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A tandem reaction consisting of five membered-ring selective Prins cyclization and subsequent Friedel–
Crafts cyclization was developed. The reactions of phenyl homoallylic alcohol 3 and benzaldehyde deriv-
atives 6 afforded tetrahydroindenofurans 7 or pentacyclic products 8, depending upon the quantity of 6.
Also homoallylic alcohol 12 having an alkyne–cobalt moiety reacted with 6 to give rise to tetra-
hydroindenofurans 13 in good yields.

� 2011 Elsevier Ltd. All rights reserved.
The Prins cyclization, which is a facile coupling of a homoallylic
alcohol and an aldehyde promoted by an acid catalyst, has been ap-
plied to the stereoselective synthesis of many natural products hav-
ing a tetrahydropyran ring.1 Recently, several tandem cyclizations
including the Prins cyclization have been developed, wherein annu-
lated tetrahydropyran derivatives were obtained.2 Reddy and Yadav
et al. reported a tandem Prins/Friedel–Crafts cyclization furnishing
polycyclic compounds containing a tetrahydropyran ring.2a The
exclusive formation of tetrahydropyrans observed in many exam-
ples of the Prins reaction is attributed to the transition state taking
a chair form, which is more stable than that of a tetrahydrofuran
ring formation. On the contrary, reversal of the relative stability
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between six membered and five membered transition states makes
it possible to form tetrahydrofuran derivatives exclusively. In fact,
the reaction of tri-substituted alkene prefers the formation of tetra-
hydrofuran to tetrahydropyran derivative.3 Although di-substituted
E-homoallylic alcohol usually undertakes the preferential formation
of tetrahydropyran, the reaction of Z-homoallylic alcohol has been
reported to give a mixture of tetrahydropyran and tetrahydrofuran.4

The ring-size selectivity in products has often been controlled by
linking a suitable functional group stabilizing carbocation interme-
diates to an alkene. For example, treatment of allylsilane 1 with
Ce(NBu4)4(NO3)6 (CTAN) resulted in the preferential formation of
tetrahydrofuran 2 (Scheme 1).5
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Table 1
Tandem cyclization of the phenyl homoallylic alcohol 3 and benzaldehyde 6
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Entry Aldehyde Equiv Time Temp. Product (yield)

1 6a (R1 = R2 = R3 = H) 1.3 15 min 0 �C Complex mixture
2 6b (R1 = OMe, R2 = R3 = H) 1.3 1 h 0 �C 7b (87%) 7b0 (6%)
3 6c (R2 = OMe, R1 = R3 = H) 1.3 15 min 0 �C Complex mixture
4 6d (R1 = R2 = OMe, R3 = H) 1.3 3 h 0 �C 7d (82%) 8d (7%)
5 6e (R1 = R2 = OEt, R3 = H) 1.3 2 h 0 �C 7e (82%) 8e (5%)
6 6f (R1 = R3 = OMe, R2 = H) 1.3 15 min 0 �C 7f (92%)
7 6g (R1 = R2 = R3 = OMe) 1.3 15 min 0 �C 7g (90%)
8 6d (R1 = R2 = OMe, R3 = H) 3 85 h rt 8d (86%)
9 6e (R1 = R2 = OEt, R3 = H) 3 65 h rt 8e (84%)
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Figure 1. NOE correlations of 7b and 8d.
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We were interested in a phenyl group and an alkyne–dicobalt
complex as an alternative functional group stabilizing five mem-
bered-ring transition state of the Prins reaction. Furthermore, if
the cation intermediate formed by five membered-ring formation
has a nucleophilic functional group at the other site, the second
cyclization may occur to give a polycyclic system. Just when we
started our project based on such concept, Spivey et al. reported
the polycyclization of phenyl homoallyl alcohol 3 and 9-anthra-
ldehyde or salicylaldehyde.6 We wish to report herein a tandem
five-membered Prins/five-membered Friedel–Crafts cyclization of
homoallylic alcohols linked to a phenyl group or an alkyne–dico-
balt complex and various benzaldehyde derivatives.
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Table 1 summarizes the tandem cyclizations of the phenyl
homoallylic alcohol 37 and various benzaldehyde derivatives. At
first, we carried out the reaction of 3 (1 equiv) with 6 (1.3 equiv)
in the presence of BF3�OEt2 (3 equiv)8 in CH2Cl2 at 0 �C (entries
1–7).9 Thus, m-methoxybenzaldehyde 6b reacted with 3 smoothly
to afford a regioisomeric mixture of tetrahydroindenofurans 7b10

(87%) and 7b010 (6%) (entry 2). On the other hand, treatment of
benzaldehyde 6a or p-methoxybenzaldehyde 6c under the same
conditions resulted in a complex mixture (entries 1 and 3). There-
fore, the presence of an electron donating group at the C30 position
is essential for the formation of tetrahydroindenofuran. Similarly,
benzaldehydes 6d–g (1.3 equiv) bearing a m-methoxy group re-
acted with 3 to give rise to tetrahydroindenofurans 7d–g10 (entries
4–7) in high yields. Notably, the reactions of 6f and 6g having two
methoxy groups at both the C30 and C50 positions were very fast.
The configuration of a phenyl group was found to be b by NOE
correlations between H3a-H3b (7%) and H3a-H4 (6.7%) as shown
in Figure 1. The reaction mechanism of the present tandem cycliza-
tion is shown in Scheme 2. At first, the Prins cyclization of 3 and 6
occurred via a five-membered transition state to form trans-cation
B and cis-cation C, which were stabilized by a phenyl group,
respectively. Since the 5-5 bicyclo rings are hard to take trans
juncture, only the cation C in the equilibriums between B and C
can undergo subsequent Friedel–Crafts reaction to form the
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Scheme 4. Preparation of the homoallylic alcohol 12 linked to alkyne dicobalt complex.
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corresponding tetrahydroindenofurans 7. The two methoxy groups
at the C30 and C50 positions in C have remarkable accelerating ef-
fect on the subsequent Friedel–Crafts cyclization.

Interestingly, a small amount of pentacyclic compounds 8d–e10

were also obtained in the reactions of benzaldehydes bearing a
methoxy group at the C40 position (entries 4 and 5). We confirmed
that indenofuran 7d reacted with 6d very slowly in the presence of
BF3�OEt2 to furnish 8d. On the contrary, the reaction of 7b with 6b
did not occur at all. Based on these results, we investigated the tan-
dem cyclization of 3 with three equivalents of 6d–e in the presence
of BF3�OEt2 in CH2Cl2 at room temperature (entries 8 and 9). In
both cases, pentacyclic compounds 8d–e were obtainable in good
yields as we expected. The stereochemistry of 8d was unambigu-
ously determined by NOE measurements as shown in Figure 1.
Table 2
Tandem cyclization of the homoallylic alcohol 12 and benzaldehyde 6
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6d-g (1.2 eq.)
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Entry Aldehyde

1 6d (R1 = R2 = OMe, R3 = H)
2 6e (R1 = R2 = OEt, R3 = H)
3 6f (R1 = R3 = OMe, R2 = H)
4 6g (R1 = R2 = R3 = OMe)
Scheme 3 shows the tentative mechanism for the conversion of
7d into 8d. The reaction started by coordination of BF3 to the oxy-
gen atom on the furan ring of 7d. The methoxy group at the C6
position in 7d might accelerate fragmentation of the C–O bond
leading to D, which was further transformed into E by deprotona-
tion concomitant with aromatization. The intermediate E, which is
a kind of homoallylic alcohol linked to an aryl group, was further
converted into 8d by the sequential Prins and Friedel–Crafts cycli-
zation through intermediates F and G.

Complexation of an alkyne with dicobalt hexacarbonyl Co2(CO)6

has been known to remarkably stabilize cations of a-carbon atom
adjacent to an alkyne moiety. The Nicholas reaction, a coupling
reaction of Co2(CO)6 stabilized cations and nucleophiles, has been
widely used in organic synthesis.11 The alkyne–cobalt complex
Et2
l2

O

R1

13d-g

R2

R3

H

H

TMS

Co(CO)3

Co(CO)33

O Co(CO)3

Co(CO)3

R1
R2

R3

TMS

Time (h) Product (yield)

6 13d (83%)
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4 13f (66%)
4 13g (89%)
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was also known to increase the reactivity at the b position of the
neighboring alkene.12 We thus tried the tandem cyclization of
homoallylic alcohol 1210 linked to an alkyne dicobalt complex with
benzaldehyde derivatives. Compound 12 was easily accessible by
treatment of eneyne 11, which was prepared according to the Stol-
tz method,13 with Co2(CO)8 in CH2Cl2 (Scheme 4). As we expected,
12 reacted with aldehydes 6d–g in the presence of BF3�OEt2 in
CH2Cl2 to form tetrahydroindenofurans 13d–g10 having an alkyne
dicobalt moiety in good yields (Table 2). On the other hand, when
11 was treated with 6f under the same conditions, aldehyde 6f was
recovered and 11 was decomposed. Thus, an alkyne–dicobalt com-
plex was also found to serve as an efficient functional group for the
tandem Prins and Friedel–Crafs cyclization.

In conclusion, we have developed the novel tandem cyclizations
of homoallylic alcohols linked to a phenyl group or an alkyne–
dicobalt complex with various benzaldehydes. The tandem
cyclization of 3 with benzaldehyde 6 (1.3 equiv) afforded the tetra-
hydroindenofurans 7 as the major product. On the other hand, the
reaction of 3 with an excess amount of 6 gave rise to pentacyclic
compounds 8 containing a furan ring by repeating the sequential
five membered-ring selective Prins and Friedel–Crafts cyclization
twice. Also, the tandem reaction of 12 with benzaldehydes
proceeded smoothly to afford tetrahydroindenofurans 13 having
an alkyne dicobalt moiety. Further synthetic application of the
present tandem reaction is now in progress.
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