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Abstract: An addition of benzaldehyde m an ethereal solution of tert-butyldimethylsilyldibromo- 
methyllithium, derived from t-BuMe2SiCI-IBr 2 and lithium diisopropylamide, provided ot-bromo-ct- 
silyl ketone. The use of ketone instead of aldehyde afforded et-bromoacylsilane via a bromo silyl 
epoxide intermediate. Further treal~aent of the ct-bromo-c~-silyl ketone with butyUithium afforded 
lithium enolate which provided ~-hydroxy-ct-silyl ketone upon treatment with aldehyde in ether. The 
enolal~ gave ct,~-uusaturated ketone or monosilyl ether of 2-acyl- 1,3-diol in THF instead of ether. The 
use of isopropylmagnesimn bromide in place of butyllithinm also resulted in a formation of the 
corresponding magnesium enolate. Copyright © 1996 Elsevier Science Ltd 

In the last two decades, both et-silyl ketone I (~-ketosilane) and acylsilane 2 have been extensively 

explored in organic synthesis. In many cases, they are prepared through a multistep operation involving 

oxidation of the corresponding hydroxysilane. We report here a facile and non-oxidative method for 

formation of ct-bromo-ct-silyl ketones and ct-bromoacylsilanes 3 from tert-butyldimethylsilyldibromo- 

methyllithium and carbonyl compounds. We also describe the reductive formation of enolates from ct-bromo- 

~t-silyl ketones and their aldol-type reaction with aldehydes involving the 1,3-rearrangement of a silyl group 

(homo-Brook rearrangement) from carbon to oxygen. 4 

We have previously reported 5 that treatment of a THF solution of tert-butyldimethylsilyl- 

dihalomethyllithium with aldehyde (R 1CHO) followed by an addition of a second aldehyde (R2CHO) and 

HMPA gave a monosilyl ether of 1,3-diol (RICH(OSiMe2-t-Bu)CX2CH(OH)R2)..  The use of ether instead 

of THF as a solvent has proved to change the reaction pathway dramatically and treatment of tert- 

butyldimethylsilyidibromomethyllithium (1) with aldehyde (RICHO) gave ct-bromo-ct-silyl ketone 

(R ICOCHBrSiMe2-t-Bu). Furthermore, the reaction of 1 with ketone (R22CO) under the same conditions 

afforded a-bromoacylsi lane (R22CBrCOSiMe2-t-Bu). 

Treatment of tert-butyldimethyisilyldibromomethyllithium (1), derived from t-BuMe2SiCHBr 2 and 
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lithium diisopropylamide, with benzaldehyde in ether at -78 °C provided ct-bromo-ct-silyl ketone 3a in 76% 

yield upon wanning the reaction mixture to room temperature. The representative results are shown in 

Scheme 1. Quenching the reaction mixture at -78  °C with dilute hydrochloric acid afforded a simple adduct 

(PhCH(OH)CBr2SiMe2-t-Bu) in 77 % yield. 5 Thus, the reaction obviously involves initial formation of 

adducts 2 followed by 1,2-migration of hydrogen 6 giving ct-bromo-ct-silyl ketones. The tert-butyl- 

dimethylsilyl group played a critical role in the formation of ct-bromo-ct-silyl ketones. Thus, the reaction of 

trimethylsilyldibromomethyllithium with benzaldehyde gave (~-bromo-acetophenone and 2,2-dibromo-1- 

phcnyl-2-trimethylsilylethanol in 29 % and 26 % yield, respectively and no (~-bromo-ct-silyl ketone was 

detected in the reaction mixture. The formation of ct-bromoacetophenone might result from desilylation of (x- 

bromo-ct-trimethylsilylacetophenone during aqueous workup. The use of tert-butyldimethylsilyl- 

dichloromethyllithium resulted in a formation of complex mixtures. 

Scheme 1 , Li O 

t-BuMe2SiCBr2+ RICHO = R 1 H ~ B ~  --r. t ._ Rl,~SiMe2_t_Bu 
1 Li Et20 -LiBr 

-78oc 2 SiMe2-t-Bu H Br 3 

R l=Ph 3a:76% R 1=c-C6Hll 3b:72% 
R I=PhCH=CH 3¢:62% R l=t-Bu 3d:49% 
R 1 = n-C6H13 3e : 42% 

The reaction of 1 with ketone such as cyclohexanone in place of aldehyde gave ct-bromoacylsilane. The 

representative results are shown in Scheme 2. An addition of TMEDA increased the yield of the product, for 

example, from 54 % to 72 % in the case of 6a. Interestingly, the addition of TMEDA did not accelerate the 

1,3-rearrangement of the silyl group from carbon to negatively charged oxygen. The eflect of TMEDA is 

quite different from that of HMPA which does cause 1,3-rearrangement. 5 The reaction would proceed via 

bromo silyl epoxide which is so unstable as to rearrange into acylsilane. 3h This mechanism was supported by 

Scheme 2 

t-BuMe2SiCBr2 R2CO ~ ROLi_~ TMEDA~ [RR O~'~B'SiMe2-t-Bu] 
1 Li Et20 R SiMe2-t-Bu --, r.t. r 5 

-78°C Br Br 4 -LiBr 

Br 8a R = -(OH2) 5- 72% (54%*) 
R~./SiMe2"t-Bu 6b " R = Et 60% 
R O g 6 6¢ " R = Ph 51% 

* in the absence of TMEDA 
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the following experiment (Scheme 3). Treatment of 1-bromo-l-tnmethylsilyl-l-octene with m-chloro- 

peroxybenzoic acid in dichloromethane afforded ct-bromoacylsilane (n-C6H13CHBrCOSiMe3) in 50% yield. 

In the case of aldehyde (vide supra), no corresponding ct-bromoacylsilane could be observed. Thus, the 1,2- 

migration of hydrogen in the adduct 2 seems to be much faster than epoxide formation. 

Scheme 3 

n.CsH~.~cSiMe3 mCPB A [ n_C6H~/kSiMe3 ] ._.1~ Br 
~ n C H , , ~ , ,S iMe3  

- 6 1 3  I I  Br CH2CI2 O Br O 50% 

Then we turned our attention toward the reductive formation of enolate 7 from ct-bromo-t~-silyl ketone. 

Ar~ a(~,diti(;n p,f butyllithium to an ether solution of ct-bromo-ct-silyl ketone 3 at -78 *C caused a lithium- 

bromine exchange to afford an enolate 78 which was quenched with dilute hydrochloric acid to give c~-silyl 

ketone (R1COCH2SiMe2-t-Bu)quantitatively. The sequential treatment of the enolate 7 with aldehyde in 

ether followed by quenching with acetic acid yielded ~-hydroxy-ct-silyl ketone 9. An addition of HMPA to 

the adduct $ before quenching provided only (E)-ct,13-unsaturated ketone 10 with high stereoselectivity tn 

good yield. Six examples are shown below (Scheme 4). 

Scheme 4 

O 

R~,JJ~SiMe2_t_Bu n-BuLi_78oc 

Br 3 
O OH 

CH3CO2H 
8 m R I ~ R  2 

SiMe2-t-Bu 

O 
8 HMPA m R I ~ R  2 

1 0  

OLi 0 OLi 
Rl , ,~SiMe2_t_Bu R2CHO ~ ! ~  ~- R1 R2 8 

7 SiMe2t_Bu 

9 a  : R 1 = R 2 = Ph 85% 

9b : R 1 = Ph R 2 = n-C6H13 82% 

1 0 a  : R ~ = R 2 = Ph 85% 
10b : R 1 = Ph R 2 = n-C6H13 80% 

10¢ : R 1 = c-C6Hll R 2 = Ph 83% 
10d : R 1 = c-C6Hll R 2 = n-C6H13 84% 

Again, the reaction solvent played a critical role in the reaction of enolate 7 with aldehydes. In THF, 

the reaction of enolate 7 with aldehyde (1.1 equiv) provided (E)-ct,~-unsaturated ketone 10 directly without 

an addition of HMPA (Scheme 5). For instance, the enolate 7a (R 1 = Ph) or 7b (R 1 _- c_C6HI 1) gave (x,l~- 

unsaturated ketone 10a or 10tl in 84% or 79% yield, respectively, upon treatment with benzaldehyde or 

heptanal. An addition of an excess of PhCHO 9 to 7a gave monosilyl ether of 2-acyl- 1,3-diol 12a (R 1 -_ R 2 = 

Ph), derived from two molecules of aldehyde, in addition to et,l~-unsaturated ketone Ilia. The yield of 12a 
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increased with increase of the amount of benzaldehyde employed and the use of four molar equivalents of 

benzaldehyde per one mol of enolate gave a mixture of 10a and 12a in 23% and 73% yields, respectively. 

Thus, the 1,3-rearrangement 10 of the silyl group (8---~11) takes place readily in THF and an addition of 11 to 

the second molecule of aldehyde competes with elimination of t-BuMe2SiOLi to give ct,l~-unsaturated 

ketone. 

Scheme 5 

OLi O OLi 
R1 ~,~SiMe2_t_Bu R2CHO R I . J ~  R 2 8 ~  

7 SiMe2_t_Bu 
- t-BuMe2SiOLi 

1 0 a 8 4 %  1 0 d : 7 9 %  

OLi OSiMe2-t-Bu 

RI~L--- '~R 2 11 

PhCHO 

O OSiMe2 -t-Bu 

P h ~  l~Ph 12a 

Ph / "OH 

In these reactions, ct,13-unsaturated ketone does not arise from 1,2-elimination of silanoxide (Peterson 

elimination) from 8. This was confirmed by the following experiment (Scheme 6). The reaction of 

magnesium enolate 13 with heptanal (vide infra) gave a diastereomeric mixture (56/44) of l~-hydroxy-ct-silyl 

ketone 9d. It was anticipated that Peterson-type 1,2-elimination of silanoxide would proceed in syn fashion 

with high stereospecificity to afford a mixture of (E)- and (Z)-ct,13-unsaturated ketone (E/Z = 56/44). 

However, treatment of the diastereomeric mixture 9d with lithium diisopropylamide provided only (E)-ct,13- 

unsaturated ketone 10d.11 Thus, stereoselective formation of (E)-et,~-unsaturated ketone could be explained 

by the relative stabilities of the rotamer A of the intermediate enolate 11 (R 1 _- c_C6H11, R2 = n-C6HI3), 

which is more stable than B (Figure 1). 10 

Scheme 6 
0 OH 

~ ~ ~ S I M e 2  n-c6H13 
-t-Bu 9d 

(threo I erythro = 56 •44) 

0 
LDA n-C6H13 
THF 
_78oc v 10d 95% Eonly 

Figure 1 t-BuMe2SiO 

LiO~ / , ~  

Favored 
A 

t-BuMe2SiO 

H _ ~ @ ~  OLi 

Disfavored B 
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Treatment of ct-bromo-ct-silyl ketone 3 with isopropylmagnesium bromide in ether gave magnesium 

enolate 13 in good yields. The reaction of the magnesium enolate with aldehydes afforded I~-hydroxy-ct-silyl 

ketone 912 selectively in good yields (Scheme 7). No trace of ct,l~-unsaturated ketone could be observed in 

the reaction mixture. 1,3-Rearrangement of the silyl group could not take place because of the lower 

nucleophilicity of magnesium alkoxide compared to lithium alkoxide. 

Scheme 7 

O OMgBr 
R 1 ~]iSiMe2_t_Bu /-PrMgBr .~- 1~SiMe2-t -Bu Et20 R 1 

Br 3 0oc 13 
O OH O _OH 

R2CHO~ R 1 R 2 + R 1 R 2 

SiMe2-t-Bu SiMe2-t-Bu 
threo-9 erythro-9 (Ret ~3) 

9a:R1 =Ph R2=ph 78% (89 / 11) 
9b :R l=ph  R2=n-C6H13 78% (88/12) 

9¢ : R 1 = c-C6Hll R 2 = Ph 75% (72/28) 
9d:Rl=c-C6Hll  R2=n-C6H13 73% (56/44) 

Finally, one-pot synthesis of ct,~-unsaturated ketone starting from tert-butyldimethylsilyldibromo- 
methyllithium (1) was conducted. An addition of aldehyde to an ethereal solution of 1 gave a-bromo-ct-silyl 

ketone which was further converted into lithium enolate with sec-BuLi15 and then treated with second 

aldehyde and subsequently with HMPA to afford ct,13-unsaturated ketone lOa or 10b in 59% or 57% yield, 

respectively (Scheme 8). 

Scheme 8 

[ R ~ "  u] 1)s-BuLl O 2 )  R2CHO ~ t-BuMe2SICBr2 R1CHO~o~__, ~ 1 SiMe2-t-B R I ~ , ~ ' , , R  2 
1 L, -7~L~,Br r.t. [ Br 3 3) HMPA 10 

10a:59% 10b:57% 10¢:56% 10d:53% 

Experimental 
Distillation of the products was performed by the use of Kugelrohr (Bttchi), and boiling points are 

indicated by air-bath temperature without correction. Melting points were obtained on a Yanako MP-50929 
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melting point apparatus and are uncorrected. 1H NMR and 13C NMR spectra were taken on a Vanan 

GEMINI 300 spectrometer, CDCI 3 was used as a solvent, and chemical shifts being given in 6 with 

tetramethylsilane as an internal standard. IR spectra were determined on a JASCO IR-810 spectrometer. The 

analyses were carried out at the Elemental Analysis Center of Kyoto University. Diethyl ether was dried over 

a slice of sodium. Tetrahydrofuran (THF) was freshly distilled from sodium benzophenone ketyl before use. 

General Procedure for the Preparation of ct-Bromo-ct-silyl Ketones. An ethereal solution of tert- 

butyldimethyl(dibromomethyl)silane (0.29 g, 1.0 retool) was added to a solution of lithium diisopropylamide 

(1.2 mmol) in ether (3 ml) at -78 °C under argon atmosphere. After being stirred for 1 h at -78 °C, 

benzaldehyde (0.13 g, 1.2 mmol) in Et20 (1 ml) was added and the reaction mixture was allowed to warm to 

ambient temperature over 10 h with stirring. The mixture was poured into saturated aqueous ammonium 

chloride and extracted with hexane (20 ml × 3). The combined organic layer were dried over Na2SO 4 and 

concentrated in vacuo. Purification by silica-gel column chromatography gave 1-bromo-l-(tert- 

butyldimethylsilyl)-2-phenyl-2-ethanone (3a, 0.24 g) in 76% yield: Mp 55-56 °C; IR (neat) 2952, 2926, 

2856, 1676, 1465, 1448, 1261,832, 732 cm -1 ; 1H NMR (CDCI3) b -0.01 (s, 3H), 0.24 (s, 3H), 0.95 (s, 9H), 

4.90 (s, 1H), 7.40-7.65 (m, 3H), 7.90 (m, 2H); 13C NMR (CDCI3) 6 -6.11, 5.67, 17.96, 27.03. 35.73, 

128.49, 128.77, 133.37, 136.61,196.32. Found: C, 53.37; H, 6.79%. Calcd for C14H21BrOSi: C, 53.67; H, 

6.76%. 

l-Bromo-l-(tert-butyldimethylsilyl)-2-cyclohexyl-2-ethanone (3b): Bp 85 °C (0.5 Tort); IR (neat) 

2926, 2852, 1703, 1685, 1450, 1251, 1000, 840, 824 cm-1; 1H NMR (CDCI3) 8 0.10 (s, 3H), 0.23 (s, 3H), 

0.96 (s, 9H), 1.15--1.95 (m, 10H), 2.65 (tt, J =  l l.0, 3.1 Hz, 1H), 3.95 (s, 1H); |3C NMR (CDCI3)b-6.10, 

17.78, 25.31, 25.69, 25.93, 26.99, 28.59, 29.71,39.25, 50.05, 209.12. Found: C, 52.58, H, 8.67%. Calcd for 

CI4H27BrOSi: C, 52.65; H, 8.52%. 

l-Bromo-l-(tert-butyldimethylsilyl)-4-phenyl-3-buten-2-one (3c): Bp 100 °C (0.5 Tort); IR (neat) 

2950, 2926, 2854, 1670, 1607, 1466, 1311, 1253, 1135, 1068, 980, 839, 823,787 c m - l ;  IH NMR (CDCI3) 6 

0.16 (s, 3H), 0.28 (s, 3H), 0.97 (s, 9H), 4.05 (s, 1H), 7.08 (d, J = 15.8 Hz, IH), 7.35-7.60 (m, 5H), 7.66 (d, J 

= 15.8 Hz, 1H); 13C NMR (CDCI3) ~ --6.37, -5.97, 18.02, 26.85, 42.10, 122.95, 128.54, 128.95, 130.74, 

134.29, 143.77, 194.70. Found: C, 56.46; H, 6.90%. Calcd for C16H23BrOSi: C, 56.63; H, 6.83%. 

l-Bromo-l-(tert-butyldimethylsilyl)-3,3-dimethyi-2-butanone (3d): Bp 60 °C (0.5 Tort); IR (neat) 

2958, 2856, 1698, 1465, 1366, 1251, 1209, 1053, 994, 842, 823,779 cm-1; 1H NMR (CDCI3) 8 0.03 (s, 3H), 

0.32 (s, 3H), 0.97 (s, 9H), 1.22 (s, 9H), 4.18 (s, IH); 13C NMR (CDCI3) ~ -5.95, -5.74, 17.60, 26.97, 27.05, 

28.84, 46.00, 212.16. Found: C, 49.40; H, 8.60%. Calcd for C 12H25BrOSi: C, 49.14; H, 8.59%. 

l-Bromo-l-(tert-butyldimethylsllyl)-2-oetanone (3e): Bp 82 °C (0.5 Torr); IR (neat) 2928, 2856, 

1693, 1467, 1253, 838, 824, 775 cm-1; 1H NMR (CDCI3) 6 0.11 (s, 3H), 0.24 (s, 3H), 0.87 (t, J = 7.5 Hz, 
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3H), 0.96 (s, 9H), 1.20-1.70 (br, 8H), 2.42 (ddd, J = 17.3, 8.2, 6.6 Hz, 1H), 2.78 (ddd, J = 17.3, 8.2, 6.6 Hz, 

1H), 3.86 (s, 1H); 13C NMR (CDCI3) 6 -6.30, -5.95, 14.02, 17.83, 22.48, 24.15, 26.82, 28.81, 31.56, 41.28, 

41.84, 206.66. Found: C, 52.43; H, 9.38%. Calcd for C 14H29BrOSi: C, 52.32; H, 9.10%. 

General Procedure for the Preparation of ct-Bromoacylsilanes. An ethereal solution of ter t -  

butyldimethyl(dibromomethyl)silane (0.29 g, 1.0 mmol) was added to a solution of lithium diisopropylamide 

(1.2 mmol) in ether (3 ml) at -78 *C under argon atmosphere. After being stirred for 1 h at -78 °C, 

cyclohexanone (0.12 g, 1.2 mmol) in Et20 (1 ml) and TMEDA (0.14 g, 1.2 retool) were added and the 

reaction mixture was allowed to warm to ambient temperature over 10 h with stirring. The mixture was 

poured into saturated aqueous ammonium chloride and extracted with hexane (20 ml × 3). The combined 

organic layer were dried over Na2SO 4 and concentrated in v a c u o .  Purification by silica-gel column 

chromatography gave 1-bromocyclohexyl tert-butyldimethylsilyl ketone (6a, 0.22 g) in 72% yield: Bp 105 

°C (1 Torr); IR (neat) 2928, 2854, 1633, 1464, 1448, 1249, 1112, 837, 774, 738, 674 cm-1; IH NMR 

(CDCI3) b 0.34 (s, 6H), 0.97 (s, 9H), 1.20-1.36 (m, 1H), 1.60-1.70 (m, 3H), 1.70-1.85 (m, 4H), 2.11 (m, 2H); 

13C NMR (CDCI3) 6 -3.45, 17.34, 22.73, 25.18, 26.95, 34.31, 79.81,233.34. Found: C, 51.06; H, 8.44%. 

Calcd lot C 13H25BrOSi: C, 51.14; H, 8.25%. 

2-Bromo-l-(tert-butyldimethylsilyl)-2-ethyl-l-butanone (6b): Bp 98 *C (1 Torr); IR (neat) 2930, 

2882, 2856, 1635, t463, 1249, 1097, 1015, 936, 821,775, 676 cm -1 ; 1H NMR (CDCI3) 6 0.34 (s, 6H), 0.92 

(t, J = 7.2 Hz, 6H), 0.97 (s, 9H), 2.00 (dq, J = 14.7, 7.2 Hz, 2H), 2.07 (dq, J = 14.7, 7.2 Hz, 2H); 13C NMR 

(CDCI 3) 6 -3.42, 9.77, 17.45, 26.97, 28.72, 84.01, 235.53. Found: C, 49.37; H, 8.87%. Calcd for 

CI2H25BrOSi: C, 49.14; H, 8.59%. 

2-Bromo-l-(tert-butyldimethylsilyl)-2,2-diphenyl-l-ethanone (6c): Mp 148-149 °C; IR (neat) 1649, 

1445, 1365, 1252, 1020, 834, 776, 701,676 cm-1; 1H NMR (CDCI3) ~ -0.03 (s, 6H), 0.99 (s, 9H), 

7.20-7.30 (m, 4H), 7.30-7.40 (m, 6H); 13C NMR (CDCI3) 6 -3.79, 17.70, 27.27, 81.02, 128.07, 128.44, 

130.35, 137.70, 227.13. Found: C, 61.67; H, 6.42%. Calcd for C20H25BrOSi: C, 61.69; H, 6.47%. 

Preparation of Lithium Enolate and its Aldol-type Reaction in THF. Under argon atmosphere, to a 

solution of 1-bromo-l-(tert-butyldimethylsilyl)-2-phenyl-2-ethanone 3a (0.16 g, 0.5 mmol) in THF (5 ml) 

was added butyllithium in hexane (1.60 M, 0.34 ml, 0.55 mmol) dropwise at -78 °C. After being stirred for 

30 rain, t~enzaldehyde (0.06 g, 0.55 mmol) in THF was added and the whole reaction mixture was stirred for 

another 1 h. Extractive workup (saturated aqueous ammonium chloride and ethyl acetate) followed by 

purification by silica-gel column chromatography gave phenyl 2-pbenylethenyl ketone (10a, 0.18 g) in 85% 

yield. The use of large excess (4.0 equiv) of benzaldehyde afforded 2-(1-tert-butyldimethylsiloxy)benzyl-3- 

hydroxy-l,3-diphenyl-l-propanone (12a, 0.16 g) in 73% yield. 12a: (mixture of two diastereomers) IR (neat) 

3466, 3084, 3055, 2952, 2926, 2854, 1655, 1598, 1450, 1363, 1253, 1206, 1066, 937, 863,836, 777, 699, 550 

cm-1; Major product: IH NMR (CDCI3) 8 -0.36 (s, 3H), -0.23 (s, 3H), 0.51 (s, 9H), 4.11 (dd, J - -  2.7, 9.7 
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Hz, 1H), 4.43 (dd, J = 2.7, 10.4 Hz, 1H), 4.88 (d, J = 10.4 Hz, 1H), 5.37 (d, J = 9.7 Hz. 1H), 6.95-7.75 (m. 

15I--I); 13C NMR (CDCI3) 8-5.74,-4.84,  17,69, 25.31, 60.00, 72.72, 76.50, 124.90, 126.81, 127.00, 128.02, 

128.45, 128.45, 128.52, 133.12, 138.67, 142.43, 142.49. Minor one: 1H NMR (CDCI3) i5 -0.16 (s, 3H), 0.17 

(s, 3H), 0.92 (s, 9H), 4.08 (dd, J = 9.5, 3.3 Hz, 1H), 4.61 (d, J = 9.5 Hz, 1H), 5.24 (d, J = 9.1 Hz, IH), 5.46 

(dd, J =  9.1, 3.3 Hz, 1H), 6.95-7.50 (m, 15H); 13C NMR (CDCI3) 8 -5.21, -4.63, 18.19, 25.79, 62.04, 72.14, 

74.20, 125.14, 126.70, 126.81,127.51,127.67, 128.02, 132.62, 137.93, 142.17, 142.98. Found: C, 75.06; H, 

7.80%. Calcd for C28H3403Si: C, 75.29; H, 7.67%. 

Preparation of Magnesium Enolate and its Aidol-type Reaction. Under argon atmosphere, to a 

solution of 1-bromo-l-(tert-butyldimethylsilyl)-2-phenyl-2-ethanone 3a (0.16 g, 0.5 mmol) in ether (5 ml) 

was added isopropylmagnesium bromide in ether (0.98 M, 0.61 ml, 0.6 mmol) dropwise at 0 *C. After being 

stirred for 1 h, the resulting purple solution was cooled to -78 *C and benzaldehyde (0.06 g, 0.6 mmol) in 

ether was added and the whole reaction mixture was stirred for another 1 h. Extractive workup (saturated 

aqueous ammonium chloride and ethyl acetate) followed by purification by silica-gel column chromatography 

gave 2-(tert-butyldimethylsilyl)-3-hydroxy-l,3-diphenyl-l-propanone (9a, 0.13 mg, 89:11 diastereomeric 

mixture) in 78% yield. 9a: IR (neat) 3430, 2952, 2926, 2854, 1636, 1597, 1449, 1339, 1251, 1202, 1051, 

1002, 840, 823,789, 697 cm-1; 1H NMR (CDCI3) i5 -0.14 (s, 0.33H), -0.05 (s, 2.67H), 0.22 (s, 0.33H), 0.32 

(s, 2.67H), 0.89 (s, 8.01H), 0.91 (s, 0.99H), 2.35 (bs, 0.11H), 3.91 (d,J = 2.4 Hz, 0.89H), 4.02 (d, J = 9.3 Hz, 

0.11H), 5.23 (dd, J =  2.4, 9.6 Hz, 0.89H), 5.36 (d, J = 9.6 Hz, 0.89H), 5.39 (d, J = 9.3 Hz, 0.11H), 7.13 (m, 

1H), 7.20-7.35 (m, 6H), 7.46 (m, 1H), 7.54 (m, 2H); 13C NMR (CDCI 3, threo isomer) 8 -5.81, -5.27, 

17.81, 26.83,46.66,74.13, 124.96, 126.95, 128.09, 128.33, 128.51, 132.99, 139.33, 145.78, 207.39. Found: 

C, 73.83; H, 8.36%. Calcd for C21H2802Si: C, 74.07; H, 8.29%. 

2-(tert-Butyldimethylsilyl)-3-hydroxy-l-phenyl-l-nonanone (9b, 88:12 diastereomeric mixture): 

IR (neat) 3464, 2928, 2854, 1637, 1467, 1414, 1345, 1251, 1199, 1002, 822, 725, 688 cm-1; IH NMR 

(CDCI3) 8 -0.13 (s, 0.36H), -0.11 (s, 2.64H), 0.20 (s, 0.36H), 0.23 (s, 2.64H), 0.84 (t, J = 6.3 Hz, 3H), 0.86 

(s, 7.92H), 0.88 (s, 1.08H), 1.20-1.40 (m, 6H), 1.40-1.64 (m, 4H), 2.08 (d, J =  4.5 Hz, 0.12H), 3.640 (d,J= 

2.4 Hz, 0.88H), 3.641 (d, J =  7.8 Hz, 0.12H), 3.99 (m, 0.88H), 4.30 (m, 0.12H), 4.32 (d, J = 10.5 Hz, 0.88H), 

7.47 (m, 2H), 7.58 (m, 1H), 7.87 (m, 2H); 13C NMR (CDCI 3, threo isomer) 8 -5.78, -5.15, 13.91, 17.81, 

22.43, 26.56, 26.88, 29.02, 31.67, 38.98, 44.08, 73.01, 128.30, 128.76, 133.21, 139.51,207.59. Found: C, 

72.46; H, 10.40%. Calcd for C21H3602Si: C, 72.36; H, 10.41%. 

2-(tert-Butyldimethylsilyi) - 1 -cyclohexyl-3-hydroxy-3-phenyl- 1 -propanone (9c, 72:28 

diastereomeric mixture): IR (neat) 3422, 2924, 2854, 1662, 1452, 1337, 1251, 1114, 1048, 1003, 947, 839, 

772, 698 cm-1; 1H NMR (CDCI3) 8 -0.05 (s, 0.84H), 0.05 (s, 2.16H), 0.22 (s, 0.84H), 0.34 (s, 2.16H), 0.98 

(s, 2.52H), 1.04 (s, 6.48H), 1.20-1.80 (m, 10H), 2.03 (tt, J = 11.4, 3.3 Hz, 1H), 2.23 (d, J = 2.7 Hz, 0.28H), 

3.07 (d,J= 1.8 Hz, 0.72H), 3.18 (d, J = 9.3 Hz, 0.28H), 5.17 (dd, J = 9.3, 2.7 Hz, 0.28H), 5.59 (d, J = 10.2 
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Hz, 0.72H), 7.17-7.40 (m, 5H); 13C NMR (CDCI 3, threo isomer) ~ -5.68, -5.12, 17.86, 24.82, 25.48, 26.06, 

26.11, 26.87, 27.38, 50.71, 52.76, 73.90, 125.09, 126.88, 128.14, 146.14, 219.83. Found: C, 72.56; H, 

9.84%. Calcd for C21H3402Si: C, 72.78; H, 9.89%. 

2-( tert-Butyldimethylsilyl)- 1 -eyclohexyl-3-hydroxy- 1 -nonanone (9d, 56:44 diastereomeric 

mixture): IR (neat)3458, 2926, 2854, 1665, 1466, 1451, 1251, 1145, 1096, 1003, 839, 824cm-1; 1H NMR 

(CDCI3) 8 -0.05 (s, 1.32H), 0.01 (s, 1.68H), 0.21 (s, 1.32H), 0.22 (s, 1.68H), 0.86 (t, J =  6.6 Hz, 3H), 0.97 (s, 

9H), 1.10-2.00 (m, 20H), 2.26 (tt, J = 11.4, 3.3 Hz, 1H), 2.34 (m, 0.44H), 2.82 (d,J = 2.1 Hz, 0.56H), 2.85 (d, 

J = 6.9 Hz, 0.44H), 3.76 (m, 0.56H), 4.04 (m, 0.44H), 4.42 (d, J = 10.2 Hz, 0.56H); 13C NMR (CDC13, 

threo isomer) ~ -5.60, -5.01, 13.93, 17.81, 22.47, 24.96, 25.70, 26.30, 26.43, 26.62, 26.85, 29.09 29.62, 

31.73, 39.32, 48.07, 52.76, 72.63,220.84. Found: C, 71.39; H, 11.69%. Calcd for C21H4202Si: C, 71.12; 

H, 11.94%. 

General Procedure for One-pot Synthesis of ~[~-Unsaturated Ketones. An ethereal solution of 

tert-butyldimethyl(dibromomethyl)silane (0.29 g, 1.0 mmol) was added to a solution of lithium 

diisopropylamide (1.2 mmol) in ether (3 ml) a t -78  °C under argon atmosphere. After being stirred for 1 h at 

-78 °C, benzaldehyde (0.13 g, 1.2 mmol) in Et20 (1 ml) was added and the reaction mixture was allowed to 

warm to ambient temperature over 10 h to provide 3a. The reaction mixture was cooled to -78 *C and sec- 

butyllithium (2.5 mmol) was added. After the reaction mixture was stirred at -78 *C for 1 h, benzaldehydc 

(3.0 retool) was added. The mixture was stirred for another 30 rain and then HMPA (2.5 mmol) was added. 

The resulting mixture was stirred at -78 °C for 1 h, then at 0 °C for 10 min and poured into saturated 

ammonium chloride. Extractive workup followed by silica-gel column chromatography gave phenyl 2- 

phenylethenyl ketone (10a, 0.12 g) in 59% yield. 
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