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Abstract—Pinnamine, an alkaloidal marine toxin isolated from the bivalve Pinna muricata, was synthesized from N-Z-pyroglu-
tamic acid in 16 steps. © 2001 Elsevier Science Ltd. All rights reserved.

Pinnamine (1), an alkaloidal marine toxin, was isolated
from the Okinawan bivalve Pinna muricata.1 The abso-
lute stereostructure of 1 was determined by spectral
analysis including CD measurement. The structural fea-
tures of 1 are a 9-azabicyclo[4.2.1]nonane moiety and a
dihydro-�-pyrone structure. Although pinnamine (1)
exhibits characteristic toxic symptoms such as scurry,
the scarcity of its natural supply has prevented further
biological studies of it. We describe herein the enan-
tioselective synthesis of pinnamine (1).

Synthesis of 1 was started from N-Z-pyroglutamic acid
(2) (Scheme 1). Reduction of the carboxyl group gave
alcohol 3 in 61% yield.2,3 Alcohol 3 was further reduced
with DIBAL-H to afford hemiaminal 44 (92% yield),
the acid treatment of which in methanol provided
diastereomeric hemiaminal methyl ether 5 in 93% yield.
No pyranoside derivatives were isolated. Compound 5
was transformed into iodide 7 in two steps. Four-car-
bon homologation of 7 with the dianion of ethyl ace-
toacetate afforded the desired �-ketoester 12b in poor

yield because of the instability of the Z protecting
group during the coupling reaction.

To avoid strongly basic conditions during homologa-
tion, the Wittig reaction and the Claisen condensation
were employed. Alcohol 5 was oxidized with SO3–pyri-
dine to give aldehyde 8, the Wittig reaction of which
afforded the conjugated ester 9 (87% yield in two steps).
Conjugated reduction of the �,�-unsaturated ester
group in 9 with NaBH4–CuCl5 quantitatively provided
saturated ester 10, which was hydrolyzed to carboxylic
acid 11 in 84% yield. Carboxylic acid 11 was converted
into the corresponding imidazolide, which was con-
densed with tert-butyl acetate to give �-ketoester 12a in
62% yield.

Lewis acid treatment6 of the silyl enol ether of 12a
provided the bicyclo compound 13 in 78% yield, which
was stereoselectively reduced with NaBH4 to give alco-
hol 14 (90% yield). Compounds 13 and 14 were
obtained as single products, and their stereochemistry
was deduced by comparison of the coupling constants
of � hydrogen to the carbo-t-butoxy group in 14 with
those simulated using computer-calculated models with
four possible types of stereochemistry, 14A–14D (Fig.
1).7 The stereochemistry of 13 could be explained by the
formation of a chelated tin enolate intermediate and the
cyclization via a product-like transition state (Fig. 2).
The stereoselectivity of this reduction could be pre-
dicted by considering the conformation of 13 to be
attacked from the less hindered exo orientation (Fig.
2).7
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Scheme 1. (a) 1. ClCO2Et, N-methylmolphorine, THF, −10°C; 2. NaBH4, MeOH, 0°C (61%); (b) DIBAL-H, CH2Cl2, −78°C
(92%); (c) p-TsOH, MeOH, rt (93%); (d) TsCl, pyridine, 0°C (90%); (e) NaI, CaCO3, DMF, 80°C (60%); (f) ethyl acetoacetate,
NaH, n-BuLi, rt (5%); (g) SO3–pyridine, Et3N, DMSO, rt; (h) Ph3P�CHCO2Me, THF, rt (87% in two steps); (i) NaBH4, CuCl,
MeOH, THF, 0°C (100%); (j) 1 M NaOH aq., MeOH, rt (84%); (k) 1. 1,1�-carbonyldiimidazole, THF, rt; 2. LDA, t-BuOAc, 0°C
(62%); (l) TBSCl, Et3N, THF, 40°C; (m) Sn(OTf)2, CH2Cl2, 0°C (78% in two steps); (n) NaBH4, MeOH, 0°C (90%); (o) TFA,
CH2Cl2, rt; (p) TMSCHN2, MeOH, rt (74% in two steps); (q) t-BuN�CHCH2CH2CH3, LDA, THF, 0°C (73%); (r) TFA, THF,
H2O, rt (91%); (s) TMSI, MeCN, 0°C (77%).

Removal of the tert-butyl group in 14 and subsequent
methylation afforded methyl ester 16 (74% yield from
14). Condensation of 16 with the lithium anion8 of
N-tert-butylbutyraldimine gave a complex mixture of
the isomeric keto imine 179 (73%). Acid treatment of 17
resulted in cyclization and concomitant epimerization
to provide Z-pinnamine (18) in 91% yield. Finally,
removal of the Z protecting group with TMSI afforded
pinnamine10 (1) in 77% yield. Synthetic 1 was found to
correspond uniquely to natural 1 by comparison of
their spectral data including their CD spectra and acute
toxicity data.11

In conclusion, pinnamine (1), a marine alkaloid isolated
from the bivalve Pinna muricata, was synthesized from

N-Z-pyroglutamic acid (2) in 16 steps in 7% overall
yield, which confirmed the absolute stereostructure and
bioactivity of natural pinnamine (1). Further biological
studies using synthetic 1 are in progress.
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Figure 1. Coupling constants observed for 14 in CDCl3 and
calculated for models with four possible types of stereochem-
istry, 14A–14D, in Hz.
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10. Colorless oil; [� ]D
27 +71.2 (c=0.0399, MeOH); IR

(CHCl3) 1680 cm−1; 1H NMR (800 MHz, CD3OD,
−15°C) � 7.47 (s, 1H), 4.89 (dd, J=10.2, 2.2 Hz, 1H),
4.26 (dd, J=13.6, 11.4 Hz, 1H), 4.15 (m, 1H), 2.89 (d,
J=13.6 Hz, 1H), 2.50 (m, 1H), 2.26 (m, 1H), 2.18 (m,
4H), 2.11 (m, 1H), 2.02 (ddd, J=13.9, 9.8, 4.4 Hz, 1H),
1.96 (br d, J=15.4 Hz, 1H), 1.85 (dd, J=15.4, 13.2
Hz, 1H), 1.05 (t, J=7.5 Hz, 3H); CD (MeOH) �ext

306 nm (�� −0.067), 273 (+0.219), 263 (+0.232),
255 (+0.197); FABMS (m-nitrobenzyl alcohol) m/z
222 [M+H]+; HRFABMS (m-nitrobenzyl alcohol) m/z
calcd for C13H20NO2 [M+H]+ 222.1494, found 222.1515
(� 2.1 mmu).

11. Acute toxicity of synthetic 1 was examined by i.p.
injection into a ddY male mouse with a dose of 0.8
mg/kg (LD99 for natural 1: 0.5 mg/kg).1 Within 5 min
after injection, the mouse was dead with the same toxic
symptoms as those of the natural sample.Figure 2. Plausible reaction pathway from 12a to 14.


