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Syntheses of hydroxy substituted 2-phenyl-naphthalenes
as inhibitors of tyrosinase
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Abstract—Oxyresveratrol and resveratrol, with hydroxy substituted trans-stilbene structure, exert potent inhibitory effects on cyclo-
oxygenase, rat liver mitochondrial ATPase activity, and tyrosinase. As the isosteres of oxyresveratrol, a new family of hydroxyl
substituted phenyl-naphthalenes were synthesized to show excellent inhibition of mushroom tyrosinase. Compound 10, which is iso-
stere of resveratrol, showed IC50 value of 16.52 lM in mushroom tyrosinase activity. As compared to this, the reference compound,
resveratrol, showed IC50 value of 55.61 lM. Compound 4, which is isostere of oxyresveratrol, showed IC50 value of 0.49 lM.
Among the other three derivatives, compound 13 showed IC50 value of 0.034 lM.
� 2006 Elsevier Ltd. All rights reserved.
Oxyresveratrol (trans-2,3 0,4,5 0-tetrahydroxystilbene),
available from mulberry wood (Morus alba L.), has
the structure of hydroxy substituted stilbene. It has been
known that oxyresveratrol is transported to tissues at
high rates resulting in a bioavailability around 50%.1

Pharmacological studies have demonstrated that oxyres-
veratrol can be used as an active ingredient in dermatol-
ogy.2,3 It also has been revealed that the compound has
potent inhibitory effects on cyclooxygenase,4,5 rat liver
mitochondrial ATPase activity,6 and DOPA oxidase
activity.4 Tyrosinase catalyzes two distinct reactions of
the conversion of tyrosine to DOPA.7 Tyrosinase is
responsible for unwanted browning of fruits and vegeta-
bles, and coloring of skin, hair, and eyes in animals
including human beings.2 Many tyrosinase inhibitors
have been reported, including hydroquinone,8 vitamin
C,9 kojic acid,10 albutin,11 resveratrol,12 and
oxyresveratrol.4

In this report, we reveal hydroxy substituted 2-phenyl-
naphthalenes as new inhibitors of mushroom tyrosinase.
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For in vivo experiments for the melanin-related disor-
ders, it was necessary to synthesize oxyresveratrol in
large quantity. As shown in Scheme 1, for the synthesis
of oxyresveratrol, when Wittig reaction was done to
generate compound 2, the cis/trans mixture was ob-
tained. The wanted compound 2 with trans-olefin was
separated, by using column chromatography using silica
gel, for the synthesis of oxyresveratrol. The byproduct,
cis-isomer of compound 2,14b was treated with iodine
in chloroform to generate cis/trans mixture again to
recover more of the trans compound 2.14a But to our
surprise, the obtained major product was identified to
be 7-(3,5-dimethoxyphenyl)-1,3-dimethoxynaphthalene
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Scheme 2. Reagents and conditions: (a) i—2-bromo-6-methoxy-naph-

thalene, Mg, I2, THF; ii—Ni(dppp)Cl2, THF; iii—5; (b) BBr3, CH2Cl2,

reflux.

Scheme 1. Reagents and conditions: (a) i—PPh3, C6H6, reflux; ii—

t-BuOK, EtOH; iii—3,5-dimethoxy-benzaldehyde; (b) I2, CHCl3; (c)

BBr3, CH2Cl2, reflux.
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(3).14c Considerable efforts were directed toward identi-
fication of the structure of compound 3, utilizing HRMS
(Korea Basic Science Institute: Daegu) and experiments
with 500 MHz NMR including DEPT, COSY, HMQC,
and HMBC. In addition to this, the structure of single
crystal of compound 3 obtained from a CH2Cl2 solution
was confirmed by X-ray diffraction as shown in Figure
1. Crystal of compound 3 belongs to the triclinic system,
space group P-1; a = 7.1600 (8) Å, b = 10.9250 (12) Å,
c = 11.8562 (14) Å, a = b = 105 �, c = 107 �, vol-
ume = 798.49 (16) Å, Z = 2, Dcalcd = 1.349 Mg/m3,
m = 0.093 mm�1, F(000) = 344. The final value of
R[I > 2r(I)] was 0.0664, wR2 = 0.1436, GooF = 1.000.13

After demethylation of compound 3, the tetrahydroxy
substituted compound 414d was obtained to show excel-
lent inhibition of mushroom tyrosinase with IC50 value
of 0.49 lM (resveratrol: 55.61 lM). With the structure
of the new lead compound in hand, other hydroxy
substituted 2-phenyl-naphthalenes were synthesized by
using other simple method.

The synthetic routes of hydroxy substituted 2-phenyl-
naphthalenes are shown in Schemes 1 and 2. Commer-
cially available 1-bromomethyl-3,5-dimethoxybenzene
(1) was treated with triphenyl phosphine in N,N-dimeth-
ylformamide (DMF) at reflux to generate the phospho-
nium salt. The phosphonium salt was reacted with
potassium tert-butoxide in ethanol and 3,5-dimethoxy-
banzaldehyde to generate cis/trans mixture of 2,3 0,4,5 0-
tetramethoxy-trans-stilbene (2) in 74% yield. The solu-
tion of compound 2 in chloroform was treated with cat-
alytic amount of iodine (0.05 equiv) and stirred
Figure 1. X-ray structure of 3.
overnight at room temperature to generate 7-(3,5-
dimethoxyphenyl)-1,3-dimethoxynaphthalene (3) in
72% yield. 7-(3,5-Dimethoxyphenyl)-1,3-dimethoxy-
naphthalene (3) was treated with boron tribromide in
methylene chloride to obtain 7-(3,5-dihydroxyphenyl)-
1,3-naphthalenediol (4) in 27% yield.

The synthetic route of compounds 10–13 is shown in
Scheme 2. 2-Bromo-6-methoxy-naphthalene was treated
with magnesium turnings, iodine, Ni(dppp)Cl2, and
1-bromo-3,5-dimethoxy-benzene to generate 2-(3,5-
dimethoxyphenyl)-6-methoxy-naphthalene, which was
converted to 5-(6-hydroxy-2-naphthyl)-1,3-benzenediol
(10)14i using boron tribromide. 5-(6-Hydroxy-2-naph-
thyl)-1,2,3-benzenetriol (11),14j 6-(3-hydroxyphenyl)-2-
naphthol (12),14k and 4-(6-hydroxy-2-naphthyl)-1,3-ben-
zenediol (13)14l were synthesized using the same method
using appropriate starting materials.

Compound 3 contains extended conjugated systems
which can react as both diene and dienophile moieties.
With hydroxy substituted stilbene, Diels–Alder reac-
tions followed by the fragmentation of the hydroxy
substituted benzene have been reported before, which
generated di-phenyl substituted naphthalene.15 The
compound which was obtained in our case contains
the mono-phenyl substituted naphthalene system, which
is isostere of the oxyresveratrol. Fragmentation of two
1,3-dimethoxybenzenes generated mono-phenyl substi-
tuted naphthalene system, which was caused by substi-
tution pattern of the methoxy groups on the benzene
as compared to the reported case.

While compounds 11 and 13 are new, compounds 4,16

10,17,18 and 1219 have been illustrated before. But there
has been no report about the inhibition of tyrosinase
activity Table 1.

Compound 10, which is isostere of resveratrol, showed
IC50 value of 16.52 lM in mushroom tyrosinase activi-
ty.20 As compared to this, the reference compound, res-
veratrol,12 showed IC50 value of 55.61 lM. Compound
4, which is isostere of oxyresveratrol, showed IC50 value



Table 1. Inhibition effects of hydroquinone, kojic acid, resveratrol,

and compounds 4 and 10–13 on mushroom tyrosinase activity

Compound HS # IC50
a (lM)

Hydroquinone 33.48(±1.70)

Kojic acid 38.24(±1.47)

Resveratrol 55.61(±2.77)

4 HS-1713 0.49(±0.47)

10 HS-1784 16.52(±0.65)

11 HS-1791 2.95(±1.26)

12 HS-1792 6.40(±0.30)

13 HS-1793 0.034(±0.01)

a Values are means of three experiments, standard deviation is given in

parentheses.
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of 0.49 lM. Among the other three derivatives, com-
pound 13 showed IC50 value of 0.034 lM.
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