Accepted Manuscript

Discovery of 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine derivatives as novel adenosine A_1 and A_{2A} receptor antagonists

Rozanne Harmse, Mietha M. van der Walt, Jacobus P. Petzer, Gisella Terre'Blanche

PII: DOI: Reference:	S0960-894X(16)31134-9 http://dx.doi.org/10.1016/j.bmcl.2016.10.086 BMCL 24389
To appear in:	Bioorganic & Medicinal Chemistry Letters
Received Date: Revised Date: Accepted Date:	 September 2016 October 2016 October 2016

Please cite this article as: Harmse, R., van der Walt, M.M., Petzer, J.P., Terre'Blanche, G., Discovery of 1,3diethyl-7-methyl-8-(phenoxymethyl)-xanthine derivatives as novel adenosine A₁ and A_{2A} receptor antagonists, *Bioorganic & Medicinal Chemistry Letters* (2016), doi: http://dx.doi.org/10.1016/j.bmcl.2016.10.086

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Discovery of 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine derivatives as novel adenosine A_1 and A_{2A} receptor antagonists.

Rozanne Harmse^a, Mietha M van der Walt^b Jacobus P Petzer^{a,b} and Gisella Terre'Blanche^{a,b*}

^aPharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa ^bCentre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa

Abstract

Based on a previous report that a series of 8-(phenoxymethyl)-xanthines may be promising leads for the design of A₁ adenosine receptor antagonists, selected novel and known 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine and 1,3,7-trimethyl-8-(phenoxymethyl)-xanthine analogs were synthesized and evaluated for their A₁ and A_{2A} adenosine receptor affinity. Generally, the study compounds exhibited affinity for both the A₁ and A_{2A} adenosine receptors. Replacement of the 1,3-dimethylsubstition with a 1,3-diethyl-substition pattern increased A₁ and A_{2A} binding affinity. Overall it was found that *para*-substitution on the phenoxymethyl side-chain of the 1,3-diethyl-xanthines decreased A₁ affinity except for the 4-Br analog (**4f**) exhibiting the best A₁ affinity in the submicromolar range. On the other hand A_{2A} affinity for the 1,3-diethyl-xanthines were increased with *para*-substitution and the 4-OCH₃ (**4b**) analog showed the best A_{2A} affinity with a K_i value of 237 nM. The 1,3-diethylsubstituted analogs (**4a**, and **4f**) behaved as A₁ adenosine receptor antagonists in GTP shift assays performed with rat whole brain membranes expressing A₁ adenosine receptors. This study concludes that *para*-substituted 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine analogs represent novel A₁ and A_{2A} adenosine receptor antagonists that are appropriate for the design of therapies for neurodegenerative disorders such as Parkinson's and Alzheimer's disease.

 $Keywords: Caffeine, 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthines, 1,3,7-trimethyl-8-(phenoxymethyl)-xanthines, Adenosine A_1 and A_{2A} receptor antagonists$

*Corresponding author. Tel: +27 18 2992264; fax: +27 18 2994243; E-mail address: Gisella. Terreblanche@nwu.ac.za (G. Terre'Blanche).

The actions of adenosine may be mediated by four adenosine receptor (AR) subtypes [1], namely the A₁, A_{2A}, A_{2B} and A₃ ARs [2], all of which couple to G proteins [3]. The A₁ AR antagonists may potentially find therapeutic relevance as drug targets for numerous diseases including asthma [4], cardiovascular disorders [5], renal diseases [6] and cognitive deficits [7]. This wide range for therapeutic potential may be contributed to the wide distribution of the A1 ARs throughout the human body, eg. lungs [4], heart [8], kidneys [6] and brain [9]. The ARs mediate bronchoconstriction, inflammation, increased endothelial cell permeability, and mucin production in the lung [4], while these receptors mediate negative chronotropic, dromotropic, and inotropic effects in the heart [8] and lead to vasoconstriction, reduction of glomerular filtration rate, inhibition of renin secretion, and inhibition of neurotransmitter release after activation in the kidneys [6]. Furthermore, the A1 ARs are widely expressed throughout the human brain, including the hippocampus and prefrontal cortex that is important brain areas for cognitive function [10]. The A_1 AR antagonists depolarize postsynaptic neurons and presynaptically enhance the release of a number of neurotransmitters, e.g. acetylcholine, glutamate, serotonin and norepinephrine. Antagonists of the A1 AR have been suggested as a potential treatment of cognitive deficits in animal models [11] and this release of neurotransmitters could find application in the treatment of cognitive deficits associated with Alzheimer's disease (AD) and Parkinson' disease (PD).

The expression of A_{2A} ARs are approximately 20 times greater in the basal ganglia, compared to the rest of the brain [12], with the highest abundance found in the striatum [13,14]. Furthermore, the A_{2A} ARs are localized exclusively in the dopamine enriched areas of the brain and mediate inhibition of locomotor activity [15]. PD is a neurodegenerative disorder and are pathologically defined by neuronal loss in the substantia nigra *pars compacta* (SNpc), followed by the loss of striatal dopamine content [16]. This dopamine deficiency within the basal ganglia, leads to the characteristic PD-associated impaired motor functions [17]. For this reason it is suggested that A_{2A} AR antagonists may show promise as a novel treatment of PD-related motor symptoms [18]. Further evidence proposes that A_{2A} AR antagonists exhibit a lower risk of dyskinesia when used in conjunction with L-DOPA [18]. In addition, these antagonists may also exhibit neuroprotective properties [19,20]. Therefore, selective A_{2A} AR antagonists present an attractive non-dopaminergic target to improve the PD-related motor symptoms [18].

Xanthine derivatives represent an important class of naturally occurring (e.g. caffeine, **1**) and/or synthetic (e.g. CSC, KW-6002) compounds that consist of a fused six- and five-membered nitrogen containing ring system. Some xanthine derivatives (e.g. caffeine, CSC and KW-6002) have previously been evaluated in the treatment of AD and PD by acting as AR antagonists (Figure 1) [21,22,23]. Caffeine (**1**) is a well-known 1,3,7-trimethyl-substituted xanthine that acts as a non-selective A₁ and A_{2A} AR antagonist (A₁*K*_i = 55 μ M; A_{2A}*K*_i = 50 μ M) [24]. Substitution of caffeine at the C8 position has previously shown to result in gained A₁ and A_{2A} AR affinity. For example, 8-phenylcaffeine presented with an increased affinity for both the A₁ and A_{2A} ARs, with selectivity for the A₁ AR over the A_{2A} isoform (A₁*K*_i = 17 μ M; A_{2A}*K*_i = 27 μ M) [24]. Furthermore, C8 substitution with a phenoxymethyl side-chain has resulted in 1,3,7-trimethyl-8-(phenoxymethyl)-xanthine (**2a**, A₁*K*_i = 3.09 μ M; A_{2A}*K*_i = 2.37 μ M) [25] and displayed an approximate 17- and 21-fold enhancement towards the A₁ and A_{2A} AR affinity, respectively, when compared to caffeine (**1**). In addition, the 1,3-diethyl-substitution pattern, 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine (**4a**), lead to an approximate 63- and 26-fold increase towards A₁ and A_{2A} AR affinity (A₁*K*_i = 0.874 μ M; A_{2A}*K*_i = 1.91 μ M) [25].

Figure 1. Xanthine structures of AR antagonists bearing 1,3-dimethyl-substitution (caffeine and CSC) and 1,3-diethyl-substitution (KW-6002).

To further explore the influence of 1,3-dimethyl-substitution and gain insight into the structure activity relationships, we compared 1,3-diethyl-7-methyl-xanthine (**3**) to its 1,3-dimethyl-substitution counterpart, namely caffeine (**1**), as the 1,3-diethyl-substitution pattern is expected to enhance AR affinity as shown by previously synthesized xanthine derivatives, CSC and KW-6002 (Figure 1) [26,27]. Based on recent research suggesting that 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthines represent an interesting class of xanthine derivatives that possess affinity for the A₁ and A_{2A} ARs [25] we synthesized and compared a series of *para*-substituted 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine derivatives (**4a–f**) to their 1,3,7-trimethyl-8-(phenoxymethyl)-xanthine counterparts (**2a–f**) as potential new A₁ and/or A_{2A} AR antagonists.

The starting materials, 1,3-dimethyl- and 1,3-diethyl-5,6-diaminouracil, was prepared as reported in the literature [25,28]. The phenoxyacetic acids that were not commercially available were synthesized as previously documented [29,30,31]. Overall, the desired target compounds were synthesized as described elsewhere [25,32]. In short, 1,3-dialkyl-5,6-diaminouracil (**5**) was reacted with an appropriately substituted phenoxyacetic acid (**6**) in the presence of the dehydrating reagent, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDAC) (Scheme 1). The obtained intermediary amide was treated with aqueous NaOH (1 N) solution to yield the corresponding 1,3-dimethyl-8-phenoxymethyl-7*H*-xanthinyl or 1,3-diethyl-8-phenoxymethyl-7*H*-xanthinyl analogs [32]. These intermediary 1,3-dialkyl-8-phenoxymethyl-7*H*-xanthinyl analogs (**7**) were subsequently methylated in the presence of potassium carbonate and an excess iodomethane in order to obtain the desired 7-methylated novel test compounds (**2b**, **2c**, **4a**–**f**). The target compounds (yields of 79–90%) were purified by recrystallization from ethanol, and the structures and purities were verified by ¹H NMR, ¹³C NMR, and mass spectrometry analysis (see *Supporting Information*). The known test compounds **2a** [25], **2d–2f** [33], **3** [32,34] and **4a** [25] were prepared as described in literature.

Scheme 1: Synthetic pathway to 8-(phenoxymethyl)-xanthine analogs (2b, 2c, 4a-f). Reagents and conditions: (a) EDAC, dioxane:H₂O (1:1), room temperature; (b) NaOH (aq), reflux; (c) CH₃I, K₂CO₃, DMF.

The A1 and A2A AR affinities of all the test compounds were determined with radioligand binding experiments (ethics number NWU-0035-10-A5) as described previously [25]. The A1 AR radioligand binding assay was performed in the presence of the radioligand [³H]-8-cylcopentyl-1,3dipropylxanthine ([³H]DPCPX) with rat whole brain membranes expressing the A₁ AR [25,35]. In turn the A_{2A} AR binding affinity was measured at rat striatal membranes with 5'-N-[³H]ethylcarboxamideadenosine ([³H]NECA) as radioligand [25,36]. Selected compounds were further evaluated to assess if they act as agonists or antagonists of the A_1 AR in GTP shift assays with rat whole brain membranes in the absence and presence of 100 µM GTP [25]. The competition curves were obtained by plotting the percentage binding vs. the logarithm of the test compound's concentrations (ranging between 0 and 100 µM) by using the Prism software package (GraphPad Software Inc.). The radioligand binding assays were carried out in triplicate and the dissociation constant values (K_i) are expressed as mean \pm standard error of mean (SEM). The K_i values were calculated by using the K_d values of 0.36 nM for [³H]DPCPX at rat whole brain membranes [25,35], while 15.3 nM for [³H]NECA at rat striata membrane [25,36] were used. Furthermore, GTP shifts are calculated by dividing the K_i value of a compound reported in the presence of GTP by the K_i value obtained in the absence of GTP [37]. A compound with a calculated GTP shift of approximately 1 is considered an antagonist, in turn the presence of GTP affects the competition curve of an agonist and shifts the curve to the right [25,38]. The A_1 and A_{2A} AR affinity and GTP shift results of the test compounds are summarized in Table 1.

Table 1

The dissociation constant values (K_i values) for the binding of the test compounds to rat adenosine A_1 and A_{2A} receptors.

		O N		N R ⁸						
		ا 1, 1	2a-f	3, 4a-f						
Compd	R ⁸	A_1	A _{2A}	$A_1 + GTP^b$	GTP Shift [°]	SI^d (A _{2A} /A ₁)				
1,3,7-trimethyl-xanthine (caffeine)										
1	-H	41 ^e ; 55 ^f	$43^{\rm e}; 50^{\rm f}$	-	-	1.1				
1,3,7-trimethyl-phenoxymethyl-xanthines										
2a	$-CH_2-O-C_6H_5$	3.09 ^g	2.37 ^g	-	-	0.8				
2b	-CH ₂ -O-[4-OCH ₃ -(C ₆ H ₅)]	4.67 ± 0.39	2.40 ± 0.66	-	-	0.5				
2c	$-CH_2-O-[4-CH_3-(C_6H_5)]$	6.76 ± 1.11	3.64 ± 0.09	-	-	0.5				
2d	-CH ₂ -O-[4-F-(C ₆ H ₅)]	9.19 ± 0.90	2.57 ± 0.34	-	-	0.3				
2e	-CH ₂ -O-[4-Cl-(C ₆ H ₅)]	5.56 ± 0.69	0.94 ± 0.23	-	-	0.2				
2f	- CH ₂ -O-[4-Br-(C ₆ H ₅)]	3.69 ± 0.60	1.73 ± 0.92	-	-	0.5				
1,3,7-tri	iethyl-xanthine									
3	-H	5.61 ± 0.95	2.69 ± 0.29	-	-	0.5				
1,3-diethyl-7-methyl-phenoxymethyl-xanthines										
4 a	$-CH_2-O-C_6H_5$	0.874^{g}	1.91 ^g	0.892 ± 0.05	1	2.2				
4b	-CH ₂ -O-[4-OCH ₃ -(C ₆ H ₅)]	1.22 ± 0.20	0.237 ± 0.06	-	-	0.2				
4 c	-CH ₂ -O-[4-CH ₃ -(C ₆ H ₅)]	1.42 ± 0.08	1.30 ± 0.42	-	-	0.9				
4d	$-CH_2-O-[4-F-(C_6H_5)]$	1.23 ± 0.26	0.841 ± 0.24	-	-	0.7				
4e	-CH ₂ -O-[4-Cl-(C ₆ H ₅)]	0.974 ± 0.21	1.04 ± 0.19	-	-	1.1				

4f	$-CH_2-O-[4-Br-(C_6H_5)]$	0.264 ± 0.08	1.36 ± 0.16	$0.267\pm.030$	1	5.2				
CPA	(A ₁ agonist)	0.015 ^g	-	0.99 ^g	6.48 ^g	-				
^a All K_i values determined in triplicate and expressed as mean \pm SEM.										

^b GTP shift assay, where the 100 μ M GTP was added to the A₁ AR radioligand binding assay.

^c GTP shifts calculated by dividing the K_i in the presence of GTP by the K_i in the absence of GTP. ^d Selectivity index (SI) for the A₁ receptor isoform calculated as the ratio of K_i (A_{2A})/ K_i (A₁).

^eLiterature values obtained from reference [39].

^fLiterature values obtained from reference [24].

^gLiterature values obtained from reference [25].

Caffeine (1) is a non-selective A_1 and A_{2A} AR antagonist with beneficial effects towards both motor and non-motor symptoms associated with PD, but it is not considered as a treatment option due to its poor A_1 and A_{2A} AR binding affinities ($A_1K_i = 41-55 \ \mu$ M; $A_{2A}K_i = 43-50 \ \mu$ M) [24,40]. Previous research [25] showed that substitution at position C8 of caffeine (1) with a phenoxymethyl side chain (2a) improved affinity for both A_1 and A_{2A} AR ($A_1K_i = 3.09 \ \mu$ M; $A_{2A}K_i = 2.37 \ \mu$ M)(Table 1, Figure 2). Furthermore, the current study investigated the influence of *para*-substitution on compound 2a. Overall *para*-substitution seemed to decrease affinity for A_1 AR as follow: 2f (4-Br) > 2b (4-OCH₃) > 2e (4-Cl) > 2c (4-CH₃) > 2d (4-F). *Para*-substitution only slightly decreased A_{2A} AR affinity (2b, 2c, 2d) with the exception of compound 2e (4-Cl) and 2f (4-Br) where a slight increase was observed: 2e (4-Cl) > 2f (4-Br) > 2b (4-OCH₃) > 2d (4F) > 2c (4-CH₃) (Table 1).

The influence of the 1,3-diethyl-substitution pattern was investigated by comparing caffeine (1,3-dimethyl-substitution, **1**) to compound **3** (1,3-diethyl-substitution). 1,3-Diethyl-substitution improved affinity for rat A₁ and A_{2A} ARs, with K_i values in the low micromolar range (A₁ K_i = 5.61 µM; A_{2A} K_i = 2.69 µM) and a slight selectivity towards the A_{2A} AR isoform was observed. Thus, AR affinity seems to be governed by replacement of the 1,3-dimethyl-substitution with a 1,3-diethyl-substitution pattern, which support previous findings that 1,3-diethyl-substitution compared to 1,3-dimethyl-substitution enhances A₁/A_{2A} AR affinity [25,40].

Furthermore, C8 substitution of compound **3** (1,3-diethyl-7-methyl-xanthine) with a phenoxymethyl side-chain, yielded 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine (**4a**), which showed the same trend as its counterpart caffeine (**1**). Compared to compound **3**, the 8-(phenoxymethyl)-xanthine analog **4a** showed a 6-fold enhancement in A₁ AR affinity ($A_1K_i = 0.892 \mu$ M) and a slight increase (1.4 fold) in A_{2A} AR affinity ($A_{2A}K_i = 1.91 \mu$ M) [25]. In order to further investigate the A₁/A_{2A} AR structure-activity relationships (SARs) of the 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine scaffold, a number *para*-substituted 1,3-diethyl-7-methyl-phenoxymethyl-xanthine analogs were synthesized (**4b**, **4c**, **4d**, **4e**, **4f**) to compare with the 1,3,7-trimethyl-xanthine analogs (**2b**, **2c**, **2d**, **2e**, **2f**) (Table 1).

Generally *para*-substitution on the 1,3-diethyl-7-methyl-xanthine analogs (**4a**–**f**) showed the same pattern as the 1,3,7-trimethyl-xanthine analogs on A₁ AR affinity. *Para*-substitution decreased A₁ AR affinity with the exception of compound **4f** (4-Br) which showed an increase in A₁ AR affinity with a submicromolar K_i value of 264 nM. Affinity for the A₁ AR was in the following order: **4f** (4-Br) > **4e** (4-Cl) > **4b** (4-OCH₃) > **4d** (4-F) > **4c** (4-CH₃). In contrast to the 1,3,7-trimethyl analogs, *para*substitution to the 1,3-diethyl analogs increased A_{2A} AR affinity overall with compound **4b** showing an 8-fold improved A_{2A} AR affinity (**4a** vs. **4b**) with a submicromolar K_i value of 237 nM. The order

of A_{2A} binding affinity for the 1,3-diethyl-analogs (4a–4f) may be summarized as follow: 4b (4-OCH₃) > 4d (4-F) > 4e (4-Cl) > 4c (CH₃) > 4f (4-Br) > 4a (4-H).

Comparing the 1,3,7-trimethyl-phenoxymethyl-xanthines to their counterparts, 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthines (1 vs 3; 2a vs 4a; 2b vs 4b; 2c vs 4c; 2d vs 4d; 2e vs 4e; 2f vs 4f), we found an overall increase in both the A_1 and A_{2A} affinity (Table 1), thus concluding that AR affinity may be governed by 1,3-diethyl-substitution at the xanthine core (Figure 2).

Figure 2: A general depiction showing the influence of 1,3-diethyl-substitution and C8phenoxymethyl-substitution at the xanthine core on the A_1 and A_{2A} AR affinity.

In order to demonstrate if the two compounds possessing the highest A_1 AR binding affinity (**4a** and **4f**) acted as antagonists or agonists, GTP shift experiments were performed. Compounds **4a** and **4f** showed no significant shifts of the binding curves in the presence of GTP and these compounds may be considered as antagonists of the A_1 AR (Table 1, Figure 3).

Figure 3. The binding curves of compounds CPA (reference agonist) and **4a** (test compound), indicating their A₁ AR agonist/antagonistic action as determined via GTP shift assays (with and without 100 μ M GTP) in rat whole brain membranes expressing A₁ ARs with [³H]DPCPX as radioligand. (A) GTP shift of 6.48 calculated for the A₁ AR agonist CPA [25]. (B) GTP shift of 1.2 calculated for the A₁ AR antagonist **4a**.

The current study shows that the novel 8-(phenoxymethyl)-xanthines (**2b**, **2c**, **4b–f**) as well as the previously synthesized 8-(phenoxymethyl)-xanthine derivatives (**2d–f**) exhibited potential as potent AR antagonists with K_i values in the low micromolar to nanomolar range ($A_1K_i = 6.76 - 0.264 \mu M$; $A_{2A}K_i = 2.40 - 0.237 \mu M$). Replacement of the 1,3-dimethyl-substition with a 1,3-diethyl-pattern is important for increased A_1 and A_{2A} binding affinity. Overall it was found that *para*-substitution on the phenoxymethyl side-chain decreased A_1 affinity except for the 4-Br (**4f**) analog which exhibited the

best and enhanced A_1 affinity. On the other hand A_{2A} affinity was increased with *para*-substitution and compound **4b** showed the best A_{2A} affinity. Compounds **4a** and **4f** was characterized as antagonists of the A_1 AR and due to the structural similarity of the test compounds it is reasonable to assume that the 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine (**4b–f**) and 1,3,7-trimethyl-8-(phenoxymethyl)-xanthine (**2b–e**) derivatives may act as A_1 AR antagonists. In conclusion, compounds **4b** and **4f** was found to possess the highest A_{2A} and A_1 AR binding affinities respectively, among the investigated compounds and therefore these 8-(phenoxymethyl)-xanthine analogs are ideal drug candidates for future *in vivo* investigation as adenosine receptor antagonists in neurodegenerative disorders, such as AD and PD.

Acknowledgements

We are grateful to Dr. J. Jordaan and Mr. A. Joubert of the SASOL Centre for Chemistry, North-West University, for recording the NMR and MS spectra, respectively. We are also thankful to Prof. J. du Preez for HPLC analysis. The financial assistance of the North-West University, the South African Medical Research Council and the National Research Foundation towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the authors and are not necessarily to be attributed to the NRF.

References

1.Sattin, A.; Rall, T.W. Mol. Pharmacol. 1970, 6, 13.

2. Fredholm, B.B.; Abbracchio, M.P.; Burnstock, G.; Daly, J.W.; Harden, T.K.; Jacobson, K.A.; Legg, P.; Williams, M. *Pharmacol. Rev.* **1994**, 46, 143.

3. Ralevic, V.; Burnstock, G. Pharmacol. Rev. 1998, 50, 413.

- 4. Brown, R.A.; Spina, D.; Page, C.P. Br. J. Pharmacol. 2008, 153, S446.
- 5. Shah, R.H.; Frishman, W.H. Cardiol. Rev. 2009, 17, 125.

6. Vallon, V.; Osswald, H. Handb. Exp. Pharmacol. 2009, 193, 443.

7. Suzuki, F.; Shimada, J.; Shiozaki, S.; Ichikawa, S.; Ishii, A.; Nakamura, J.; Nonaka, H.; Kobayashi, H.; Fuse, E. J. Med. Chem. 1993, 36, 2508.

8. Fredholm, B.B.; IJzerman, A.P.; Jacobson, K.A.; Klotz, K.N.; Linden, J. Pharmacol. Rev. 2001, 53, 527.

9. Fastbom, J.; Pazos, A.; Probst, A.; Palacios, J.M. Neurosci. 1987, 22, 827.

10. Onodera, H.; Kogure, K. Brain Res. 1988, 458, 212.

11. Maemoto, T.; Tada, M.; Mihara, T.; Ueyama, N.; Matsuoka, H.; Harada, K.; Yamaji, T.; Shirakawa, K.; Kuroda, S.; Akahane, A.; Iwashita, A.; Matsuoka, N.; Mutoh, S. *J. Pharmacol. Sci.* **2004**, 96, 42.

12. Yuzlenko, O.; Kiec-Kononowicz, K. Curr. Med. Chem. 2006, 13, 3609.

13. Fink, J.S.; Weaver, D.R.; Rivkees, S.A.; Peterfreund, R.A.; Pollack, A.E.; Adler, E.M.; Reppert, S.M. *Mol. Brain Res.* **1992**, 14, 186.

14. Svenningsson, P.; Le Moine, C.; Kull, B.; Sunahara, R.; Bloch, B.; Fredholm, B.B. *Neurosci*. **1997**, 80, 1171.

15. Ferre, S.; Von Euler, G.; Johansson, B.; Fredholm, B.B.; Fuxe, K. *Proc. Natl. Acad. Sci. U.S.A.* **1991**, 88, 7238.

16. Dexter, D.T.; Jenner, P. Free Radic. Biol. Med. 2013, 62, 132.

17. Kalia, L.V.; Lang, A.E. Lancet. 2015, 386, 896.

18. Morelli, M.; Blandini, F.; Simola, N.; Hauser, R.A. Park. Dis. 2012, 2012, 489853.

19. Dall'Igna, O.P.; Porciúncula, L.O.; Souza, D.O.; Cunha, R.A.; Lara, D.R. Br. J. Pharmacol. 2003, 138, 1207.

20. Ikeda, K.; Kurokawa, M.; Aoyama, S.; Kuwana, Y. J. Neurochem. 2002, 80, 262.

21. Arendash, G.W.; Cao, C. J. Alzheimers Dis. 2010, 20, S117.

22. Postuma, R.B.; Lang, A.E.; Munhoz, R.P.; Charland, K.; Pelletier, A.; Moscovich, M.; Filla, L.; Zanatta, D.; Romenets, S.R.; Altman, R.; Chuang, R.; Shah, B. *Neurol.* **2012**, 79, 651.

23. Cunha, R.A. Purin, Signal. 2005, 1, 111.

24. Daly, J.W.; Padgett, W.; Shamim, M.T.; Butts-Lamb, P.; Waters, J. J. Med. Chem. 1985, 28, 487.

25. Van der Walt, M.M.; Terre'Blanche, G. Bioorg. Med. Chem. 2015, 23, 6641.

26. Jacobson, K.A.; Gallo-Rodriguez, C.; Melman, N.; Fischer, B.; Maillard, M.; Van Bergen, A.; Van Galen, P.J.; Karton, Y. J. Med. Chem. **1993**, 36, 1333.

27. Muller, C.E.; Jacobson, K.A. Biochim. Biopohys. Acta. 2011, 1808, 1290.

28. Blicke, F.F. Godt, H.C. J. Am. Chem. Soc. 1954, 76, 2798.

29. G. Zhao, T. Yu, R. Wang, X. Wang, Y. Jing, Bioorg. Med. Chem. 13 (2005) 4056-62.

30. Koelsch, C.F. J. Am. Chem. Soc. 1931, 53, 304.

31. Buckles, R.E.; Wawzonek, S. J. Chem. Educ. 1948, 25, 514.

32. Van der Walt, M.M.; Terre'Blanche, G.; Petzer, A.; Lourens, A.C.; Petzer, J.P. *Bioorg Chem.* **2013**, 49, 49.

33. Okaecwe, T.; Swanepoel, A.J.; Petzer, A.; Bergh, J.J.; Petzer, J.P. *Bioorg Med Chem.* **2012**, 20, 4336.

34. Connell,R.; Goldmann, S.; Muller, U.; Lohmer, S.; Bischoff, H.; Denzer, D.; Grutzmann, R.; Wohlfeil, S. U. S. Patent US5714494 A, **1998**

35. Bruns, R.F.; Fergus, J.H.; Badger, E.W.; Bristol, J.A.; Santay, L.A.; Hartman, J.D.; Hays, S.J.; Huang, C.C. *Naunyn-Schmiedeberg's Arch. Pharmacol.***1987**, 335, 59.

36. Bruns, R.F.; Lu, G.H.; Pugsley, T.A. Mol. Pharmacol. 1986, 29, 331.

37. Van der Wenden, E.M.; Hartog-Witte, H.R.; Roelen, H.C.P.F.; Von Frijtag Drabbe Kunzel, J.K.; Pirovano, I.M.; Mathot, R.A.A.; Danhof, M.; Van Aerschot, A.; Lidaks, J.M.; Ijzerman, A.P.; Soudijn, W. *Eur. J. Pharmacol.-Mol. Pharmacol. Sect.* **1995**, 290, 189.

38. Gutschow, M.; Schlenk, M.; Gab, J.; Paskaleva, M.; Wassam Alnouri, M.; Scolari, S.; Iqbal, J.; Muller, C.E. *J.Med. Chem.* **2012**, 55, 3331.

39. Muller, C.E.; Geis, U.; Hipp, J.; Schobert, U.; Frobenius, W.; Pawłowski, M.; Suzuki, F.; Sandoval-Ramirez, J. J. Med. Chem. **1997**, 40, 4396.

40. Shimada, J. Koike, N.; Nonaka, H.; Shiozaki, S.; Yanagawa, K.; Kanda, T.; Kobayashi, H.; Ichimura, M.; Nakamura, J.; Kase, H.; Suzuki, F. *Bioorg. Med. Chem. Lett.* **1997**, 18, 2349.

Discovery of 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine derivatives as novel adenosine A_1 and A_{2A} receptor antagonists

R Harmse, MM van der Walt JP Petzer and G Terre'Blanche

Graphical abstract 0 VS OCH₃ OCH₃ 0 $A_{2A}K = 2.40 \ \mu M$ A_{2A}*K*; = 0.237 μΜ MP

Discovery of 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine derivatives as novel adenosine A1 and A2A receptor antagonists.

R Harmse, MM van der Walt JP Petzer and G Terre'Blanche

Highlights:

- A1 receptors are considered drug targets for Alzheimer's and Parkinson's disease.
- A_{2A} receptors are considered drug targets for Alzheimer's and Parkinson's disease.
- Novel 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthines were synthesized.
- 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthines possess A1 and A2A affinity.