam, J.; Raade, G.; Angew. Chem. Int. Ed. Engl. 1996, 35, 981-984.

- For recent reviews on acylsilane, see: (a) Page, P. C. B.; Klair, S. S.; Rosenthal, S. Chem, Soc, Rev. 1990, 19, 147-195. (b) Ricci, A.; Degl'Innocent, A. Synthesis. 1989, 647-660. (c) Cirillio, P. F.; Panek, J. S. Org. Prep. Proc. Int. 1992, 24, 553-582.
- (a) Kuwajima, I.; Abe, T.; Minami, N. Chem. Lett. 1976, 993-994. (b) Nowick, J. S.; Danheiser, R. L. J. Org. Chem. 1989, 54, 2798-2802. (c) Page, P. C. B.; Rosenthal, S. Tetrahedron Lett. 1986, 27, 5421-5422; Idem Tetrahedron 1990, 46, 2573-2586. (d) Hewkin, C. T.; Jackson, R. F. W. J. Chem. Soc. Perkin Trans. I, 1991, 3103-3111. (e) Kuwajima, I.; Matsumoto, K.; Tetrahedron Lett. 1979, 20, 4095-4098. (f) Kuwajima, I.; Matsumoto, K.; Inoue, T. Chem. Lett. 1979, 41-42. (g) Kuwajima, I.; Matsumoto, K.; Sugahara, S. Ibid. 1980, 525-528. (h) Horiuchi, Y.; Taniguchi, M.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1995, 36, 5353-5356. (i) Morihata, K.; Horiuchi, Y.; Taniguchi, M.; Oshima, K.; Utimoto, K. Ibid. 1995, 36, 5555-5558.
- 4. A part of this work was published in a communication. Shinokubo, H.; K.; Oshima, K.; Utimoto, K. *Tetrahedron Lett.* **1994**, *35*, 3741-3744.
- Shinokubo, H.; Miura, K.; Oshima, K.; Utimoto, K. Tetrahedron Lett. 1993, 34, 1951-1954; Idem Tetrahedron 1996, 52, 503-514.
- Rickborn, B. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Pattenden, G. Eds.; Pergamon Press: New York, 1991; Vol. 3, Chapter 3.3 pp. 733-775. Similar 1,2-migration of hydrogen has been reported. See ref. 1d and 1e.
- 7. For a reductive formation of enolate from α -haloketone with various organometallic compounds, see: Aoki, Y.; Oshima, K.; Utimoto, K. Chem. Lett. 1995, 463-464.
- 8. A regioselective enolate formation from trimethylsilylmethyl ketones has been reported. Matsuda, I.; Okada, H.; Sato, S.; Izumi, Y. *Tetrahedron Lett.* **1984**, 25, 3879-3882.
- 9. The use of heptanal in place of benzaldehyde afforded a trace amount of the corresponding monosilyl ether of 2-acyl-1,3-diol.
- Yamamoto, K.; Tomo, Y.; Suzuki, S.; *Tetrahedron Lett.* 1980, 21, 2861-2864; Larcheveque, M.; Debal, A. J. Chem. Soc. Chem. Commun. 1981, 877-878; Larson, G. L.; de Kaifer, C. F.; Seda, R.; Torres, L. E.; Ramirez, J. R. J. Org. Chem. 1984, 49, 3385-3386.
- 11. Treatment of the diastereomeric mixture 9d with BF₃•OEt₂ also gave only (*E*)-10d in 90 % yield. The exclusive formation of (*E*)-isomer might be attributed to the isomerization of (*Z*)-isomer into (*E*)-isomer under the acidic reaction conditions.
- 12. Stereochemistry of products was determined based on the observed vicinal coupling constants for the C_{α} -C_b protons.¹⁴
- 13. For the nomenclature of threo and erythro, see: Noyori; R; Nishida, H. J. Am. Chem. Soc. 1981, 103, 2106-2108.
- House, H. O.; Crumrine. D. S.; Teranishi, A. Y.; Olmstead, H. D. J. Am. Chem. Soc. 1973, 95, 3310-3324.
- 15. Butyllithium was not so effective as sec-BuLi for the formation of enolate in one-pot procedure.

(Received in Japan 22 August 1996; accepted 27 September 1996)