Accepted Manuscript

Azole-carbodithioate hybrids as vaginal anti-Candida contraceptive agents: design, synthesis and docking studies

Lalit Kumar, Nand Lal, Vikash Kumar, Amit Sarswat, Santosh Jangir, Veenu Bala, Lokesh Kumar, Bhavana Kushwaha, Atindra K. Pandey, Mohammad I. Siddiqi, Praveen K. Shukla, Jagdamba P. Maikhuri, Gopal Gupta, Vishnu L. Sharma

PII: S0223-5234(13)00579-5

DOI: 10.1016/j.ejmech.2013.09.007

Reference: EJMECH 6409

To appear in: European Journal of Medicinal Chemistry

Received Date: 14 August 2013

Revised Date: 3 September 2013

Accepted Date: 5 September 2013

Please cite this article as: L. Kumar, N. Lal, V. Kumar, A. Sarswat, S. Jangir, V. Bala, L. Kumar, B. Kushwaha, A.K. Pandey, M.I. Siddiqi, P.K. Shukla, J.P. Maikhuri, G. Gupta, V.L. Sharma, Azole-carbodithioate hybrids as vaginal anti-Candida contraceptive agents: design, synthesis and docking studies, *European Journal of Medicinal Chemistry* (2013), doi: 10.1016/j.ejmech.2013.09.007.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Azole-carbodithioate hybrids as vaginal anti-*Candida* contraceptive agents: design, synthesis and docking studies

Lalit Kumar, Nand Lal, Vikash Kumar, Amit Sarswat, Santosh Jangir, Veenu Bala, Lokesh Kumar, Bhavana Kushwaha, Atindra K. Pandey, Mohammad I. Siddiqi, Praveen K. Shukla, Jagdamba P. Maikhuri, Gopal Gupta, Vishnu L. Sharma

X, Y : N, CH R : alkyl R': alkyl, alkenyl

Azole-carbodithioate hybrids as vaginal anti-*Candida* contraceptive agents: design, synthesis and docking studies[#]

3

4 Lalit Kumar,^a Nand Lal,^a Vikash Kumar,^b Amit Sarswat,^a Santosh Jangir,^a Veenu Bala,^a Lokesh
5 Kumar,^c Bhavana Kushwaha,^c Atindra K. Pandey,^d Mohammad I. Siddiqi,^b Praveen K. Shukla,^d
6 Jagdamba P. Maikhuri,^c Gopal Gupta,^c Vishnu L. Sharma^{a,*}

7

8 ^aMedicinal & Process Chemistry Division, ^bMolecular & Structural Biology Division, ^cEndocrinology Division,

9 ^dFermentation & Technology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India

10

11 Abstract

12 Azole and carbodithioate hybrids were synthesized as alkyl 1H-azole-1-carbodithioates (7– 13 27) and evaluated for spermicidal/microbicidal activities against human sperm, Trichomonas vaginalis and Candida species. Seventeen compounds (7-14, 16-18 and 20-25) showed 14 15 spermicidal activity at MEC 1.0% (w/v) and permanently immobilized 100% normal human spermatozoa within ~ 30 second. Seventeen compounds (7–11, 13–18 and 20–25) exhibited 16 17 anti-Candida activity (IC₅₀ 1.26–47.69 μ g/mL). All compounds were devoid of bactericidal activity against four bacterial strains (50.00 µg/mL) and antiprotozoal activity against 18 Trichomonas vaginalis (200.00 µg/mL). Four promising compounds (10, 17, 20 and 22) have 19 20 better safety profile as compared to Nonoxynol-9 (N-9). Docking study was done to visualize the possible interaction of designed scaffold with prospective receptor (Cyp51) of Candida 21 22 albicans.

23

24 Keywords

25	Anti-Candida,	spermicides,	imidazole,	docking,	carbon	disulfide,	dithio carbamate	
----	---------------	--------------	------------	----------	--------	------------	------------------	--

- 26
- 27 28
- 29
- 30

31

32

33 Corresponding author

- 34 *Tel: 91-522-2771940, Ext. 4671. Fax: 91-522-2771941.
- E-mail: vlscdri1@rediffmail.com or vlscdri@gmail.com.
- 36 [#]CDRI communication no.: 208/2012/VLS
- 37
- 38
- 39
- 40
- 41
- 42
- 43

1 **1. Introduction**

2 Approximately one-third of vulvovaginitis cases are attributable to *Candida* infection. 3 *Candida* species form a part of the lower genital tract flora in many healthy asymptomatic 4 women and reportedly ~50% female university students experience at least one physiciandiagnosed episode of vulvovaginal candidiasis (VVC) by age of 25. The estimated cost of 5 6 VVC is about 1 billion dollars in the US [1]. Fungal adhesion to the epithelium is a 7 prerequisite for colonization, and infections are characterized by the invasion of vaginal 8 epithelial cells. Additionally, hyphal formation damages epithelial tissue and contributes to 9 symptomatic vaginal infections [2], which may lead to subsequent attack by sexually transmitted infections (STIs) and HIV. 10

11

12 Please insert Figure 1.

13

Imidazoles, especially clotrimazole (1; Figure 1) and bifonazole (2; Figure 1) are highly effective antifungal agents against mucosal infections caused by *Candida albicans* through inhibiting ergosterol biosynthesis [3]. However, the emerging resistance against these drugs [4, 5] has necessitated the search for new molecules.

18 In our enduring efforts to discover dually active vaginal microbicides [6-11], we have 19 reported that the hybridization of nitroimidazole structure with dithiocarbamate/phenylpropyl 20 groups leads to compounds with potent anti-Trichomonas, mild anti-Candida and spermicidal 21 activities [12, 13]. Moreover, metronidazole and other nitroimidazole antiprotozoals are 22 devoid of anti-Candida activity [14, 15] while similar compounds without a nitro group 23 possess antifungal efficacy [16-19]. A careful study of the antifungal structures (3-5; Figure 24 1) revealed that none of these had a nitro group. Hence, it was anticipated that hybridization 25 of various azoles lacking a nitro group with dithiocarbamate group (6; Figure 1) could lead to 26 the discovery of a chemical entity with potent anti-Candida, anti-Trichomonas and 27 spermicidal activities, since the dithiocarbamate group itself has been attributed with potent 28 activities against human sperm and *Trichomonas* [20]. The compounds thus synthesized were 29 evaluated in vitro against human sperm and various strains of Candida albicans and 30 Trichomonas vaginalis. The promising compounds were subsequently assessed for their 31 adverse effect on vaginal flora (Lactobacillus) and cervical epithelium (HeLa cells) for their 32 possible utility as vaginal microbicides. A docking study was also carried out to find a suitable correlation between antifungal activity and inhibition of the prospective receptor. 33 34 The synthesis, structure activity relationship (SAR) and docking study are being reported in 35 this communication.

36

37 2. Results and discussion

38 *2.1. Chemistry*

The synthetic route for the synthesis of alkyl 1*H*-azole-1-carbodithioate (7–27) has been shown in Scheme 1. These compounds were synthesized by the reaction of azoles, carbon disulfide and alkyl or alkenyl halide in the presence of a strong base (sodium hydride) at 0–5 °C. Reaction with imidazole, 2-methylimidazole and benzimidazole was completed smoothly. When benzotriazole was used as reactant, an N-methylated product (27, Scheme 1) was obtained, instead of methyl 1*H*-benzotriazole-1-carbodithioate, probably due to the
presence of an additional nitrogen atom in the ring which decreased the basic strength at
reactive site [21].

4

Please insert Scheme 1.

5 6

7 2.2. Evaluation of biological activities

8 2.2.1. Antifungal activity

9 Fifteen compounds (9, 11–22, 25 and 27) exhibited antifungal activity (Table 1) against one 10 or more strains of fungi viz., Sporothrix schenckii, Trichophyton mentagrophytes, Aspergillus 11 fumigatus, Cryptococcus neoformans with IC₅₀ ranging from 0.69–24.93 µg/mL. Compounds 12 17 and 22 inhibited four strains while compounds 9, 13 and 14 inhibited three strains of fungi. Additionally, the growth of Sporothrix schenckii was inhibited by three compounds 13 (16, 22 and 27) and that of Trichophyton mentagrophytes was inhibited by two compounds 14 (11 and 25) at $IC_{50} < 2.0 \,\mu$ g/mL. Compound 22 inhibited Cryptococcus neoformans with IC_{50} 15 of 0.69 μ g/mL while compound **11** also inhibited the growth of Aspergillus fumigatus with 16 17 IC₅₀ 6.21 µg/mL.

18

19 Please insert Table 1

20

21 2.2.2. Anti-Candida activity

Seventeen compounds (7-11, 13-18 and 20-25) showed anti-Candida activity (Table 2) 22 against one or more Candida strains. Three compounds (10, 16 and 22) inhibited growth of 23 24 all the six *Candida* strains. Furthermore, the growth inhibition was observed in five and four Candida strains by compounds 9, 11, 13, 17 and compound 14, respectively. Thirteen 25 compounds (7, 10, 11, 13-18, 20-22, 25) inhibited *Candida albicans* at IC₅₀ ranging 1.26– 26 27 36.03 μ g/mL and four out of thirteen compounds (10, 17, 20 and 22) had remarkable IC₅₀ 28 ranging from 1.26 to 1.43 µg/mL. Five compounds (8-10, 16 and 22) exhibited anti-Candida activity against Candida parapsilosis with IC₅₀ ranging 1.46–10.15 µg/mL. Compound 22 29 was found to be very active against *Candida parapsilosis* with low IC₅₀ of 1.46 μ g/mL. 30 31 Furthermore, anti-Candida data showed that compound 22 was the most active against PK3, 32 PK9, PK13 and PK 30 (four additional strains of *Candida*) with IC_{50} of 1.79, 3.33, 1.79 and 1.75 µg/mL, respectively. 33

34

35 The structure activity relationship indicated that among azoles, decreasing the alkyl chain 36 length and by combining phenyl ring with imidazole (imidazole was replaced by 37 benzimidazole) gave rise to the most active compound (22). Furthermore, imidazol-1-yl and 38 2-methylimidazol-1-yl with allyl (9, 16) or butyl (10, 17) form a good combination for anti-*Candida* activity as these compounds generally inhibited all *Candida* strains at low IC_{50} . On 39 the other hand, it was observed that on increasing the alkyl chain length, the anti-Candida 40 activity reduced (12, 18 and 26) in case of imidazol-1-yl, 2-methylimidazol-1-yl and 41 42 benzimidazol-1-yl moieties. The introduction of additional nitrogen in the imidazole ring 43 with allyl group (21) decreased the activity.

1	
2	Please insert Table 2
3	
4	2.2.3. Spermicidal activity
5	All the compounds (except 27) showed spermicidal activity (Table 3) at 1.0% (w/v)
6	concentration and irreversibly immobilized 95-100% normal human spermatozoa. Out of the
7	total twenty one compounds, seventeen compounds (7-14, 16-18, 20-25) caused 100%
8	immobilization at 1.0% while three compounds 15, 19 and 26 caused 95% immobilization.
9	Five compounds (8, 10, 11, 18 and 22) demonstrated extremely potent sperm immobilizing
10	potential and immobilized 80-100% human sperm at 0.1% (w/v) concentration. Compound
11	18 was found to be most potent spermicide in this series.
12	
13	Please insert Table 3
14	
15	2.2.4. Anti-Trichomonas activity
16	All the compounds (7–27) could not display trichomonacidal effect at 200.00 μ g/mL (Table
17	3), the absence of nitro group attached with in azole ring may be the probable reason.
18	
19	2.2.5. Antibacterial activity
20	Compounds $(7-27)$ were also found to be inactive towards four bacterial strains such as E.
21	coli (ATCC 9637), Pseudomonas aeruginosa (ATCC BAA-427), Staphylococcus aureus
22	(ATCC 25923), <i>Klebsiella pneumoniae</i> (ATCC 27736) at 50.00 μ g/mL (Table 1), which
23	indicated high fungicidal selectivity.
24	
25	2.2.6. Cytotoxic assay using human cervical (HeLa) cell line and compatibility with
26	Lactobacillus The form most estimate and (10, 17, 20, and 22) of this ensure disclosed better effets
27	the four most active compounds (10, 17, 20 and 22) of this series displayed better safety
28	towards HeLa cells (IC ₅₀ 48./0-85.45 μ g/mL) and much better compatibility with
29	<i>Lactobaculus</i> (IC_{50} 39.34-220.00 µg/mL) than Nonoxynoi-9 (IN -9) which showed IC_{50} 37.00
30	and 21.00 µg/mL respectively (Table 4), and therefore appeared apparently much safer for
31	Vaginar use. These compounds and not affect the viability of HeLa certs of growth of
32 22	Laciobacini during 24 nours of incubation.
27	Please insert Table 4
34 25	
30	

A closer look to SAR revealed that sixteen compounds were dually active and possessed spermicidal activity as well as antifungal activity against all the ten fungal strains (including six *Candida* strains). However, these compounds failed to possess anti-*Trichomonas* activity, plausibly due to the absence of nitro group in azole ring. Further structural optimization may yield active compounds possessing multiple activities i.e., spermicidal, antifungal and anti-

41 *Trichomonas* activities.

1 2.3. Docking study

2 It is well documented that various azoles and non-azoles exhibit antifungal activity through 3 inhibition of the prospective receptor Cyp51, a member of the cytochrome P450 superfamily 4 [22-25]. In yeasts and fungi, P450_{14DM} participates in ergosterol biosynthesis [25], which is an essential requirement for fungal viability. Selective inhibition of Cyp51 causes depletion 5 6 of ergosterol and accumulation of lanosterol and some other 14-methyl sterols resulting in 7 growth inhibition of fungal cells. To visualize the interaction of designed scaffold with 8 Cyp51 of *Candida albicans*, docking studies were carried out. Docked conformations were 9 calculated using homology model of *Candida albicans* Cyp51, which were used in previous studies as given in the supporting information [26, 27]. The four most active compounds (10, 10 17, 20 and 22) of this series were selected for the docking study and docked energy data is 11 provided in Table 5. 12

13

14 Please insert Figure 2

15

Docking with compounds showed that there is common mode of interaction with Cyp51 16 17 through formation of co-ordinate bond between N atom of azole ring of inhibitors and Fe of heme prosthetic group of receptor (Figure 2). Long alkyl chain of compounds 10 and 17 was 18 found to be close to hydrophobic residues Val509 and Val510. It has been reported that 19 20 Val509 and Val510 come under structurally selective residues of active site of Candida 21 albicans Cyp51 and interaction with these residues may have selectivity advantage to newly 22 designed antifungals [24]. Compound 20 showed lowest docking energy in agreement with in 23 *vitro* activity, which may be due to lack of alkyl chain. In case of compound 22, presence of 24 benzene ring stabilized the interaction by making hydrophobic contact with L376, which may 25 account for higher docked energy than compound 20. Other residues like Met306, Gly307, and Thr311 and Pro375 were found to be in close contact with docked conformation of all 26 27 compounds.

28

29 Please insert Table 5

30

31 **3. Conclusion**

In this communication, hybrids of azole and carbodithioate scaffolds as alkyl 1H-azole-1-32 33 carbodithioates (7-27) have been reported, which were evaluated for their spermicidal as well 34 as microbicidal activities against Trichomonas vaginalis and Candida species in vitro. Most 35 of the compounds exhibited significant anti-*Candida* activity and sixteen compounds (7-11, 36 13, 14, 16-18, 20-25) co-possessed spermicidal activity as well. While lack of nitro group in 37 azole scaffold imparted potent antifungal activity, carbodithioate group tendered appreciable 38 spermicidal effects though it failed to incorporate antiprotozoal (anti-Trichomonas) efficacy. 39 Our previous hybrid designs of nitro-azole and carbodithioate exhibited potent anti-40 Trichomonas and spermicidal effects [12], lacking noticeable antifungal property. Hence, it is apparent that in azole-carbodithioates hybrids, the presence of nitro group is the deciding 41 42 factor for presence of antifungal or antiprotozoal activities. The two activities fail to co-exist 43 due to the unique pharmacophoric properties of the nitro-group in azoles. Four promising compounds (10, 17, 20 and 22) of this series had a better safety profile as compared to N-9 and could be used as lead molecules for designing antimicrobial contraceptives. The proposed docking analysis is noteworthy and can be utilized as a guideline for designing of promising anti-*Candida* agents.

5

6 **4. Experimental section**

7 4.1. Chemistry

8 In general, all reagents and solvents were of commercial quality and used without further 9 purification. Melting points were determined in open capillary tubes on an electrically heated block and were uncorrected. IR spectra (v_{max} in cm⁻¹) of the compounds were recorded on 10 Perkin Elmer's FT-IR RX1 PC spectrophotometer. ¹H NMR & ¹³C NMR spectra were 11 recorded on Bruker Supercon Magnet Avance/DRX-300 spectrometers (300 MHz for ¹H; 12 75.4 MHz for ¹³C) in deuterated solvents with TMS as internal reference (chemical shifts δ in 13 ppm, J in Hz). Electrospray Ionisation Mass spectra (ESI-MS) were recorded on Thermo Lcq 14 15 Advantage Max-IT. Elemental analyses were performed on Carlo Erba EA-1108 micro 16 analyzer / Vario EL-III C H N S analyzer. All compounds were analyzed of C, H, N and the 17 results obtained were within $\pm 0.4\%$ of calculated values. The reaction progress was routinely 18 monitored by thin layer chromatography (TLC) on pre-coated silica gel plates (Aldrich). 19 Column chromatography was performed over Merck silica gel (60-120 Mesh). All compounds were characterized by TLC, ¹H and ¹³C NMR and MS. Elemental analyses data 20 meet the criteria of ≥95% purity. All chemicals and solvents were procured from Sigma-21 22 Aldrich/Merck India Ltd.

23

24 4.1.1. Synthesis of methyl 1H-imidazole-1-carbodithioate (7)

25 Into an ice-cooled suspension of sodium hydride (14.7 mmol, 60% in mineral oil) in THF 26 (5.0 mL) was added a solution of imidazole (0.5 gm) in THF (10.0 mL) dropwise in 5 min, 27 the mixture became dense by complete addition of imidazole. A solution of carbon disulfide 28 (11.0 mmol, 0.7 mL) in THF (5.0 mL) was added dropwise in 5 and then the reaction mixture 29 stirred at 0-5 °C for 15 min. The reaction mixture became clear and dark yellow into which a 30 solution of iodomethane (9.5 mmol, 0.6 mL) in THF (5.0 mL) was added dropwise in 2 min 31 then reaction mixture stirred for 10 min at 0-5 °C. Distilled water (2.0 mL) was added 32 carefully to quench excess of sodium hydride. Solvents were evaporated under reduced 33 pressure in rotavapor to provide dense reaction mixture. That was diluted with ethyl acetate 34 (10.0 mL), washed with distilled water (3 x 5.0 mL), and dried over anhydrous sodium sulphate. Sodium sulphate was filtered off and washed with ethyl acetate (3 x 5.0 mL). 35 36 Combined filtrate was concentrated in rotavapor to provide crude oil that was purified by column chromatography on silica-gel using chloroform as eluent to provide yellow oil. 37

38 Yield 95%; Yellow oil; IR (neat): 2940, 1635, 1580 cm⁻¹; ESI-MS (m/z): 159 (MH⁺); ¹H 39 NMR (CDCl₃, 300 MHz): δ 8.51 (s, 1H), 7.80 (s, 1H), 7.12 (s, 1H), 2.81 (s, 3H); Anal. Calcd.

40 for $C_5H_6N_2S_2$: C, 37.95; H, 3.82; N, 17.70; Found: C, 37.92; H, 3.80; N, 17.71.

41

1 The following compounds 8–27 were prepared using a procedure described for compound 7

- 2 from the corresponding azoles, carbon disulfide and alkyl halide/alkenyl halide. All the
- 3 compounds were purified by column chromatography on silica-gel.
- 4 4.1.2. 3-Cyanopropyl 1H-imidazole-1-carbodithioate (8)
- 5 Eluent: 70% ethyl acetate-hexane; Yield 91%; Yellow oil; IR (neat): 2963, 2248, 1638, 1423
- 6 cm⁻¹; ESI-MS (m/z): 212 (MH⁺); ¹H NMR (CDCl₃+CCl₄, 300 MHz): δ 8.45 (s, 1H), 7.76 (s,
- 7 1H), 7.10 (s, 1H), 3.55 (t, 2H, J = 7.3 Hz), 2.53 (t, 2H, J = 6.9 Hz), 2.22–2.12 (m, 2H); ¹³C
- 8 NMR (CDCl₃+CCl₄, 75.5 MHz): δ 196.7 (C=S), 135.7, 132.0, 118.0, 117.8, 34.7, 24.0, 16.6;
- 9 Anal. Calcd. for $C_8H_9N_3S_2$: C, 45.47; H, 4.29; N, 19.89; Found: C, 45.42; H, 4.20; N, 19.88.
- 10
- 11 4.1.3. Allyl 1H-imidazole-1-carbodithioate (9)
- 12 Eluent: 40% ethyl acetate-hexane; Yield 86%; Semisolid; IR (neat): 3113, 2960, 1637, 1531,
- 13 1468, 1368, 1275, 765 cm⁻¹; ESI-MS (m/z): 185 (MH⁺); ¹H NMR (CDCl₃, 300 MHz): δ 8.47
- 14 (s, 1H), 7.78 (s, 1H), 7.10 (s, 1H), 5.99–5.85 (m, 1H), 5.42 (d, 1H, *J* = 16.9 Hz), 5.29 (d, 1H,
- 15 J = 10.0 Hz), 4.06 (d, 2H, J = 6.9 Hz); ¹³C NMR (CDCl₃, 75.5 MHz): δ 197.2 (C=S), 135.7,
- 16 131.6, 129.7, 120.8, 117.8, 39.7; Anal. Calcd. for C₇H₈N₂S₂: C, 45.62; H, 4.38; N, 15.20;
- 17 Found: C, 45.52; H, 4.24; N, 15.11.
- 18
- 19 *4.1.4. Butyl 1H-imidazole-1-carbodithioate (10)*
- Eluent: 5% ethyl acetate-hexane; Yield 71%; Yellow oil; IR (neat): 2963, 1634, 1446, 1369, 1218, 766 cm⁻¹; ESI-MS (*m/z*): 201 (MH⁺); ¹H NMR (CDCl₃, 300 MHz): δ 8.49 (s, 1H), 7.80 (s, 1H), 7.10 (s, 1H), 3.40 (t, 2H, J = 7.4 Hz), 1.82–1.72 (m, 2H), 1.56–1.43 (m, 2H), 0.98 (t, 2H, J = 7.3 Hz); ¹³C NMR (CDCl₃, 75.5 MHz): δ 198.5 (C=S), 135.7, 131.4, 117.8, 36.8, 29.5, 22.2, 13.7; Anal. Calcd. for C₈H₁₂N₂S₂: C, 47.97; H, 6.04; N, 13.98; Found: C, 47.99; H, 6.14; N, 14.01.
- 26
- 27 4.1.5. Octyl 1H-imidazole-1-carbodithioate (11)
- Eluent: 20% ethyl acetate-hexane; Yield 74%; Yellow oil; IR (neat): 2927, 2855, 1653, 1465, 1368, 754 cm⁻¹; ESI-MS (*m/z*): 257 (MH⁺); ¹H NMR (CDCl₃+CCl₄, 300 MHz): δ 8.45 (s, 1H), 7.76 (s, 1H), 7.08 (s, 1H), 3.37 (t, 2H, *J* = 7.4 Hz), 1.83–1.73 (m, 2H), 1.46–1.44 (m, 2H), 1.29 (bs, 8H), 0.89–0.87 (m, 3H); ¹³C NMR (CDCl₃+CCl₄, 75.5 MHz): δ 197.1 (C=S), 134.7, 130.6, 116.9, 36.1, 31.0, 28.3, 28.2, 26.7, 21.8, 13.3; Anal. Calcd. for C₁₂H₂₀N₂S₂: C, 56.21; H, 7.86; N, 10.92; Found: C, 56.12; H, 7.84; N, 10.81.
- 34
- 35 4.1.6. Hexadecyl 1H-imidazole-1-carbodithioate (12)
- 36 Eluent: 70% ethyl acetate-hexane; Yield 55%; Yellow solid; mp 40-41 °C; IR (KBr): 2926, 37 2854, 1628, 1465, 1368, 761 cm⁻¹; ESI-MS (*m/z*): 369 (MH⁺); ¹H NMR (CDCl₃, 300 MHz): δ 38 8.48 (s, 1H), 7.79 (s, 1H), 7.10 (s, 1H), 3.38 (t, 2H, J = 7.4 Hz), 1.83–1.73 (m, 2H), 1.56–1.41 39 (m, 2H), 1.26 (bs, 24H), 0.88 (t, 3H, J = 6.9 Hz); ¹³C NMR (CDCl₃, 75.5 MHz): δ 198.5 40 (C=S), 135.7, 131.5, 117.8, 37.1, 32.0, 29.8, 29.7, 29.6, 29.5, 29.2, 29.0, 27.5, 22.8, 14.2; 41 Anal. Calcd. for C₂₀H₃₆N₂S₂: C, 65.16; H, 9.84; N, 7.60; Found: C, 65.24; H, 9.73; N, 7.61.
- 42
- 43 *4.1.7. 2-(1,3-Dioxoisoindolin-2-yl)ethyl 1H-imidazole-1-carbodithioate (13)*

Eluent: 80% ethyl acetate-hexane; Yield 57%; Yellow solid; mp 152-153 °C; IR (KBr): 2946,
 2850, 1715, 1613, 1467, 714 cm⁻¹; ESI-MS (*m/z*): 318 (MH⁺); ¹H NMR (CDCl₃, 300 MHz): δ
 8.44 (s, 1H), 7.88–7.86 (m, 2H), 7.76–7.74 (m, 3H), 7.09 (s, 1H), 4.13 (t, 2H, *J* = 6.4 Hz),
 3.77 (t, 2H, *J* = 6.4 Hz); ¹³C NMR (CDCl₃, 75.5 MHz): δ 196.8 (C=S), 168.0, 135.9, 134.4,
 131.9, 131.7, 123.6, 118.0, 35.5, 34.9; Anal. Calcd. for C₁₄H₁₁N₃O₂S₂: C, 52.98; H, 3.49; N,
 13.24; Found: C, 52.92; H, 3.47; N, 13.21.

8 4.1.8. Methyl-2-methyl 1H-imidazole-1-carbodithioate (14)

9 Eluent: chloroform; Yield 88%; Semisolid; IR (neat): 2926, 2853, 1636, 1420, 761 cm⁻¹; ESI-10 MS (m/z): 173 (MH⁺); ¹H NMR (CDCl₃, 300 MHz): δ 7.57 (d, 1H, J = 1.5 Hz), 6.92 (d, 1H, J11 = 1.4 Hz), 2.75 (s, 3H), 2.71 (s, 3H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 201.7 (C=S), 146.7, 12 127.5, 119.4, 21.1, 17.8; Anal. Calcd. for C₆H₈N₂S₂: C, 41.83; H, 4.68; N, 16.26; Found: C, 13 41.78; H, 4.84; N, 16.22.

14

15 *4.1.9. 3-Cyanopropyl-2-methyl 1H-imidazole-1-carbodithioate (15)*

16 Eluent: 80% ethyl acetae-hexane; Yield 71%; Yellow oil; IR (neat): 2926, 2853, 2248, 1635, 17 1549, 763 cm⁻¹; ESI-MS (*m/z*): 226 (MH⁺); ¹H NMR (CDCl₃+CCl₄, 300 MHz). δ 7.57 (d, 1H, 18 J = 1.6 Hz), 6.90 (d, 1H, J = 1.6 Hz), 3.47 (t, 2H, J = 7.3 Hz), 2.72 (s, 3H), 2.53 (t, 2H, J =19 6.9 Hz) 2.21–2.11 (m, 2H); ¹³C NMR (CDCl₃+CCl₄, 75.5 MHz): δ 199.2 (C=S), 147.3, 20 128.3, 119.1, 118.0, 35.8, 23.9, 18.6, 16.8; Anal. Calcd. for C₉H₁₁N₃S₂: C, 47.97; H, 4.92; N, 18.65; Found: C, 47.92; H, 4.91; N, 18.54.

22

23 4.1.10. Allyl 2-methyl 1H-imidazole-1-carbodithioate (16)

Eluent: chloroform; Yield 90%, Semisolid; IR (neat): 2928, 2856, 1637, 1437, 760 cm⁻¹. ESI-MS (m/z): 199 (MH⁺); ¹H NMR (CDCl₃+CCl₄, 300 MHz): δ 7.56 (d, 1H, J = 1.6 Hz), 6.88 (d, 1H, J = 1.6 Hz), 5.97–5.84 (m, 1H), 5.41 (dd, 1H, J = 1.2, 16.9 Hz), 5.28 (dd, 1H, J = 10.0, 1.2 Hz), 3.97 (d, 2H, J = 7.0 Hz), 2.71 (s, 3H); ¹³C NMR (CDCl₃+CCl₄, 75.5 MHz): δ 199.7 (C=S), 146.9, 129.9, 127.9, 120.8, 119.2, 41.0, 18.3; Anal. Calcd. for C₈H₁₀N₂S₂: C, 48.45; H, 5.08; N, 14.13; Found: C, 48.12; H, 5.24; N, 14.34.

31 4.1.11. Butyl 2-methyl 1H-imidazole-1-carbodithioate (17)

22 Eluent: 2% methanol-chloroform; Yield 64%; Semisolid; IR (neat): 2963, 1634, 1446, 1369, 33 1218, 766 cm⁻¹; ESI-MS (*m/z*): 215 (MH⁺); ¹H NMR (CDCl₃+CCl₄, 300 MHz): δ 7.55 (d, 34 1H, *J* = 1.6 Hz), 6.87 (d, 1H, *J* = 1.6 Hz), 3.30 (t, 2H, *J* = 7.4 Hz), 2.70 (s, 3H), 1.81–1.71 (m, 35 2H), 1.56–1.43 (m, 2H), 0.99 (t, 3H, *J* = 7.3 Hz); ¹³C NMR (CDCl₃+CCl₄, 75.5 MHz): δ 36 199.8 (C=S), 145.7, 126.7, 118.3, 36.9, 28.4, 21.4, 17.2, 12.8; Anal. Calcd. for C₉H₁₄N₂S₂: C, 37 50.43; H, 6.58; N, 13.07; Found: C, 50.42; H, 6.44; N, 13.10.

38

39 4.1.12. Octyl 2-methyl 1H-imidazole-1-carbodithioate (18)

40 Eluent: chloroform; Yield 82%; Yellow oil; IR (neat): 2927, 2856, 1637, 1460, 763 cm⁻¹;

- 41 ESI-MS (m/z): 271 (MH⁺); ¹H NMR (CDCl₃, 300 MHz): δ 7.57 (d, 1H, J = 1.7 Hz), 6.90 (d,
- 42 1H, J = 1.7 Hz), 3.30 (t, 2H, J = 7.4 Hz), 2.70 (s, 3H), 1.82–1.72 (m, 2H), 1.50–1.41 (m, 2H),
- 43 1.29 (bs, 8H), 0.89 (t, 3H, J = 6.8 Hz); ¹³C NMR (CDCl₃, 75.5 MHz): δ 201.3 (C=S), 146.7,

1 127.6, 119.5, 38.3, 31.9, 29.8, 29.2, 27.3, 22.7, 18.0, 14.2; Anal. Calcd. for $C_{13}H_{22}N_2S_2$: C, 2 57.73; H, 8.20; N, 10.36; Found: C, 57.70; H, 8.21; N, 10.25.

3

4 4.1.13. Hexadecyl 2-methyl 1H-imidazole-1-carbodithioate (19)

Eluent: chloroform; Yield 51%; Yellow oil; IR (neat): 2926, 2854, 1635, 1460, 765 cm⁻¹;
ESI-MS (*m/z*): 383 (MH⁺); ¹H NMR (CDCl₃, 300 MHz): δ 7.57 (d, 1H, *J* = 1.6 Hz), 6.90 (d,
1H, *J* = 1.6 Hz), 3.30 (t, 2H, *J* = 7.4 Hz), 2.71 (s, 3H), 1.82–1.72 (m, 2H), 1.46–1.41 (m, 2H),
1.26 (m, 24H), 0.87 (t, 3H, *J* = 6.8 Hz); ¹³C NMR (CDCl₃, 75.5 MHz): δ 201.3 (C=S), 146.7,
127.6, 119.5, 38.3, 32.0, 29.8, 29.8, 29.8, 29.7, 9.5, 29.2, 29.2, 27.3, 22.8, 18.1, 14.2;
Anal. Calcd. for C₂₁H₃₈N₂S₂: C, 65.91; H, 10.01; N, 7.32; Found: C, 66.12; H, 10.12; N, 7.40.

11

12 *4.1.14. Methyl 1H-1,2,4-triazole-1-carbodithioate* (20)

13 Eluent: 80% chloroform-hexane; Yield 58%; Yellow crystalline solid; mp 45-46 °C; IR 14 (KBr): 2923, 2853, 1619, 1369, 766 cm⁻¹; ESI-MS (m/z): 160 (MH⁺); ¹H NMR (CDCl₃+CCl₄, 15 300 MHz): δ 9.14 (s, 1H), 8.04 (s, 1H), 2.75 (s, 3H); ¹³C NMR (CDCl₃+CCl₄, 75.5 MHz): δ 16 199.5 (C=S), 153.5, 143.1, 19.7; Anal. Calcd. for C₄H₅N₃S₂: C, 30.17; H, 3.16; N, 26.39; 17 Found: C, 30.32; H, 3.34; N, 26.28.

18

19 *4.1.15. Allyl 1H-1,2,4-triazole-1-carbodithioate* (21)

Eluent: 70% chloroform-hexane; Yield 35%; Oil; IR (neat) 2925, 2854, 1637, 1437, 760 cm⁻¹; ESI-MS (m/z): 186 (MH⁺); ¹H NMR (CDCl₃, 300 MHz): δ 9.13 (s, 1H), 8.04 (s, 1H), 5.99– 5.86 (m, 1H), 5.43 (dd, 1H, J = 1.0, 16.9 Hz), 5.29 (dd, 1H, J = 10.0, 0.7 Hz), 3.98 (d, 2H, J = 6.9 Hz); ¹³C NMR (CDCl₃, 75.5 MHz): δ 197.8 (C=S), 153.4, 143.2, 129.9, 120.9, 39.3; Anal. Calcd. for C₆H₇N₃S₂: C, 38.90; H, 3.81; N, 22.68; Found: C, 38.95; H, 3.82; N, 22.97.

25

26 4.1.16. Methyl 1H-benzo[d]imidazole-1-carbodithioate (22)

27 Eluent: 50% chloroform-hexane; Yield 84%; Yellow solid; mp 62-64 °C; IR (KBr): 2925, 28 2856, 1675, 1599 cm⁻¹; ESI-MS (*m/z*) 209 (MH⁺); ¹H NMR (CDCl₃, 300 MHz): δ 8.86 (s, 29 1H), 8.53 (dd, 1H, J = 2.3, 5.6 Hz), 7.81–7.77 (m, 1H), 7.43–7.26 (m, 2H), 2.83 (s, 3H); ¹³C 30 NMR (CDCl₃, 75.5 MHz): δ 199.0 (C=S), 145.4, 141.7, 132.9, 125.8, 125.2, 121.1, 115.7, 31 20.0; Anal. Calcd. for C₉H₈N₂S₂: C, 51.89; H, 3.87; N, 13.45; Found: C, 51.62; H, 3.64; N, 32 13.34.

33

34 *4.1.17. 3-Cyanopropyl 1H-benzo[d]imidazole-1-carbodithioate* (23)

Eluent: 90% chloroform-hexane. Yield 62%; Yellow oil; IR (neat): 2963, 2364, 1626, 1499, 768 cm⁻¹; ESI-MS (*m/z*): 262 (MH⁺); ¹H NMR (CDCl₃, 300 MHz): δ 8.85 (s, 1H), 8.53 (dd, 1H, J = 2.3, 5.6 Hz), 7.82–7.76 (m, 1H), 7.43–7.39 (m, 2H), 3.57 (t, 2H, J=7.2 Hz), 2.55 (t, 2H, J = 6.9 Hz), 2.23–2.14 (m, 2H); ¹³C NMR (CDCl₃, 75.5 MHz): δ 196.6 (C=S), 145.2,

39 141.7, 132.9, 126.1, 125.6, 121.1, 118.5, 115.8, 34.8, 23.9, 16.6; Anal. Calcd. for

40 C₁₂H₁₁N₃S₂: C, 55.14; H, 4.24; N, 16.08; Found: C, 55.35; H, 4.47; N, 16.24.

41

^{42 4.1.18.} Allyl 1H-benzo[d]imidazole-1-carbodithioate (24)

1 Eluent: 40% chloroform-hexane. Yield 87%; Yellow oil; IR (neat): 2924, 2852, 1635, 1458, 2 765 cm⁻¹; ESI-MS (*m/z*): 235 (M⁺); ¹H NMR (CDCl₃, 300 MHz): δ 8.85 (s, 1H), 8.55–5.52 3 (m, 1H), 7.80–7.77 (m, 1H), 7.43–7.35 (m, 2H), 6.03–5.89 (m, 1H), 5.45 (d, 1H, J = 17.04 Hz), 5.31 (d, 1H, J = 10.0 Hz), 4.10 (d, 2H, J = 6.9 Hz). ¹³C NMR (CDCl₃, 75.5 MHz): δ 5 197.2 (C=S), 145.4, 141.7, 132.9, 130.0, 125.8, 125.3, 121.1, 120.9, 115.8, 39.9; Anal. Calcd. 6 for C₁₁H₁₀N₂S₂: C, 56.38; H, 4.30; N, 11.95; Found: C, 56.61; H, 4.54; N, 11.84.

7

8 4.1.19. Butyl 1H-benzo[d]imidazole-1-carbodithioate (25)

Eluent: 60% chloroform-hexane. Yield 75%; Yellow semisolid; IR (neat): 2960, 2928, 2858,
1653, 1447, 763 cm⁻¹; ESI-MS (*m/z*): 251 (MH⁺); ¹H NMR (CDCl₃, 300 MHz): δ 8.87 (s,
11H), 8.56–8.53 (m, 1H), 7.81–7.77 (m, 1H), 7.43–7.35 (m, 2H), 3.45 (t, 2H, *J* = 7.5 Hz),
1.84–1.76 (m, 2H), 1.59–1.49 (m, 2H), 1.0 (t, 3H, *J* = 7.3 Hz); ¹³C NMR (CDCl₃, 75.5 MHz):
δ 198.5 (C=S), 145.4, 141.7, 133.0, 125.7, 125.2, 121.1, 115.9, 37.0, 29.5, 22.3, 13.7; Anal.
Calcd. for C₁₂H₁₄N₂S₂: C, 57.56; H, 5.64; N, 11.19; Found: C, 57.38; H, 5.43; N, 11.26.

15

16 *4.1.20. Octyl 1H-benzo[d]imidazole-1-carbodithioate* (26)

17 Eluent: 40% chloroform-hexane. Yield 55%, Yellow semisolid. IR (KBr): 2926, 2856, 1656, 18 1447, 763 cm⁻¹. ESI-MS (m/z): 307 (MH⁺). ¹H NMR (CDCl₃, 300 MHz): δ 8.87 (s, 1H), 8.55 19 (dd, 1H, J = 2.2, 6.0 Hz), 7.80 (dd, 1H, J=3.4, 6.6 Hz), 7.43–7.35 (m, 2H), 3.44 (t, 2H, J=7.410 Hz), 1.88–1.85 (m, 2H), 1.55–1.49 (m, 2H), 1.47 (bs, 8H), 0.89 (t, 3H, J = 4.3, 2.3 Hz). ¹³C 21 NMR (CDCl₃, 75.5 MHz): δ 198.6 (C=S), 145.4, 141.7, 133.0, 125.7, 125.2, 121.1, 115.9, 22 37.3, 31.9, 29.8, 29.2, 27.5, 22.8, 14.2. Anal. Calcd. for C₁₆H₂₂N₂S₂: C, 62.70; H, 7.24; N, 23 9.14; Found: C, 62.56; H, 7.34; N, 9.27.

24

25 4.1.21. 1-Methyl-1H-benzo[d][1,2,3]triazole (27)

Eluent: 50% chloroform-hexane. Yield 67%; Light green solid; mp 70-71 °C. IR (KBr): 2962, 2856, 762 cm⁻¹; ESI-MS (*m/z*): 134 (MH⁺); ¹H NMR (CDCl₃+CCl₄, 300 MHz): δ 8.02 (d, 1H, J = 8.3 Hz), 7.46–7.42 (m, 2H), 7.38–7.30 (m, 1H), 4.28 (s, 3H); ¹³C NMR (CDCl₃+CCl₄, 75.5 MHz,): δ 146.1, 133.6, 127.3, 109.1, 123.8, 120.2, 34.1; Anal. Calcd. for C₇H₇N₃ C, 63.14; H, 5.30; N, 31.56; Found: C, 63.21; H, 5.25; N, 31.61.

31

32 **4.2. Biology**

33 4.2.1. Antifungal/ Anti-Candida activity [11]

The MIC of compounds were determined by broth micro-dilution technique as per the guidelines of National Committee for Clinical Laboratory Standards using RPMI 1640 media buffered with MOPS [3-(N-Morpholino)propanesulfonic acid]. Starting inoculum of test culture was $1-5 \times 10^3$ CFU/mL. Micro titre plates were incubated at 35 °C. MICs, IC₅₀ were recorded spectrophotometrically at 492 nm after 48 h of incubation (Table 1 and 2).

39

40 4.2.2. Spermicidal activity [7]

41 Spermicidal assay was adapted from the standard procedure. Briefly, the test compounds

- 42 were dissolved in a minimum volume of DMSO and diluted with physiological saline (0.85%
- 43 NaCl in distilled water) to make a 1.0% test solution. 0.05 mL of liquefied human semen was

added to 0.25 mL of test solution and vortexed for 10 seconds at low speed. A drop of the
mixture was then placed on a microscope slide, covered with a cover glass and examined
under a phase contrast microscope in five fields of vision. The percentage of motile
spermatozoa was determined by visual scoring in the next 60 seconds and recorded (Table 3). *4.2.3. Anti-Trichomonas activity [11]*

Trichomonas vaginalis parasites to be used in drug susceptibility assays were grown in TYM 6 (Trypticase Yeast-Extract Maltose) medium supplemented with 10% FCS (fetal calf serum), 7 8 vitamin mixture and 100.0 U/mL penicillin/streptomycin, at 37 °C in 15.0 mL tubes for one day, followed by regular subculturing, and were in the log phase of growth. The cultures 9 routinely attained a concentration 2×10^7 cells/mL in 48 h. Inoculum of 1×10^4 cells per tube 10 was used for maintenance of the culture. In vitro drug susceptibility assays were carried out 11 using the standard procedure. Stock solutions (100.0 µg/mL) of test compounds were 12 prepared in DMSO. These stock solutions were serially diluted with TYM medium to obtain 13 14 concentration upto 0.1 µg/mL in 48-well plates. DMSO/TYM was used as vehicle in control wells. Parasites (5 x 10^4 trophozoites/L) were added to these wells and incubated 15 anaerobically at 37 °C. Cells were checked for viability at different time intervals from 3 to 16 17 48 h under the microscope at 200X magnification. Viability of the cells was determined by 18 trypan blue exclusion assay. Minimum concentration of the test agent at which all cells were 19 found dead in 48 h was considered as its MIC. The experiment was repeated three times to 20 confirm the MIC (Table 3)

21

22 4.2.4. Antibacterial activity [11]

The MIC of each test compound was determined against five bacterial isolates by broth microdilution technique as per guidelines of National Committee for Clinical Laboratory Standards. MIC was measured in 96 well tissue culture plate (Cellstar Greiner Bio One, Germany) using Mueller Hinton broth media (Sigma Chemical Co.). The inoculum of the test cultures was maintained at $1-5 \times 10^3$ cfu/mL. Micro-titer plates were incubated at 35 °C in a moist, dark chamber, and MIC and IC₅₀ were recorded spectrophotometrically (Softmax pro[®] 4.3, Versamax microplate reader at 492 nm, Molecular Devices) after 48 h (Table 1).

30

31 4.2.5. Cytotoxicity towards human cervical (HeLa) cell line by lactate dehydrogenase –

32 release assay [11]

A colorimetric assay for lactate dehydrogenase (LDH) release was used for the evaluation of 33 the cytotoxicity of spermicidal compounds against the HeLa cell line (Table 4). 34 35 Exponentially growing HeLa cells were seeded into 96-well tissue culture plates at a density of 2×10^4 cells per well (in triplicate). After 24 h incubation in a CO₂ incubator at 37 °C in 36 5% CO₂, 95% air atmosphere, the culture medium [Dulbecco's modified Eagle's medium 37 (DMEM)] was replaced with 100.0 µL of fresh medium containing serially diluted 38 39 spermicidal compounds. Control wells contained the medium only. Culture plates were incubated for another 5 h, and then 50.0 μ L of the supernatant from each well of the assay 40 plate was pipetted into the corresponding well of a flat-bottom 96-well plate. Colour reaction 41 for LDH assay and IC₅₀ measurement for cytotoxicity were performed using CytoTox-96 kit 42

(Promega, Madison, WI, USA) by following the instructions of the manufacturer. Optical
 densities at 490 nm were measured in a micro-plate reader (µQuant, Bio-Tek, USA).

- 3
- 4 4.2.6. Effect on Lactobacillus acidophillus in vitro [11]
- 5 The effect of compounds exhibiting potent spermicidal activity on *Lactobacillus acidophillus*
- 6 was determined by following the method published earlier [11]. Briefly, Rogosa SL agar
- 7 plates (7.5%; containing 0.132% acetic acid), prepared with (experimental) or without
- 8 (control) the addition of spermicidal compounds, were inoculated with *L. acidophillus* (~70

9 spores/10 cm²) and incubated at 37 °C in 5% CO₂ and 95% air for 72 h. The number and size 10 of colonies were recorded at the end of the experiment. The average colony size (% of 11 control) was multiplied by the colony number and divided by 100 to arrive at the data 12 presented. The aver-age colony size for the control was taken as 100% (Table 4).

13

14 4.3. Molecular modelling and docking studies

- Minimized 3D structure of inhibitors except Fluconazole was generated by Sybyl7.1 [28] and 15 used for docking study. Docking was carried out with inhibitors (Fluconozole, compounds 16 10, 17, 20, 22) using Autodock 3 [29]. Bound Fluconozole coordinate information was 17 18 obtained from 3LD6 [30] and docking was performed to investigate that whether its binding to C. albicans CYP51 is similar or not. After getting the conformation close to co-crystallized 19 20 Fluconazole, docking with other inhibitors was carried out. Heme group was processed 21 separately by manually assigning the +3 charge on Fe and co-ordinate information was finally merged with receptor. Grid box was centred on Heme group and Lamarckian genetic 22 23 algorithm [31] was used for calculation of 50 docking pose for each compound (Table 5).
- 24

25 Acknowledgments

We acknowledge Mrs. Tara Rawat (Technical Officer) for technical assistance and SAIF Division for spectral data. We acknowledge UGC (L.K., N.L., and L.K.), CSIR (A.S., and S.J.), and ICMR (V.B. and V.K.) for research fellowships. This study was partially supported by a grant from the Ministry of Health and Family Welfare, Government of India.

30

31 Supplementary data

- Supplementary data like scan copies of ¹H NMR and ¹³C NMR spectra can be found at http://dx.doi.org/
- 34

35 **Reference**

- [1] <u>http://misc.medscape.com/pi/android/medscapeapp/html/A257141-business.html</u>
 (accessed on 18.01.2013)
- 38 [2] B. Wachtler, D. Wilson, B. Hube, Antimicrob. Agents Chemother. 55 (2011) 4436–
 4439.

- 1 [3] D.A. Edelman, S. Grant, J. Reprod. Med. 44 (1999) 543-547.
- [4] S.S. Magill, C. Shields, C.L. Sears, M. Choti, W.G. Merz, J. Clin. Microbiol. 44 (2006)
 529-535.
- [5] A. Lupetti, R. Danesi, M. Campa, M.D. Tacca, S. Kelly, Trends in Mol. Med. 8 (2002)
 5 76-81.
- [6] A.K. Dwivedi, V.L. Sharma, N. Kumaria, S.T. Kiran Kumar, P.K. Srivastava, A.H.
 Ansari, J.P. Maikhuri, G. Gupta, J.D. Dhar, R. Roy, B.S. Joshi, P.K. Shukla, M. Kumar,
 S. Singh, Bioorg. Med. Chem. 15 (2007) 6642–6648.
- 9 [7] R.K. Jain, A. Jain, J.P. Maikhuri, V.L. Sharma, A.K. Dwivedi, S.T. Kumar, K. Mitra,
 10 V.K. Bajpai, G. Gupta, Hum. Reprod. 24 (2009) 590–601.
- [8] R.K. Jain, J.P. Maikhuri, S.T. Kiran Kumar, V.L. Sharma, A.K. Dwivedi, K. Mitra,
 V.K. Bajpai, G. Gupta, Hum. Reprod. 22 (2007) 708–716.
- [9] V.S. Kumar S.T., V.L. Sharma, P. Tiwari, D. Singh, J.P. Maikhuri, G. Gupta, M.M.
 Singh, Bioorg. Med. Chem. Lett. 16 (2006) 2509–2512.
- [10] S.T.V.S. Kiran Kumar, V.L. Sharma, M. Kumar, P.K. Shukla, P. Tiwari, R.K. Jain, J.P.
 Maikhuri, D. Singh, G. Gupta, M.M. Singh, Bioorg. Med. Chem. 14 (2006) 6593–6600.
- [11] S.T.V.S. Kiran Kumar, L. Kumar, V.L. Sharma, A. Jain, R.K. Jain, J.P. Maikhuri, M.
 Kumar, P.K. Shukla, G. Gupta, Eur. J. Med. Chem. 43 (2008) 2247–2256.
- [12] L. Kumar, A. Sarswat, N. Lal, V.L. Sharma, A. Jain, R. Kumar, V. Verma, J.P.
 Maikhuri, A. Kumar, P.K. Shukla, G. Gupta, Eur. J. Med. Chem. 45 (2010) 817–824.
- [13] L. Kumar, A. Sarswat, N. Lal, A. Jain, S. Kumar, S.T.V.S. Kiran Kumar, J.P. Maikhuri,
 A.K. Pandey, P.K. Shukla, G. Gupta, V.L. Sharma, Bioorg. Med. Chem. Lett. 21 (2011)
 176–181.
- 24 [14] A.E. Cury, M.P.M. Hirschfeld, Mycoses 40 (1997) 187-192.
- 25 [15] P.G. Nielsen, Mykosen 27 (1984) 475-476.
- 26 [16] P. Chen, Y. Wang, A. Hu, J. Zhang, Z. Yu, X. Ou, Youji Huaxue 29 (2009) 989-992.
- 27 [17] Z. Li, F. Luo, Jingxi Huagong 22 (2005) 619-624.
- [18] E.F. Godefroi, J.J.H. Geenen, B.V. Klingeren, L.V. Wijngaarden, J. Med. Chem. 18
 (1975) 530-533.
- [19] G.P. Ellis, C. Epstein, C. Fitzmaurice, L. Golberg, G.H. Lord, J. Pharm. Pharmacol. 16
 (1964) 400-407.
- [20] A. Jain, N. Lal, L. Kumar, V. Verma, R. Kumar, L. Kumar, V. Singh, R.K. Mishra, A.
 Sarswat, S.K. Jain, J.P. Maikhuri, V.L. Sharma, G. Gupta, Antimicrob. Agents.
 Chemother. 55 (2011) 4343–4351.
- [21] T. Eicher, S. Hauptmann, The Chemistry of Heterocycles, second ed.,Wiley-VCH
 Verlag GmbH & Co. KGaA, 2003, pp. 206
 (www.Scribd.com/doc/23356458/56/Benzimidazole).
- [22] D.F. Lewis, A. Wiseman, M.H. Tarbit, J. Enzyme Inhib. Med. Chem. 14 (1999) 175 192.
- 40 [23] B. Rupp, S. Raub, C. Marian, H.D. Höltje, J. Comput. Aided Mol. Des. 19 (2005) 14941 163.
- 42 [24] H. Ji, W. Zhang, Y. Zhou, M. Zhang, J. Zhu, Y. Song, J. Lü, J. Med. Chem. 43 (2000)
 43 2493-2505.

- 1 [25] P.S. Doyle, C.K. Chen, J.B. Johnston, S.D. Hopkins, S.S. Leung, M.P. Jacobson, J.C. Engel, J.H. McKerrow, L.M. Podust, Antimicrob. Agents Chemother. 54 (2010) 2480-2
- 3
- 2488. 4 [26] V.S. Pore, M.A. Jagtap, S.G. Agalave, A.K. Pandey, M.I. Siddiqui, V. Kumar, P.K.
- Shukla, Med. Chem. Commun. 3 (2012) 484-488. 5
- [27] K. Chauhan, M. Sharma, P. Singh, V. Kumar, P.K. Shukla, M.I. Siddiqi, P.M.S. 6 7 Chauhan, Med. Chem. Commun. 3 (2012) 1104-1110.
- [28] G. Morris. SYBYL Software, Version 6.9, Tripos Associates 2002.St. Louis, MO. 8
- [29] D. S. Goodsell, G. M. Morris, A. J. Olson, J. Mol. Recognit. 9 (1996) 1-5. 9
- [30] N. Strushkevich, S. A. Usanov, H. W. Park, J. Mol. Biol. 4 (2010) 1067-78. 10
- [31] G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, A. J. 11 Olson, J. Comput. Chem. 19 (1998) 1639-1662. 12
- 13
- 14
- 15
- 16
- 17
- 18

1	
2	<u>Captions</u>
3 4 5	Figure 1. Chemical structures of known antifungal agents 1-5 and azole-carbodithioate hybrids 6
6 7	Scheme 1. Synthetic strategy for azole-carbodithioate hybrids 7–27
8 9	Table 1. In vitro Antifungal and Antibacterial ^a activity of compounds 7-27
10 11	Table 2. In vitro anti-Candida activity of compounds 7–27
12 13	Table 3. Sperm immobilization and anti- <i>Trichomonas</i> activity of compounds 7–27
14 15	Table 4. Toxicity of compounds 10, 17, 20, 22
16 17 18	Table 5. Docked energy and IC ₅₀ of compounds 10, 17, 20, 22
19 20 21	Figure 2. Docked conformation of compounds 10 (a), 17 (b), 20 (c) and 22 (d) into active site of <i>Candida albicans</i> Cyp51. Protein residues are shown in hot pink color with both stick and surface representations. All docked compounds are shown in green color. Only polar
22	hydrogens are shown for clarity.
23	
24 25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
36	
37	

1 Table 1

Compound	Д	zole S ^R	Antifung	al activity (I	C ₅₀ in µg/m	L) against ^b
-	Azole	R	Ss	Tm	Af	Cn
7		methyl	>50	>50	>50	>50
8	י~א~ ע בי	cyanopropyl	>50	ND	>50	>50
9	×∽×~	allyl	4.96	4.43	>50	5.75
10		butyl	>50	>50	ND	3.79
11	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	octyl	ND	1.48	6.21	>50
12	~~~~ \	decahexyl	>50	18.43	>50	>50
13	~~^∩^ \	ethylphthalimide	4.17	6.15	>50	28.59
14	Ĺ ^N ≻cH₃	methyl	4.41	11.68	>50	9.10
15	€N×CH3	cyanopropyl	>50	24.93	>50	>50
16	€N N N CH₃	allyl	1.50	>50	18.10	3.35
17	Ĺ ^N ≻cH₃	butyl	5.71	2.02	23.79	5.57
18	Ĺ̈́≻cH₃	octyl	4.47	>50	>50	>50
19	Ĺ ^N ≻cH₃	decahexyl	>50	7.07	>50	>50
20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	methyl	4.34	>50	>50	>50
21	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	allyl	5.78	>50	>50	>50
22		methyl	1.54	2.42	24.39	0.69
23		cyanopropyl	ND	ND	>50	>50
24		allyl	ND	>50	>50	>50
25		butyl	>50	1.40	>50	>50
26		octyl	>50	>50	>50	>50
27	C,	I, n	1.58	>50	>50	>50
Fluconazole.			0.08	0.06	0.38	0.46

2 ^aCompounds (7–27) showed MIC at >50 μg/mL against four bacterial strains: *E. coli* (ATCC 9637),

3 Pseudomonas aeruginosa (ATCC BAA-427), Staphylococcus aureus (ATCC 25923), Klebsiella

4 pneumonia. ^bSs: Sporothrix schenckii; Tm: Trichophyton mentagrophytes; Af: Aspergillus fumigatus;

5 Cn: Cryptococcus neoformans.

1 **Table 2.**

Compound	Az	zole S ^R	Anti-C	Candida	activity	(IC ₅₀ in	μg/mL) a	against ^a
-	Azole	R	Ca	Ср	PK3	PK9	PK13	PK30
7	×^v~ √ ⊐ ∕	methyl	5.75	>50	>50	>50	>50	>50
8	N∻N- /=/	cyanopropyl	>50	5.27	>50	43.49	>50	10.77
9	י~אי רבי	allyl	>50	2.09	6.79	3.94	7.26	1.80
10	יעיע ע די	butyl	1.29	1.94	5.41	6.17	3.50	1.53
11	N∕~N∕ √⊒∕	octyl	5.72	>50	4.61	31.39	7.68	1.06
12	N∕~N∕ √⊒∕	decahexyl	>50	>50	>50	>50	>50	>50
13	м∻и~ \∕	ethylphthalimide	5.45	>50	11.09	30.95	19.53	16.02
14	€ N N CH₃	methyl	7.24	>50	37.29	>50	36.82	25.95
15	€××cH₃	cyanopropyl	36.03	>50	41.03	47.69	>50	>50
16	€ N N CH₃	allyl	2.21	10.15	3.61	7.26	4.53	2.10
17	€ N N CH₃	butyl	1.34	>50	4.69	7.64	5.09	2.12
18	€ N N N CH₃	octyl	7.21	>50	>50	19.03	>50	>50
19	€N×CH₃	decahexyl	>50	>50	>50	>50	>50	>50
20	N=1	methyl	1.43	>50	31.17	>50	38.03	>50
21	۲ ^{N.} N-	allyl	2.53	>50	>50	45.49	>50	>50
22	N L N	methyl	1.26	1.46	1.79	3.33	1.79	1.75
23		cyanopropyl	>50	>50	>50	3.86	>50	>50
24		allyl	>50	>50	40.09	39.32	>50	>50
25	N L N	butyl	6.39	>50	21.80	37.37	>50	>50
26		octyl	>50	>50	>50	>50	>50	>50
27	\bigcirc		>50	>50	>50	>50	>50	>50
Fluconazole			0.13	0.46	0.21	-	-	-

^aCa: Candida albicans, Cp: Candida parapsilosis (cp ATCC- 22019), PK3: Candida albicans
 (MTCC-183), PK9: Candida albicans (patient isolate CDRI), PK13: Candida albicans (ATCC-

4 10231), PK30: *Candida albicans* (patient isolate)

5

Table 3.

Compound	Percent sper	m immobilizationtion	Anti-Trichomonas activity
Compound	1.0% (w/v)	0.1% (w/v)	(MEC in µg/mL)
7	100%	0%	>200
8	100%	92-95%	>200
9	100%	0%	>200
10	100%	80%	>200
11	100%	80%	>200
12	100%	0%	>200
13	100%	0%	>200
14	100%	0%	>200
15	95%	0%	>200
16	100%	0%	>200
17	100%	0%	>200
18	100%	100%	>200
19	95%	0%	>200
20	100%	0%	>200
21	100%	0%	>200
22	100%	80%	>200
23	100%	0%	>200
24	100%	0%	>200
25	100%	0%	>200
26	95%	0%	>200
27	0%	0%	>200
Nonoxynol-9	100%	100%	37.4
Metronidazole	0%	0%	2.0

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	

Compound	Structure	HeLa cell (IC ₅₀ in µg/mL)	Lactobacillus a µg	<i>cidophillus</i> (IC ₅₀ in g/mL)
10	S S	48.70	4	5.64
17	S S	85.45	2	20.0
20	s s	53.69	3	9.54
22	S S	73.60	4	5.63
Nonoxynol- 9		37.00		1.00
Table 5.		Y		
Table 5. Compound	Stru	Anti (IC ₅	i- <i>Candida</i> activity $_0$ in µg/mL)	Docked energy (in Kcal/mole)
Table 5.Compound10	Stru	Anti (IC ₅) 1.29	i- <i>Candida</i> activity ₀ in μg/mL)	Docked energy (in Kcal/mole) -7.78
Table 5.Compound1017	Stru Stru S	$\begin{array}{c} \text{Anti}\\ \text{(IC}_{5}\\ \text{s}\\ $	i- <i>Candida</i> activity ₀ in μg/mL)	Docked energy (in Kcal/mole) -7.78 -8.17
Table 5.Compound101720	Stru Stru Stru Stru Stru Stru Stru Stru	Anti (IC5 3 3 3 3 4 3 3	i- <i>Candida</i> activity 0 in μg/mL)	Docked energy (in Kcal/mole) -7.78 -8.17 -5.74
Table 5. Compound 10 17 20 22	Stru Stru S S S S S S S S S S S S S S S S S S S	Anti (IC5 1.29 3^{-1} 3^{-1} 1.34 3^{-1} 1.43 3^{-1} 1.26	i- <i>Candida</i> activity ₀ in μg/mL)	Docked energy (in Kcal/mole) -7.78 -8.17 -5.74 -7.62

2 Table 4.

 1 Figure 1.

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

Research Highlights

- >Azole and carbodithioate hybrids were synthesized.
- > Compounds were evaluated for spermicidal/microbicidal activity.
- > Sixteen compounds were dually active against sperm and *Candida*.
- > Promising compounds were safer than Nonoxynol-9.
- > Docking study provided guidelines for designing anti-*Candida* agents.