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Poly(ADP-ribose)polymerase-1 (PARP-1) enzyme is involved in the repair of DNA damages made by cer-
tain anticancer agents. It is suggested that PARP-1 inhibitors potentiate the cytotoxic effects and circum-
vent the resistance of DNA-modifying anticancer agents such as cisplatin. In this study, we conducted
virtual screening of Korea Chemical Bank database targeting PARP-1 and identified several potent
PARP-1 inhibitors with submicromolar IC50 values (77–79 nM). We then examined the chemosensitiza-
tion of cisplatin by pre-treatment of PARP-1 inhibitors in cisplatin-resistant human gastric cancer cells.
Our results show that PARP-1 inhibitors suppress the formation of poly(ADP-ribose) and enhance the
cytotoxicity of cisplatin.

� 2013 Elsevier Ltd. All rights reserved.
Poly(ADP-ribose) polymerase-1 (PARP-1) is one of the most
abundant nuclear enzymes in the eukaryote and functions as a
DNA damage sensor and signaling molecule binding to both single-
and double-stranded DNA breaks. Upon DNA damage, PARP-1 is
activated and binds to DNA breaks, which catalyses the poly(-
ADP-ribosyl)ation reactions whereby ADP-riboses are transferred
from nicotinamide dinucleotide (NAD+) to glutamic and less com-
monly to aspartic and lysine residues in PARP-1 itself and their
substrates including histones. Accumulation of negative charges
on PARP-1 and histones results in a repulsion force and subsequent
dissociation of these components from DNA. The resultant chroma-
tin relaxation facilitates for DNA damage repair.1–4 Binding of
PARP-1 to single strand breaks (SSBs) recruits components of
DNA damage repair pathways such as X-ray repair cross comple-
menting protein 1 (XRCC1) and protects them from converting into
double strand breaks (DSBs).1,5 In DSBs repair, the role of PARP-1
has been revealed through the identification of PARP-1-dependent
alternative non-homologous end joining (NHEJ) pathway.6–9 How-
ever, in response to genotoxic agents, cells express different behav-
iors dependent on stimulus intensity which triggers PARP-1
activity. PARP-1 activation by mild to moderate genotoxic stimuli
facilitates DNA repair. Thus cells survive without the risk of passing
mutated genes. More severe DNA damage induces apoptosis in
which caspase inactivates PARP-1, subsequently eliminating cells
with severe DNA damage. However, over-activation of PARP-1 by
excessive DNA damage leads to depletion of NAD+ and ATP which
prevents apoptotic cell death. Under this condition, the inhibition
of PARP-1 preserves NAD+ and ATP, therefore allow cells either to
function normally or die via apoptotic pathway.10 Based on these
observations, PARP-1 inhibitors have been suggested in single or
combination therapy of various diseases.11–18

Formation of cisplatin–DNA adducts which trigger different
downstream signaling pathways is the main cause for cytotoxic ef-
fect of cisplatin.19 Interestingly, PARP-1 showed high affinity to
the most common 1,2-d(GpG) and this affinity decreases upon auto-
modification which implicates the role of PARP-1 in repair of cis-
platin-induced DNA damage.20,21 Therefore, combination between
PARP-1 inhibitor and cisplatin enhances cytotoxicity effect of cis-
platin which has been demonstrated by recent studies.22–29 In this
study, we first reported chemosensitizing effect of PARP-1 inhibitors
on long-term cisplatin-resistant gastric cancer cells.

PARP-1 consists of three main domains: the N-terminal DNA
binding domain, the auto-modification domain and the C-terminal
catalytic domains. Most of PARP-1 inhibitors imitate interaction
between PARP-1 catalytic domain with its substrate, NAD+. Early
PARP-1 inhibitors were analogues of 3-amino benzamide because
it was observed that the benzamide moiety was crucial for the spe-
cific binding to the enzymatic site, forming three key hydrogen
bonds to the enzyme. From observations that binding affinity
would be significantly increased when the carboxamide group,
which is normally free to rotate, was restricted into lactam, many
classes of PARP-1 inhibitors have been discovered such as amino-
ethyl pyrrolo dihydroisoquinolonone, tricyclic quinoxalinone,
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Figure 1. (a) Requirements for PARP-1 inhibitors. (b) Pharmacophore query.
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PARP-1 inhibitors identified from Korean Chemical Bank
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Figure 2. (a) FlexX-docked pose45 of D31 and D36 into active site of PARP-1. FR257517 (yellow) in the X-ray crystal structure of PARP-1 (PDB ID: 1UK0) are showed for
comparison. Hydrogen bonding interaction between D31 (atom type) and D36 (orange) are represented in yellow dotted lines. (b) Lipophilic potential surface map of the
catalytic site pocket of PARP-1 is demonstrated in the docking model of D31 and D36. Lipophilicity increases from blue (hydrophilic) to brown (lipophilic).
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quinazolinone, phthalazinone, benzimidazole, indole, and isoquin-
oline derivatives.35–43 Analysis of different classes of PARP-1 inhib-
itors had suggested three structural features which must be taken
into design of PARP-1 inhibitors: (i) electron-rich aromatic ring, (ii)
a non-cleavable bond in the 3 position relative to carboxamide
group, (iii) carboxamide moiety which is free to rotate or restricted
to ring system.2 Based on the model, we created a pharmacophore
query (Fig. 1b) in which the quinazolinone core makes a sand-
wiched hydrophobic interaction, including p–p interaction with
the phenyl ring of tyrosine residues Tyr907 and CH–p interaction
with Cb of Tyr869, the oxygen of carbonyl group will form hydro-
gen bonds with Ser904Oc and Gly863NH whereas NH moiety
forms hydrogen bond with Gly863C@O. The side chain consists
of at least two carbon units allows the R group to reach the deep
pocket located in the auto-modification domain of PARP-1. The
pharmacophore-based virtual screening was performed against
Korea Chemical Bank (http://www.chembank.org/) chemical data-
base containing about 5 million chemicals using the Unity program
in Sybyl 8.1. Only 27 compounds satisfied the pharmacophore
query (Fig. 1b), and they were subjected to PARP-1 inhibitory as-
say.34 Seven hit compounds were identified and the two most po-
tent compounds showed nanomolar IC50 values (Table 1).
However, these two compounds, D31 and D36, were registered
for patent by KuDo pharmaceutical company for PARP-1 inhibitory
activity. The other compounds except D30, have not been patented
but they have already been reported in the literatures.40–43

Drug resistance is one of the greatest obstacles in cancer ther-
apy. Due to their ability to transform necrotic cell death into apop-
totic cell death, PARP-1 inhibitors enhance the effect of different
DNA-alkylating agents such as topoisomerase I inhibitors, doxoru-
bicin, cisplatin, oxaliplatin, gemcitabine, etc.24–31 To examine
whether PARP-1 inhibitors enhance the effect of cisplatin in resis-
tant cell lines, we conducted chemosensitizing experiments of
PARP-1 inhibitor against cisplatin-resistant cell line. For this exper-
iment, cisplatin-resistant human gastric cancer cell line (YCC-3/D)
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Table 2
IC50 values of cisplatin against YCC-3 versus YCC-3/D after a 36-h treatment46

Cell line IC50 (lg/mL) RF

YCC-3 12.3 2.137
YCC-3/D 26.29

Figure 5. Western blot50 with PAR antibodies showing the reduction of PAR
formation by PARP-1 inhibitors in YCC-3/D cells. The PARP-1 antibody detects two
bands, 113 kDa PARP-1 and 89 kDa apoptosis-induced cleavage fragment of PARP-1.

2644 T. V. T. Le et al. / Bioorg. Med. Chem. Lett. 23 (2013) 2642–2646
was established by treating parent cell line (YCC-3) with cisplatin
0.5 lg/mL for 18 months and then increasing cisplatin concentra-
tion at each 0.5 lg/mL increment and fixed at 2.5 lg/mL for an-
other 6 months. Dose-dependent analysis against cisplatin of
YCC-3/D showed that the YCC-3/D was less sensitive to cisplatin
comparable to the parent cell line YCC-3 with RF (resistance factor)
value around 2 (RF value26 was calculated by ratio between IC50

value of YCC-3/D and IC50 value of YCC-3 against cisplatin) (Ta-
ble 2). PARP-1 inhibitor D31 and D36 were re-synthesized for che-
mo-sensitization experiments (see Supplementary data for the
details of synthetic methods and structural characterization of
compounds). The treatment of D31 or D36 alone was not cytotoxic
in YCC-3/D. The cytotoxicity IC50 values of D31 and D36 against
YCC-3/D are above 200 lM and around 100 lM (Fig. 3). Therefore,
the concentration of 50 lM was chosen for the following chemo-
sensitization experiments. Pre-treatment of 50 lM PARP-1 inhibi-
tors, D31 and D36, significantly decreased IC50 values of cisplatin,
from 26.29 to 17.14 lg/mL and 24.59–15.19 lg/mL, respectively,
in YCC-3/D cells (Fig. 4). In contrast, no significant sensitization ef-
fects were obtained by pre-treatment of PARP-1 inhibitors into the
parent YCC-3 cells (Supplementary data). We also tried co-treat-
ment of the same concentration of D31 and D36 with cisplatin,
Figure 3. Cytotoxic effect of PARP-1 inhibitors against cisplatin-resistant human gastric c
PARP-1 inhibitors for 36 h.

Figure 4. Chemosensitizing effect47 of PARP-1 inhibitors, D31 and D36 against YCC-3/D.
cisplatin for another 36 h to determine IC50 values.
but it did not improve the cytotoxicity of cisplatin in YCC-3/D cells.
To verify whether D31 and D36 inhibit the PARP-1 enzymatic
activity in YCC-3/D cells, Western blot analysis was conducted. In
the Western blot (Fig. 5), the cleavage of PARP-1 into 89-kD and
24-kD fragments by caspase-3 was detected in YCC-3/D cells,
which is a characteristic of apoptosis.48,49 In response to cisplatin
treatment, PARP-1 is activated and results in the synthesis of
poly(ADP-ribose) polymer (PAR) on acceptor proteins.1–4 Our
results revealed the decrease in PAR formation in the presence of
PARP-1 inhibitors, D31 and D36, in YCC-3/D cells.

In summary, we reported here an identification of potent
PARP-1 inhibitors through pharmacophore-based virtual screening
of Korean Chemical Database. The two most potent PARP-1 inhibi-
tors, D31 and D36, effectively improved the sensitivity of
ancer cell line YCC-3/D.46 IC50 values were determined after exposure of YCC-3/D to

YCC-3/D cells were pre-treated with PARP-1 inhibitors for 8 h, and then treated with
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cisplatin-resistant human gastric cancer cells to cisplatin by inhibit-
ing PARP-1 catalytic activity.
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monoclonal antibody to human PARP-1 (BD Biosciences, Becton Dickinson
Korea), 1:1000-diluted PAR antibody (Trevigen, Kormed Corp.), and beta actin
(Abcam, Inc.) in TBST. The blot was washed three times for 10 min each time
with TBST. The membrane was incubated for 1 h with peroxidase-conjugated
anti-mouse IgG whole antibody (Amersharm Bio). Then, the blot was washed
three times for 10 min each time with TBST. Protein was detected using an
enhanced chemiluminescence Western blot analysis system (Amersharm Bio).
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