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Graphic abstract:  

Anthracene-based bis-imidazolium salts 1-3 have been prepared. The recognition of 2 

(or 3) for 2,4-dinitrophenylhydrazine was investigated.  
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Abstract 

Three anthracene-based bis-imidazolium salts 1,8-bis[2’-(N-R-imidazoliumyl) 

acetamido]anthracene 2X (1: R = nBu, X = Cl-; 2: R = nBu, X = PF6
-; 3: R = Et, X = 

PF6
-) were prepared. The structure of 1 was demonstrated by X-ray analysis. The 

selective recognition of 2 (or 3) for some aromatic compounds (toluene, 

chlorobenzene, phenylamine, phenol, anisole, benzaldehyde, acetophenone, 

nitrobenzene, m-dinitrobenzene, 2,4-dinitrotoluene, 2,4-dinitrophenylhydrazine 

(DNP), trinitrophenol, o-nitrophenol, p-nitrotoluene) was investigated through 

fluorescence, ultraviolet, 1H NMR, HRMS and IR spectra at 25 ˚C. Compounds 2 (or 

3) showed good selective recognition ability for DNP, and they could effectively 

distinguish DNP from other aromatic compounds. The association constants and 

detection limits of 2 and 3 were similar, which displayed sizes of side chains (nBu for 

2 and Et for 3) had no remarkable effect on the recognition of DNP.  

 

Keywords: bis-imidazolium; fluorescence; recognition; 2,4-dinitrophenylhydrazine 

 

1. Introduction     

Selective recognition and sensing of aromatic compounds occupy an important 

position in the field of fluorescence recognition because some aromatic compounds 

are serious environmental pollutants [1-5]. As is known to all, aromatic compounds 
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are poisonous to humans and animals, and they can cause some diseases, such as 

cancer [6-9]. What’s more, they can also infiltrate into biological ecosystem through 

direct discharge of industrial castoffs [10-12]. The detection methods of aromatic 

compounds contain LC-MS, GC-MS, HPLC [13-20]. In these methods, the 

fluorescence method is widely used due to its sensitivity and speediness [21-31]. 

Therefore, it is necessary to develop more sensitive and efficient fluorescence 

chemosensors for aromatic compounds.  

In order to search for suitable chemosensors toward the detection of aromatic 

compounds, we became interested in anthracene-based bis-imidazolium salts. In this 

work, the synthesis of three bis-imidazolium salts 

1,8-bis[2’-(N-R-imidazoliumyl)acetamido]anthracene 2X (1: R = nBu, X = Cl-; 2: R = 

nBu, X = PF6
-; 3: R = Et, X = PF6

-) was reported. The structure of 1 was demonstrated 

through X-ray analysis. The selective detection of 2 (or 3) for some aromatic 

compounds (toluene, chlorobenzene, phenylamine, phenol, anisole, benzaldehyde, 

acetophenone, nitrobenzene, m-dinitrobenzene, 2,4-dinitrotoluene, 

2,4-dinitrophenylhydrazine (DNP), trinitrophenol, o-nitrophenol, p-nitrotoluene) was 

investigated through fluorescence, ultraviolet, 1H NMR, HRMS and IR spectra in 

acetonitrile at 25 ˚C. 

2. Experimental    

2.1. General 

The reagents of analytical grade were used in tests and preparations. A Varian 

Mercury Vx 400 spectrometer was employed for the measurement of 1H NMR and 

13C NMR spectra. A Boetius Block apparatus was used for the determination of 

melting points. A Perkin-Elmer 2400C Elemental Analyzer was used for the 

measurement of elemental analyses. A Cary Eclipse fluorescence spectrophotometer 

was employed for the measurement of fluorescence spectra. A Bruker Equinox 55 

spectrometer was used for the measurement of IR spectra (KBr). A VG ZAB-HS mass 

spectrometer (VG, U.K.) was employed for the determination of EI mass spectra. The 

diffraction data of 1 was collected through a Bruker Apex II CCD diffractometer [32]. 

The SHELXS program was used to solve the structure of 1 [33]. Crystal-Maker was 
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employed to form Fig. 1 [34]. Crystallographic data of 1 were listed in Table S1. 

 

2.2. 1,8-Diaminoanthraquinone 

Na2S (3.512 g, 45.0 mmol) and NaOH (4.280 g, 107.0 mmol) were dissolved in 

water (190 mL) with stirring for 0.5 h, and then EtOH (112 mL) solution of 

1,8-dinitroanthraquinone (2.952 g, 9.9 mmol) was added to above solution under 

refluxing for 6 h. When the solution was cooled to 20 ˚C, the purple precipitate was 

generated. The purple powder of 1,8-diaminoanthraquinone was collected by filtration. 

Yield: 2.320 g (98%). M.p.: 274-275 ˚C. 1H NMR (400 MHZ, DMSO-d6): δ 7.16 (d, J 

= 9.2 Hz, 2H, AnH), 7.36 (d, J = 8.4 Hz, 2H, AnH), 7.45 (t, J = 8.0 Hz, 2H, AnH), 

7.86 (s, 4H, NH2).  

2.3. 1,8-Diaminoanthracene 

1,8-Diaminoanthraquinone (2.000 g, 8.4 mmol) and NaOH (0.072 g, 1.8 mmol) 

were dissolved in i-propanol (100 mL), and then sodium borohydride (4.009 g, 106.0 

mmol) was added under N2. The suspension was heated to reflux for 24 h. After 

adding 250 mL of ice water, a yellow-green powder of 1,8-diaminoanthracene was 

precipitated, and the product was collected via filtration. Yield: 1.680 g (96%). M.p.: 

175-176 ˚C. 1H NMR (400 MHZ, DMSO-d6): δ 5.870 (s, 4H, NH2), 6.55 (t, J = 4.1 Hz, 

2H, AnH), 7.19 (d, J = 4.1 Hz, 4H, AnH), 8.17 (s, 1H, AnH), 8.80 (s, 1H, AnH). 

2.4. 1,8-Dichloroacetamidoanthracene 

To the dichloromethane solution (150 mL) of triethylamine (2.337 g, 23.1 mmol) 

and 1,8-diaminoanthracene (2.060 g, 9.6 mmol) was added dropwise chloroacetyl 

chloride (2.608 g, 23.1 mmol) at 0 ˚C. Then the mixture was stirred overnight at 25 ˚C 

to form a yellow precipitate. The precipitate was collected via filtration and purified 

by washing with dichloromethane to give a celadon powder of 

1,8-dichloroacetamidoanthracene. Yield: 3.400 g (98%). M.p.: > 320 ˚C. 1H NMR 

(400 MHZ, DMSO-d6): δ 4.55 (s, 4H, CH2), 7.56 (q, J = 5.2 Hz, 2H, AnH), 7.72 (d, J 

= 6.8 Hz, 2H, AnH), 8.01 (d, J = 8.5 Hz, 2H, AnH), 8.68 (s, 1H, AnH), 8.87 (s, 1H, 

AnH), 10.53 (s, 2H, NH). 

2.5. 1,8-Bis[2’-(N-nbutyl-imidazoliumyl)acetamido]anthracene chloride (1) and 
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1,8-bis[2’-(N-nbutyl-imidazoliumyl)acetamido]anthracene hexafluorophosphate (2) 

A 1,4-dioxane (100 mL) solution of N-nbutyl-imidazole (1.029 g, 8.3 mmol) and 

1,8-dichloroacetamidoanthracene (1.010 g, 2.8 mmol) was heated to reflux with 

stirring for 5 days to give a yellow-green solid. 

1,8-Bis[2’-(N-nbutyl-imidazoliumyl)acetamido]anthracene chloride (1) was obtained 

by filtration and washed with 1,4-dioxane (30 mL). Yield: 1.400 g (82%). M.p.: 

276-280 ˚C. Anal. Calcd for C32H38N6O2Cl2: C, 63.04; H, 6.28; N, 13.78%. Found: C, 

63.22; H, 6.31; N, 13.62%. 1H NMR (400 MHz, DMSO-d6): δ 0.92 (t, J = 7.4 Hz, 6H, 

CH3), 1.29 (m, 4H, CH2), 1.83 (m, 4H, CH2), 4.27 (t, J = 7.1 Hz, 4H, CH2), 5.80 (s, 

4H, CH2), 7.54 (t, J = 7.9 Hz, 2H, AnH), 7.87 (s, 2H, ArH), 7.97 (t, J = 9.4 Hz, 4H, 

ArH), 8.04 (d, J = 7.3 Hz, 2H, AnH), 8.65 (s, 1H, AnH), 9.43 (s, 2H, imiH), 9.91 (s, 

1H, AnH), 11.34 (s, 2H, NH) (imi = imidazole).  

The methanol solution (100 mL) of compound 1 (2.194 g, 3.6 mmol) and NH4PF6 

(1.760 g, 10.8 mmol) were stirred at room temperature for two days. A deep yellow 

powder was formed, and the powder was collected via filtration and purified by 

washing with 5 mL of methanol to afford 

1,8-bis[2’-(N-nbutyl-imidazoliumyl)acetamido]anthracene hexafluorophosphate (2). 

Yield: 1.998 g (67%). M.p.: 194-198 ˚C. Anal. Calcd for C32H38N6O2P2F12: C, 46.38; 

H, 4.62; N, 10.14%. Found: C, 46.27; H, 4.58; N, 10.22%. 1H NMR (400 MHz, 

DMSO-d6): δ 0.93 (t, J = 7.3 Hz, 6H, CH3), 1.28 (q, J = 7.4 Hz, 4H, CH2), 1.85 (q, J = 

7.2 Hz, 4H, CH2), 4.27 (t, J = 6.8 Hz, 4H, CH2), 5.80 (s, 4H, CH2), 7.54 (t, J = 7.9 Hz, 

2H, AnH), 7.87 (s, 2H, imiH), 7.93 (d, J = 8.4 Hz, 2H, AnH), 7.97 (s, 2H, imiH), 8.04 

(d, J = 7.2 Hz, 2H, AnH), 8.64 (s, 1H, AnH), 9.42 (s, 2H, imiH), 9.90 (s, 1H, AnH), 

11.02 (s, 2H, NH). 13C NMR (100 MHz, DMSO-d6): δ 164.77 (C=O), 139.23 

(imi-NCN), 137.48, 137.41, 132.96, 131.65, 127.08, 125.55, 125.38, 125.20, 124.11, 

124.00, 121.91, 119.48, 116.94 (ArC), 51.73, 48.71, 31.34, 18.74 (CH2), 13.22 (CH3). 

2.6. 1,8-Bis[2’-(N-ethyl-imidazoliumyl)acetamido]anthracene hexafluorophosphate 

(3)  

Compound 3 was prepared in the analogous method of 2. Yield: 2.224 g (80%). 

M.p.: 238-240 ˚C. Anal. Calcd for C28H30N6O2P2F12: C, 43.53; H, 3.91; N, 10.87%. 
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Found: C, 43.45; H, 3.82; N, 10.76%. 1H NMR (400 MHz, DMSO-d6): δ 1.47 (t, J = 

7.1 Hz, 6H, CH3), 4.28 (q, J = 6.8 Hz, 4H, CH2), 5.55 (s, 4H, CH2), 7.57 (t, J = 7.0 Hz, 

2H, AnH), 7.86 (q, J = 6.5 Hz, 6H, ArH), 8.00 (d, J = 8.5 Hz, 2H, AnH), 8.69 (s, 1H, 

AnH), 9.19 (s, 1H, AnH), 9.31 (s, 2H, imiH), 10.90 (s, 2H, NH). 13C NMR (100 MHz, 

DMSO-d6): δ 164.74 (C=O), 139.26 (imi-NCN), 137.12, 137.05, 133.35, 132.79, 

131.68, 127.16, 125.70, 125.52, 124.07, 123.97, 121.86, 121.68, 121.62, 120.55, 

120.18, 116.84 (ArC), 51.54, 44.47, 44.37 (CH2), 15.06 (CH3). 

2.7. Fluorescence titrations 

The stock solutions of chemosensor 2 (or 3) (1.0 × 10-3 M or 1.0 × 10-4 M) and 

guests were prepared in CH3CN. Test solutions were prepared via mixing the 

solutions of 2 (or 3) (1.0 × 10-5 M) and guests (0-45.0 × 10-5 M). The sample solutions 

were excited at 381 nm for 2 and 383 nm for 3, and the slits were 5 and 3 nm. And the 

spectra were recorded from 390 nm to 550 nm.  

2.8. Method for Job’s Plot 

The guest (DNP) and 2 (or 3) were dissolved in CH3CN in the concentration of 1 

× 10-4 M respectively to prepare a stock solution and the overall concentration 

remained 1 × 10-5 M in the test solutions, and the molar ratios of Chost/Cguest changed 

from 1:0 to 0:1. The sample solutions were excited at 381 nm for 2 and 383 nm for 3, 

and the slits were 5 nm and 3 nm. And the spectra were recorded from 390 nm to 550 

nm.  

3. Results and Discussion  

3.1. Preparation and characterization of compounds 1-3 

As shown in Scheme 1, 1,8-dinitroanthraquinone was reduced by Na2S in the 

presence of NaOH to afford 1,8-diaminoanthraquinone, which further reacted with 

sodium borohydride to form 1,8-diaminoanthracene. Chloroacetyl chloride reacted 

with 1,8-diaminoanthracene in the presence of Et3N in CH2Cl2 to give 

1,8-dichloroacetamidoanthracen, followed reaction with 1-nbutylimidazole in 

1,4-dioxane to afford 1,8-bis[2’-(N-nBu-imidazoliumyl)acetylamino]anthracene 

chloride (1). The reaction of NH4PF6 with 1 in methanol generated 

1,8-bis[2’-(N-nBu-imidazoliumyl)acetylamino]anthracene hexafluorophosphate (2). 
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Compound 3 was prepared with an analogous to the method of 2. In the 1H NMR 

spectra, the imidazolium proton signals (NCHN) appear at 9.31-9.43 ppm for 1-3 

[35-39].  

 

Scheme 1. Preparation of compounds 1-3.  

 

3.2. Structure of 1  

The single crystal of 1 was obtained by slow diffusion of diethyl ether into its 

CH3CN solution, and the structure of 1 was demonstrated by X-ray analysis. In the 

crystal structure of 1 (Fig. 1), the angle of N-C-N in the imidazole ring was 108.3(4)˚, 

which was similar to those of the known imidazolium salts [39-40]. Two imidazole 

rings in 1 were parallel, and they formed the dihedral angles of 71.4(3)˚ with 

anthracene ring. In Fig. S1, 1D polymeric chain of 1 was generated through C-H···Cl 

hydrogen bonds [41], in which hydrogen atoms were from methylene on both flanks 

of imidazole ring (Table S2). 

 

 

Fig. 1. Crystal structure of 1. Selected bond lengths (Å) and angles (˚): O(1)-C(15) 

1.216(5), N(1)-C(15) 1.423(7), N(2)-C(19) 1.320(7), N(3)-C(19) 1.330(6); 

N(2)-C(19)-N(3) 108.3(4). Symmetric code: i = x, 1 + y, z. 

3.3. Recognition of 2,4-dinitrophenylhydrazine (DNP) using 2 as a host 

Compounds 1 and 2 have the same cationic moiety, and different anionic moieties 

(Cl- for 1 and PF6
- for 2). As shown in Fig. S2, the fluorescence intensity of 1 is 

weaker than that of 2 due to the influence of different anions. To avoid the 

interference of chloride ion, we chose 2 as a host to study the selective recognition of 

some aromatic compounds (toluene, phenylamine, chlorobenzene, anisole, phenol, 

acetophenone, benzaldehyde, nitrobenzene, m-dinitrobenzene, 2,4-dinitrotoluene, 

2,4-dinitrophenylhydrazine (DNP), trinitrophenol, o-nitrophenol and p-nitrotoluene) 

in CH3CN at 25 ˚C. 

The free 2 (1.0 × 10-5 M) exhibited strong triple emission peak at 390-550 nm as 
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displayed in Fig. 2 (λex = 381 nm, emission and excitation slits: 3 nm and 5 nm), and 

this peak was attributed to the emission of anthracene. No significant change was 

observed after adding 10 equiv. of toluene, chlorobenzene, phenylamine, phenol, 

anisole, benzaldehyde, acetophenone, nitrobenzene, m-dinitrobenzene, 

2,4-dinitrotoluene, trinitrophenol, o-nitrophenol, p-nitrotoluene. However, adding the 

same amount of 2,4-dinitrophenylhydrazine (DNP) caused a remarkable decrease of 

the emission intensity.  

Fig. 3 showed the fluorescence spectra of 2 after adding different concentrations 

of DNP. When the CDNP enhanced gradually, the intensity of emission of 2 at 390-550 

nm decreased fastly as displayed in the inset of Fig. 3. When the ratio of CDNP/C2 

exceeded 1:1, the rate of decreasing of fluorescence intensity changed slowly. Finally, 

the intensity of emission peaks no longer changed when CDNP/C2 surpassed 30. The 

quenching behaviors of 2,4-dinitrophenylhydrazine on the fluorescence of 2 were 

found to fit well with the traditional Stern-Volmer relationship (eqn (1)) [42].  

F0/F = 1 + KSVCDNP    (1) 

in which F and F0 expressed the intensities of 2 with or without DNP, CDNP 

represented the concentration of DNP, and the KSV was the association constant. This 

equation revealed that F0/F enhances in direct proportion to the enhancing CDNP.  

The quenching constant KSV was computed as 5.6 × 104 M-1 (R = 0.999) for 

2·DNP by employing the equation (1), and the linear portion was in the ranges of 

0-4.5 × 10-4 M as shown in Fig. S3. As displayed in Fig. S4, the intensity data were 

normalized between the minimum intensity and the maximum intensity, and the 

concentrations of DNP were in the ranges of 0-0.019 µM. A linear regression curve 

was fitted to the seven points. By calculating ratio between 3σ and k, the detection 

limit (LOD) was computed as 3.97 × 10-10 mol·L-1 for 2 (LOD = 3σ/k, σ was the 

blank standard deviation and k was the slope of the linear regression curve) [43,44]. 

This result was even lower than the lowest value of literatures (10-7-10-9 mol·L-1) 

[45,46]. The complexation stoichiometry between 2 and DNP was established by 

using the Job’s plot method (Fig. S5). When molar fraction (χ) of 2 was 0.5, the χ∆I 

value for 2·DNP reached maximum, which indicated the complexation stoichiometry 
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between 2 and DNP was 1:1 [47-49].  

To test recognition ability of 2 for DNP in the existence of other aromatic 

compounds, the competition experiments were carried out. Firstly, compound 2 (1.0 × 

10-5 mol·L-1) was mixed with various aromatic compounds (toluene, chlorobenzene, 

phenylamine, phenol, anisole, benzaldehyde, acetophenone, nitrobenzene, 

m-dinitrobenzene, 2,4-dinitrotoluene, trinitrophenol, o-nitrophenol, p-nitrotoluene) in 

the concentration of 1.0 × 10-4 mol·L-1, and then added the 10 equiv. of 

2,4-dinitrophenylhydrazine. Using fluorescent spectra to monitor the competition 

experiments, no obvious interference was observed except p-nitrotoluene and 

trinitrophenol (Fig. S6). After adding p-nitrotoluene and trinitrophenol, the 

fluorescence intensity increased about 8-10% than that in the existence of 

2,4-dinitrophenylhydrazine alone. These results showed that compound 2 was able to 

effectively discriminate 2,4-dinitrophenylhydrazine from other aromatic compounds. 

 

Fig. 2. Fluorescence spectra of 2 (1 × 10-5 mol·L-1) in the presence of guest molecules 

(chlorobenzene, toluene, phenylamine, anisole, phenol, acetophenone, benzaldehyde, 

nitrobenzene, m-dinitrobenzene, 2,4-dinitrotoluene, 2,4-dinitrophenylhydrazine 

(DNP), trinitrophenol, o-nitrophenol, p-nitrotoluene) (10 equiv. for each guest) in 

CH3CN at 25 ˚C. (λex = 381 nm, slits: ex = 5 nm, em = 3 nm). 

 

Fig. 3. Emission spectra of 2 (1 × 10-5 mol/L) with different concentration of 

2,4-dinitrophenylhydrazine added in CH3CN at 25 ˚C. The concentrations of 

2,4-dinitrophenylhydrazine for curves 1 to 21 were 0, 0.11, 0.33, 0.55, 0.80, 1.0, 1.25, 

2.0, 2.7, 3.6, 6, 10, 12, 16, 20, 23, 27, 30, 36, 42, 45 × 10-5 mol/L (from top to bottom). 

(λex = 381 nm, slits: ex = 5 nm, em = 3 nm). Inset: the fluorescence of 2 as a function 

of CDNP/C2 at 439 nm.  

3.4. Interactions of 2,4-dinitrophenylhydrazine (DNP) with 2 

In the forcipate structure of 2, oxygen atom, hydrogen atom and nitrogen atom 

were possible binding sites for 2,4-dinitrophenylhydrazine (DNP). To understand the 

binding mode between 2 and DNP, 1H NMR titration experiments were carried out 
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(Fig. 4). The proton signals on the benzene ring of 2,4-dinitrophenylhydrazine (DNP) 

in 2·DNP underwent upfield shifting (ca. 0.02 ppm for HB1, HB2 and HB3) (Fig. 4(vi)), 

but the signals of protons of -NH-NH2 on DNP didn’t change, which indicated that 

-NO2 of DNP participated in interactions between 2 and DNP, instead of -NH-NH2. 

Meanwhile, the HA1 on NH beside anthracene ring of 2 was upfield shifted by 0.04 

ppm (Fig. 4(vi)), which should be attributed to N-H···O interactions between DNP 

and NH of 2 (Scheme 2). HA7 and HA8 were upfield shifted 0.02 ppm. These shifts 

should be originated from the electron-donating effect of nitro group, in which amide 

was a strong electron-withdrawing group due to the high electronegativity of nitrogen 

atom and the influence of carbonyl. The proton signal of HA3 on the imidazole ring of 

2 was downfield shifted by 0.05 ppm (Fig. 4(vi)), which should be originated from 

C-H···O interactions between DNP and imidazole rings of 2. Also, the proton signals 

of HA2, HA4, HA5 and HA6 were downfield shifted by ca. 0.02 ppm. These shifts should 

be ascribed to the electron-withdrawing effect of nitro groups, in which the 

imidazolium ring is electron-donating unit because it contains one electron-rich  

bond. Besides, no obvious change for other proton signals was observed, which 

showed that DNP was captured by C-H···O and N-H···O interactions. In addition, the 

proton signals of HA1-HA8 had no notable change upon the addition of more DNP (Fig. 

4(vii) and Fig. 4(viii)), and this indicated that 2 and DNP have a 1:1 complexation.  

In Fig. S7, m/z (367.41) of 2·DNP was observed, and it further proved the 1:1 

complex between 2 and DNP. This result was consistent with the Job’s plot 

experiment as shown in Fig. S5.  

In the IR spectra of DNP, 2 and 2·DNP, the bending vibration of v(C=N) moved 

from 1549 cm-1 in free 2 to 1554 cm-1 in 2·DNP (Fig. S8), the v(N-H) absorption band 

moved from 740 cm-1 in free 2 to 744 cm-1 in 2·DNP. The two absorption bands of 

nitro group moved from 1639 cm-1 and 1321 cm-1 in free 2,4-dinitrophenylhydrazine 

to 1647 cm-1 and 1333 cm-1 in 2·DNP, respectively.  

By analyzing the structure of 2, 1H NMR spectra, HRMS and IR spectra, the 

binding force between DNP and 2 turned out to be C-H···O and N-H···O interactions. 
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Because the imidazolium moieties are electron-rich groups and the amide groups are 

electron-withdrawing groups, the nitro groups have an electron-withdrawing effect on 

the imidazolium moieties and have an electron-donating effect on amide groups. 

When DNP was captured by 2, the photoinduced electron transfer (PET) process from 

imidazolium moieties to anthracene ring was switch-on due to the influence of nitro 

groups [50]. As a result, fluorescence intensity of 2 decreased remarkably.  

 

Scheme 2. The interactions of 2,4-dinitrophenylhydrazine (DNP) and 2. 

 

 

Fig. 4. The partial 1H NMR spectra (DMSO-d6, 400 MHz) of DNP, 2 and 2·DNP. (i) 

DNP only; (ii) 2 only; (iii) 0.25 equiv. of DNP and 2; (iv) 0.5 equiv. of DNP and 2; (v) 

0.75 equiv. of DNP and 2; (vi) 1 equiv. of DNP and 2; (vii) 2 equiv. of DNP and 2; 

(viii) 3 equiv. of DNP and 2.   

 

3.5. Recognition of 2,4-dinitrophenylhydrazine (DNP) using 3 as a host 

The recognition of 3 for DNP was investigated with the analogous method to 2 

(Fig. S9-Fig. S14). In 1H NMR titration experiments of 3, the proton signals of 3 and 

DNP were similar to the cases of 2 (Fig. S15), which indicated that DNP was also 

captured by 3 via C-H···O and N-H···O interactions (Scheme S1). The HRMS of 

3·DNP, and IR spectra of DNP, 3 and 3·DNP were also measured. In the HRMS of 

3·DNP as displayed in Fig. S16, m/z (339.36) of 3·DNP was observed, and this 

further proved a 1:1 complexation stoichiometry between 3 and DNP. IR spectra of 

3·DNP (Fig. S17) was similar to those of 2·DNP (Fig. S8). The above experimental 

results indicated that 3 could also effectively discriminate DNP from other aromatic 

compounds through the method of fluorescence. 

 

4. Conclusion 

In summary, three bis-imidazolium salts 1-3 have been prepared and characterized. 

The structure of 1 was confirmed through X-ray analysis. The experimental results 
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showed that 2 (or 3) had special selectivity for 2,4-dinitrophenylhydrazine (DNP), and 

they could effectively discriminate DNP from other aromatic compounds via the 

method of fluorescence. The KSV value of 5.6 × 104 M-1 for 2·DNP and 4.5 × 104 M-1 

for 3·DNP were obtained through a 1:1 association equation by using the method of 

fluorescence titration. The detection of 2 (or 3) for DNP was of high sensitivity with 

the detection limits of 3.97 × 10-10 mol/L for 2 and 2.58 × 10-10 mol/L for 3. By 

comparing, we found that the association constants and detection limits of 2 and 3 for 

DNP were similar, which displayed that the sizes of side chains (nBu for 2 and Et for 

3) had no obvious effect on the recognition of the host toward DNP. The high 

sensitivity, selectivity and great affinity for DNP indicated that 2 (or 3) could 

effectively discriminate DNP from other aromatic compounds. So, 2 (or 3) might have 

potential application for distinguishing 2,4-dinitrophenylhydrazine from other 

aromatic compounds. The research of developing novel chemosensors for other 

nitro-aromatic compounds is underway. 

 

Supporting Information  

Tables, figures, fluorescence for 2, 2·DNP (or 3, 3·DNP) with this paper can be found 

in the online version. 
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� Three bis-imidazolium salts 1-3 have been prepared and characterized. 

� The structure of 1 was confirmed through X-ray analysis.  

� 2 (or 3) had high sensitivity and selectivity, and great affinity for 

2,4-dinitrophenylhydrazine (DNP), and can effectively discriminate from DNP 

and other aromatic compounds via the method of fluorescence.  

� The KSV value of 5.6 × 104 M-1 for 2·DNP and 4.5 × 104 M-1 for 3·DNP  

� The detection limits are 3.97 × 10-10 mol/L for 2 and 2.58 × 10-10 mol/L for 3.  
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