Accepted Manuscript

Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran

Wei Wang, Jia Guo, Junnan Zhang, Jie Peng, Tianxing Liu, Zhihong Xin

PII:	S0308-8146(14)01320-X
DOI:	http://dx.doi.org/10.1016/j.foodchem.2014.08.095
Reference:	FOCH 16318
To appear in:	Food Chemistry
Received Date:	26 March 2014
Revised Date:	18 August 2014
Accepted Date:	21 August 2014

Please cite this article as: Wang, W., Guo, J., Zhang, J., Peng, J., Liu, T., Xin, Z., Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran, *Food Chemistry* (2014), doi: http://dx.doi.org/10.1016/j.foodchem.2014.08.095

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- 1 Isolation, identification and antioxidant activity of bound phenolic compounds present in rice
- 2 bran
- 3 Wei Wang, Jia Guo, Junnan Zhang, Jie Peng, Tianxing Liu, Zhihong Xin^{*}
- 4 Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing
- 5 Agricultural University, Nanjing 210095, PR China
- 6 Abstract: The bound phenolic compounds in rice bran were released and extracted with ethyl acetate based
- 7 on alkaline digestion. An investigation of the chemical constituents of EtOAc extract has led to the isolation
- 8 of a new compound, para-hydroxy methyl benzoate glucoside (8), together with nine known compounds,
- 9 cycloeucalenol cis-ferulate (1), cycloeucalenol trans-ferulate (2), trans-ferulic acid (3), trans-ferulic acid
- 10 methyl ester (4), *cis*-ferulic acid (5), *cis*-ferulic acid methyl ester (6), methyl caffeate (7), vanillic aldehyde (9)
- 11 and *para*-hydroxy benzaldehyde (10). The structures of these compounds were determined using a
- 12 combination of spectroscopic methods and chemical analysis. Among the compounds isolated, compound 3, 5
- and 7 exhibited strong DPPH and $ABTS^{+}$ radical scavenging activities, followed by compounds 4 and 6.
- 14 Compound 1 and 2 showed potent DPPH and ABTS⁺ radical scavenging activities, compound 8 displayed
- 15 moderate antioxidant activity against ABTS⁺ radical, whereas compound 9 and 10 showed weak antioxidant
- 16 activity.
- 17
- 18 Keywords: Rice bran; Alkaline hydrolysis; Bound penolic compounds; Structural identification;
 19 Antioxidant activities;

20 1. Introduction

[^] Corresponding author. Tel./fax: +86 25 8439 5618.

E-mail address: xzhfood@njau.edu.cn (ZH. Xin).

21	Rice bran, produced as the most abundant and valuable byproducts in the rice milling process, is of
22	steadily growing interest in recent years due to its potential health benefits. It has been reported that rice bran
23	contained high levels of phytochemicals, such as γ -oryzanol (Xu & Godber, 1999), phytic acid (Canan et al.,
24	2011), tocopherols, tocotrienols (Xu, Hua & Godber, 2001), carotenoids (Stoggl, Huck, Wongyai, Scherz &
25	Bonn, 2005), y-aminobutyric acid (Parrado, Miramontes, Jover, Gutierrez, Collantes De Terán & Bautista,
26	2006), octacosanol (Chen et al., 2007), squalene (Sugihara, Kanda, Nakano, Nakamura, Igusa & Hara, 2010),
27	unsaturated fatty acids (Xu & Godber, 1999), phytosterols and phenolic compounds (Liang et al., 2014).
28	Among them, phenolics have been extensively investigated because they exhibited a diverse range of
29	bioactivities such as antioxidative (Arab, Alemzadeh & Maghsoudi, 2011), antimicrobial (Kondo, Teongtip,
30	Srichana & Itharat, 2011), antiviral (Ray et al., 2013), anti-inflammatory properties (Akihisa et al., 2000) and
31	overall for the promotion of human health. These bioactive properties make these compounds play an
32	important role in the prevention of certain major chronic diseases, such as diabetes (Lai, Chen, Chen, Chang
33	& Cheng, 2012), chronic inflammation (Choi, Kim, Kang, Nam & Friedman, 2010), cardiovascular disease
34	(Qureshi, Bradlow, Salser & Brace, 1997) and certain kinds of cancer (Verschoyle, Greaves, Cai, Edwards,
35	Steward & Gescher, 2007), as strongly supported by animal studies and clinical trials.
36	Phenolics in rice bran are in soluble free, soluble conjugates and insoluble bound forms (Adom & Liu,
37	2002). Free forms present within the plant cell vacuoles (Pandey & Rizvi, 2009), whereas soluble esters or
38	conjugates are esterified to sugars and other low molecular mass components, and insoluble bound forms are
39	covalently linked to cell wall structural components, such as cellulose, hemicellulose, lignin, pectin and
40	rod-shaped structural proteins (Arranz, Silvan & Saura-Calixto, 2010; McKee & Latner, 2000). The last is the
41	major form in rice bran to enhance the mechanical strength of cell walls (Ryden, Sugimoto-Shirasu, Smith,

42	Findlay, Reiter & McCann, 2003) as well as providing both physical and chemical barriers, protection against
43	pathogen invasion and in response to stress conditions such as infection, wounding and UV radiation, among
44	others (Rice-Evans, Miller & Paganga, 1997). An increasing number of research groups turned their attention
45	to these bound phenolics exist in fruits, vegetables and cereal grains, which have been given different names:
46	nonextractable, unextractable, insoluble, or bound phenolics (Perez-Jimenez & Torres, 2011). About 74% of
47	the total phenolics present in rice are in the insoluble bound forms, as also demonstrated by a comparison of
48	the antioxidant capacity of bound phenolics significantly higher than that of free or soluble conjugated forms,
49	with ferulic acid being the major phenolic compound present (Adom & Liu, 2002). In addition, some of these
50	phenolics such as ferulic acid and diferulates are predominantly found in grains but are not present in
51	significant quantities in fruits and vegetables (Adom & Liu, 2002).
52	Last decades, many studies have been reported the phenolic levels in rice bran using different
53	combinations of water and organic solvents to extract soluble phenolics, however, most of these studies
54	reported in the literature have largely ignored bound phenolics, hence underestimating the total content of
55	phenolics present (Arranz, Silvan & Saura-Calixto, 2010). Although a few dozen papers have focused on the
56	bound phenolics content and profiles, many of these studies were focused in the analysis of those known and
57	particular types of phenolics. Limitations of these studies are that the individual phenolic composition in the
58	sample usually must be known and the standards of some phenolics are commercially unavailable. Therefore,
59	the precise composition of bound phenolics is crucial for evaluating their physicochemical properties,
60	nutritional values, potential application, epidemiological and clinical studies addressing their potential health
61	effects, as well as for the lipid composition analysis and quality control of rice bran oils. However, to date,
62	there are no reports of the individual compositions of bound phenolics present in rice bran.

63	In general, bound phenolics can be released by alkali, acid, or enzymatic treatment of samples prior to
64	extraction (Dai & Mumper, 2010). In most of cases, alkaline hydrolysis was the method mostly used for
65	extracting esterified or bound phenolics (Su et al., 2014), for example, in our preliminary studies, the content
66	of bound phenolics after alkaline hydrolysis of samples was significantly higher than after acid and enzymatic
67	hydrolysis. It was for this reason that alkaline hydrolysis was selected for releasing bound phenolics and
68	further chemical research.
69	In the context of our ongoing search for new bioactive components from fruits, vegetables, cereal grains
70	and other natural products, a chemical investigation of the ethyl acetate (EtOAc) extract from an alkaline
71	treatment sample of rice bran, led to the isolation of one new and nine known compounds and evaluation of
72	their antioxidant activities. Herein, we describe the experimental details of the hydrolysis and isolation
73	process as well as providing information pertaining to the elucidation of the structures of these compounds
74	based on their spectroscopic properties and chemical reactivity.
75	2. Materials and methods
76	2.1. General methods
77	All of the ¹ H and ¹³ C NMR spectra were recorded on a Bruker Avance 300, 400 and 500 spectrometer
78	(Bruker BioSpin GmbH, Beijing, China), using tetramethylsilane (TMS) as an internal standard. The chemical
79	shifts in the NMR spectra were recorded as δ values. Two-dimensional NMR spectra include COSY
80	(Correlation Spectroscopy, COSY), HSQC (Heteronuclear Singular Quantum Correlation, HSQC) and HMBC
81	(Heteronuclear Multiple Bond Correlation, HMBC). Electrospray ionization mass spectrometry (ESI-MS)

4

analyses were measured on a Q-Tof Ultima Global GAA076 LC mass spectrometer (Waters Asia, Ltd,

Singapore). TLC and column chromatography (CC) were performed on plates precoated with silica gel GF254

82

84	(10-40 μ m), and over the silica gel (300-400 mesh, Qingdao Marine Chemical Factory, Qingdao, China), and
85	reversed phase C18 (Octadecylsilyl, ODS) silica gel (Silicycle, 50 µm, Parc-Technologique Blvd, Canada)
86	and Sephadex LH-20 (Sigma-Aldrich, St. Louis, MO, USA), respectively. Columns used for silica gel
87	chromatography separation were 2.4cm in internal diameter and 30cm in length, and columns used for
88	Sephadex LH-20 were 3.0cm in internal diameter and 100cm in length.
89	2.2. Materials and chemicals
90	Rice bran was purchased from WeiGang trade market (Nanjing, China). Di(phenyl)-(2,4,6-trinitrophenyl)
91	iminoazanium (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), L-Cysteine methyl
92	ester hydrochloride, and N-trimethylsilylimidazole were purchased from Sigma Aldrich (St. Louis, MO, USA).
93	Dimethyl sulfoxide- d_6 (DMSO- d_6) and CDCl ₃ were obtained from Merck (Darmstadt, Germany). All of the
94	other chemicals and solvents used in the current study were purchased as the analytical grade.
95	2.3. Alkaline hydrolysis of rice bran and extraction of bound phenolic compounds
96	The alkaline hydrolysis of rice bran was performed according to the method described by Adom et al.
97	(2002) with minor modifications. Briefly, rice bran (1.2 kg) was grinded and homogenized in a Polytron
98	homogenizer before being extracted three times with 12 L 80% acetone (1:10, w/v) at ambient temperature for
99	24 h. The supernatant was discarded after each extraction. The residues were then digested with 2 M 10L
100	sodium hydroxide at ambient temperature for 2 h with shaking under nitrogen gas. The mixture was
101	neutralized with an appropriate amount of hydrochloric acid and extracted with hexane to remove lipids. The
102	final solution was extracted five times with EtOAc, and the combined EtOAc extracts were concentrated
103	under vacuum at 40 °C to give the crude extract (8.2 g).

104 **2.4. Isolation bound phenolic compounds**

105	The crude extract (8.2 g) was separated into four fractions (Fr. 1-4) using normal-phase silica gel CC (20
106	g silica gel, 300-400 mesh) using a step-wise gradient elution of petroleum ether: acetone: MeOH
107	(100:0:0–0:100:0–0:0:100, v/v/v).
108	Fr. 1 (2.5 g) was separated into 2 sub-fractions Fr. 1-1 and Fr. 1-2 on a silica gel CC using cyclohexane
109	eluent. Fr. 1-1 was subsequently purified by CC over silica gel with a choloroform eluent to yield Fr. 1-1-1,
110	which was further purified over a silica gel CC using petroleum ether: acetone eluent (100:1, v/v) to yield 1
111	(31.4 mg) and 2 (10.0 mg).
112	Fr. 2 (1.8 g) was purified by CC over silica gel with a petroleum ether: acetone eluent (30:1, v/v) to yield
113	Fr. 2-1, which was then passed through a Sephadex LH-20 column with a $CHCl_3$: MeOH eluent (1:1, v/v) to
114	give 3 (153 mg) and 4 (16.2 mg).
115	Fr. 3 (2.0 g) was also purified on a normal-phase silica gel CC using a cyclohexane: ethyl acetate eluent
116	(20:1, v/v) to yield Fr. 3-1, which was further purified by a reversed-phase C18 ODS CC using a step-wise
117	gradient elution of MeOH: $H_2O(0;100-100:0)$ to give 5 (12.8 mg) and 6 (14.5 mg).
118	Fr. 4 (1.9 g) was subjected to CC over silica gel using a chloroform: acetone eluent (30:1, v/v) to give Fr.
119	4-1, Fr. 4-2 and Fr. 4-3. Fr. 4-1 was purified by CC over silica gel with a petroleum ether: acetone eluent (20:1,
120	v/v) to give 7 (6.8 mg). Fr. 4-2 was separated through a Sephadex LH-20 column with a CHCl ₃ : MeOH eluent
121	(1:1, v/v) to give 8 (4.6 mg). Fr. 4-3 was purified on a silica gel CC using cyclohexane: ethyl acetate eluent
122	(30:1, v/v) to yield 9 (11.7 mg) and 10 (9.8 mg). Fig. 1 showed the extraction and separation processes
123	associated with EtOAc extract of rice bran.

2.5. Assay of DPPH and ABTS⁺ radical-scavenging

125	DPPH radical scavenging assay was performed according to a previously reported protocol
126	(Rivero-Perez, Muniz & Gonzalez-Sanjose, 2007). Radical scavenging activity against ABTS ⁺ was performed
127	as described in the literature (Zheleva-Dimitrova, Nedialkov & Kitanov, 2010). DPPH radical scavenging
128	activity (%)=[1-($A_{517 \text{ nm of sample}}/A_{517 \text{ nm of control}}$)]×100, where $A_{517 \text{ nm of sample}}$ is the absorbance of DPPH radical
129	solution mixed with the test compound/Vitamin E, $A_{517 nm of control}$ is the absorbance of DPPH radical solution
130	mixed with methanol solution. ABTS ⁺ radical scavenging activity (%)= $[1-(A_{734 \text{ nm of sample}}/A_{734 \text{ nm of control}})]\times 100$,
131	where $A_{734 \text{ nm of sample}}$ is the absorbance of ABTS ⁺ radical solution mixed with the test compound/Vitamin E,
132	$A_{734 nm of control}$ is the absorbance of ABTS ⁺ radical solution mixed with methanol solution. The antioxidant
133	activities of the test compounds were expressed as IC_{50} , with the IC_{50} being defined as the concentration of
134	test compound required to inhibit the formation of radicals by 50%. Vitamin E was employed as a positive
135	control.
136	2.6. Acid Hydrolysis of the Glucoside and Determination of the Absolute Configuration of the
137	Monosaccharides
138	The assay used to determine the absolute configuration of the monosaccharide was performed as
139	described in the literature (Liang, Hao, Zhang, Zhang, Chen & Yu, 2011).
140	2.7. NMR and ESI-MS Spectroscopic Data
141	<i>Cis</i> -ferulates cycloeucalenol (1) and <i>trans</i> -ferulates cycloeucalenol (2): White amorphous powder; ¹ H
142	NMR and ¹³ C NMR data, see Table 1; ESIMS m/z 601.1 [M - H] ⁻ .
143	<i>Trans</i> -ferulic acid (3): Colorless needle; ¹ H NMR (300 MHz, DMSO- d_6 , TMS): δ 7.50 (d, $J = 15.87$ Hz,
144	1H, H-7), 7.27 (d, <i>J</i> = 2.16 Hz, 1H, H-2), 7.08 (dd, <i>J</i> = 8.07, 1.89 Hz, 1H, H-6), 6.79 (d, <i>J</i> = 8.13 Hz, 1H, H-5),
145	6.38 (d, $J = 15.87$ Hz, 1H, H-8), 3.80 (s, 3H, 3-OCH ₃); ¹³ C NMR: δ 126.5 (C-1), 110.3 (C-2), 149.1 (C-3),

146 147.8 (C-4), 115.1 (C-5), 123.0 (C-6), 145.2 (C-7), 114.9 (C-8), 167.7 (C-9), 55.4 (3-OCH₃); ESIMS *m*/*z*

147 193.0 [M - H]⁻.

148	<i>Trans</i> -ferulic acid methyl ester (4): Colorless needle; ¹ H NMR (500 MHz, CDCl ₃ , TMS): δ 7.66 (d, $J =$
149	15.92 Hz, 1H, H-7), 7.10 (dd, J = 8.20, 1.84 Hz, 1H, H-6), 7.04 (d, J = 1.84 Hz, 1H, H-2), 6.95 (d, J = 8.16
150	Hz, 1H, H-5), 6.33 (d, J = 15.92 Hz, 1H, H-8), 5.98 (s, 1H, 4-OH), 3.94 (s, 3H, 3-OCH ₃), 3.82 (s, 3H,
151	9-OCH ₃); ¹³ C NMR: δ 126.9 (C-1), 109.3 (C-2), 148.0 (C-3), 146.8 (C-4), 115.1 (C-5), 123.0 (C-6), 145.0
152	(C-7), 114.7 (C-8), 167.8 (C-9), 55.9 (3-OCH ₃), 51.6 (9-OCH ₃); ESIMS <i>m</i> / <i>z</i> 207.0 [M - H] ⁻ , 231.0 [M + Na] ⁺ .
153	<i>Cis</i> -ferulic acid (5): Colorless needle; ¹ H NMR (300 MHz, DMSO- d_6 , TMS): δ 7.66 (d, J = 1.83 Hz, 1H,
154	H-2), 7.13 (dd, J = 8.25, 1.86 Hz, 1H, H-6), 6.75 (d, J = 8.19 Hz, 1H, H-5), 6.64 (d, J = 12.96 Hz, 1H, H-8),
155	5.75 (d, $J = 12.96$ Hz, 1H, H-7), 3.74 (s, 3H, 3-OCH ₃), ESIMS m/z 193.0 [M - H] ⁻ .
156	<i>Cis</i> -ferulic acid methyl ester (6): ¹ H NMR (500 MHz, CDCl ₃ , TMS): δ 7.82 (d, <i>J</i> = 2.15 Hz, 1H, H-2),
157	7.13 (dd, <i>J</i> = 8.25, 1.86 Hz, 1H, H-6), 6.91 (d, <i>J</i> = 8.35 Hz, 1H, H-5), 6.84 (d, <i>J</i> = 12.90 Hz, 1H, H-8), 5.82 (d,
158	J = 12.90 Hz, 1H, H-7), 3.95 (s, 3H, 3-OCH ₃), 3.75 (s, 3H, 9-OCH ₃); ESIMS m/z 207.0 [M - H] ⁻ .
159	Methyl caffeate (7): White amorphous powder; ¹ H NMR (500 MHz, Acetone, TMS): δ (1H, d, J =
160	15.92 Hz, H-7), 7.17 (1H, d, J = 15.92 Hz, H-8), 7.06(1H, dd, J = 1.84, 8.16 Hz, H-6), 6.89 (1H, d, J = 8.20
161	Hz, H-8), 6.31(1H, d, J = 15.92 Hz, H-7), 3.72 (s, 3H, 9-OCH ₃); ¹³ C NMR: δ 127.5 (C-1), 115.1 (C-2), 148.7
162	(C-3), 146.3 (C-4), 115.3 (C-5), 122.5 (C-6), 145.7 (C-7), 116.3 (C-8), 167.9 (C-9), 51.5 (9-OCH ₃); ESIMS
163	$m/z 217.1 [M + Na]^+, 193.1 [M - H]^$
164	Para-hydroxy methyl benzoate glucoside (8): White amorphous powder; ¹ H NMR and ¹³ C NMR data,
165	see Table 1; HRESIMS $[M + Na]^+$ at m/z 337.0906 (calcd 337.0899).

166 Vanillic aldehyde (9): Colorless needle; ¹H NMR (400 MHz, CDCl₃, TMS): δ 9.86 (s, 1H, CHO), 7.47

- 167 (2H, d, J = 5.84 Hz, H-2, H-6), 7.09 (1H, d, J = 8.48 Hz, H-5), 4.00 (3H, s, 3-OCH₃); ¹³C NMR: δ 127.6 (C-1),
- 168 129.8 (C-2), 147.2 (C-3), 151.8 (C-4), 114.4 (C-5), 108.7 (C-6), 191.0 (C-7), 56.1 (s, 3H, 3-OCH₃); ESIMS
- 169 *m/z* 151.0 [M H]⁻.
- 170 *Para*-hydroxy benzaldehyde (10): Colorless amorphous powder; ¹H NMR (400 MHz, DMSO-*d*₆, TMS):
- 171 δ 9.79 (s, 1H, H-7), 7.77 (2H, d, J = 8.48 Hz, H-2, H-6), 6.95 (2H, d, J = 8.48 Hz, H-3, H-5), ESIMS m/z
- 172 121.0 [M H]⁻.
- 173 **2.8. Statistical analysis**
- All the data were analyzed according to Duncan's multiple comparison test (p < 0.05), using version 8.1
- 175 of the SAS software package. The resulting data were presented as mean \pm SD.
- 176 **3. Results and discussion**
- 177 **3.1. Structural elucidation of the isolated compounds**

178 Compound 1 was isolated as a white amorphous powder. Its molecular formula was determined to be $C_{40}H_{58}O_4$ based on its ¹H and ¹³C NMR, and ESI-MS data. ESI-MS analysis of the material revealed an m/z179 value of 601.1, corresponding to [M - H]⁻. The ¹H and ¹³C NMR spectra were typical of a feruloyl ester of 180 181 triterpene alcohols. The 1D NMR spectrum showed the presence of one olefinic proton at δ 5.10 (t, J = 6.75 182 Hz, 1H, H-24), one oxygenated methine proton at δ 4.71 (s, 1H, H-3), seven methyl protons at δ 0.90 (s, 3H, 183 H-18), 0.90 (s, 3H, H-21), 1.69 (s, 3H, H-26), 1.61 (s, 3H, H-27), 0.86 (s, 3H, H-28), 0.90 (s, 3H, H-29) and 184 0.90 (s, 3H, H-30), and two methylene protons of a cyclopropyl group at δ 0.35 (d, J = 3.95 Hz, 1H, H-19), 185 0.58 (d, J = 3.90 Hz, 1H, H-19), as well as two typical sp^2 olefinic carbon signals at δ 125.2 (C-24) and 130.9 (C-25). Taken together, these data were corresponding to a typical cycloartenol moiety. The 13 C NMR of 1 186 187 displayed the presence of 40 carbon signals, with 30 of these signals being assigned to the cycloartenol and 10

188	to the feruloyl ester moieties being connected to C-3 position of cycloartenol (Table. 1), which was confirmed
189	by the key correlation from H-3 to C-1' from the HMBC experiment. The double bond of feruloyl ester
190	moieties was determined to be a <i>cis</i> -configuration by its ${}^{3}J_{H-2}$, ${}_{H-3'}$ coupling constant of 12.60 Hz. Further
191	analysis of the 2D NMR data, including the COSY, NOESY, HSQC and HMBC spectra, allowed for the
192	complete assignment of the ¹ H and ¹³ C NMR spectral data (Fig. 2A), and compound 1 was consequently
193	identified as cis-ferulates cycloeucalenol (Fig. 2). Although this compound has previously been isolated from
194	rice ran (Akihisa et al., 2000), the comprehensive NMR spectral data were not yet reported.
195	Compound 2 was isolated as a white amorphous powder. Its molecular formula was determined to be
196	$C_{40}H_{58}O_4$ on the basis of its ¹ H and ¹³ C NMR, and ESI-MS spectra, with the latter of these analyses giving an
197	m/z value of 601.1 [M - H] ⁻ . The ¹ H and ¹³ C NMR spectra of 1 and 2 were very similar but not identical. A
198	direct comparison of the ¹ H and ¹³ C NMR data of compound 2 with those of 1 revealed that they share the
199	same planar structure with the sole difference of the presence of a <i>trans</i> -configuration double bond at δ H 6.29
200	(d, $J = 15.90$ Hz, 1H) and 7.59 (d, $J = 15.85$ Hz, 1H) in 2 instead of the <i>cis</i> -configuration at δ H 5.84 (d, $J =$
201	12.60 Hz, 1H) and 6.79 (d, $J = 12.85$ Hz, 1H) in 1 (Table. 1). The structure of 2 was further confirmed by the
202	COSY and HMBC correlations and by comparing the NMR data with those of <i>trans</i> -ferulates cycloeucalenol
203	in the literature (Cho et al., 2012). Compound 2 was consequently identified as <i>trans</i> -ferulates cycloeucalenol
204	(Fig. 2).
205	Compound 3 was isolated as a colorless needle. The molecular formula of the material was determined to
206	be $C_{10}H_{10}O_4$ on the basis of its ¹ H and ¹³ C NMR, and ESI-MS data. ESI-MS analysis of the material revealed

208 NMR spectrum revealed the presence of two olefinic protons at δ 7.50 (d, J = 15.87 Hz, 1H, H-7) and 6.38 (d,

207

a peak at m/z 193.0, corresponding to $[M - H]^{-}$, indicating that the molecular weight of 3 was 194. The ¹H

209	$J = 15.87$ Hz, 1H, H-8), and three aromatic ring protons at δ 7.27 (d, $J = 2.16$ Hz, 1H, H-2), 7.08 (dd, $J = 8.07$,
210	1.89 Hz, 1H, H-6) and 6.79 (d, $J = 8.13$ Hz, 1H, H-5), and one methoxyl at δ 3.80 (s, 3H, 3-OCH ₃). The ¹³ C
211	NMR spectrum of 3 revealed two olefinic carbons at δ 145.2 (C-7), 114.9 (C-8), and six aromatic carbons at δ
212	126.5 (C-1), 110.3 (C-2), 149.1 (C-3), 147.8 (C-4), 115.1 (C-5) and 123.0 (C-6), and one methoxy carbon at δ
213	55.4, as well as a carboxyl carbon at δ 167.7 (C-9). The coupling constant of olefinic proton between C-7 and
214	C-8 was 15.87 Hz which allowed the determination of the double bond of 3 as a <i>trans</i> -configuration. Based on
215	a comparison of these data with data published in the literature (Yoshioka, Inokuchi, Fujioka & Kimura,
216	2004), compound 3 was identified as <i>trans</i> -ferulic acid (Fig. 2).
217	Compound 4 was isolated as a colorless needle, and its molecular formula was determined to be
218	$C_{11}H_{12}O_4$ on the basis of its ¹ H and ¹³ C NMR and ESI-MS spectra. ESI-MS analysis of the material gave m/z
219	values of 207.0 and 231.0, corresponding to $[M - H]^-$ and $[M + Na]^+$, respectively. A careful comparison of the
220	¹ H and ¹³ C NMR spectra of 4 with those of 3 revealed the existence of a close structural relationship between
221	the two compounds. Compared to the spectra of 3, an additional methoxyl signal at δ 3.94 (s, 3H, 9-OCH ₃)
222	instead of the 9-OH signal at δ 9.78 (1H, br s) was observed in 4 . As expected, an additional methoxyl carbon
223	signal at δ 51.6 was observed in the ¹³ C NMR spectrum of 4 . By a comparison with data available in the
224	literature (Tanaka, Kato & Tsuchiya, 1971), compound 4 was determined to be <i>trans</i> -ferulic acid methyl ester
225	(Fig. 2).
226	Compound 5 and compound 3 share the same planar structure and the same molecular formula, $C_{10}H_{10}O_4$,
227	established on the basis of the ESIMS ions detected at m/z 193.0, corresponding to [M - H] ⁻ . The ¹ H NMR

229 = 8.25, 1.86 Hz, 1H, H-6) and 6.75 (d, J = 8.19 Hz, 1H, H-5), and one methoxyl at δ 3.74 (s, 3H, 3-OCH₃), as

228

spectrum revealed the presence of three aromatic ring protons at δ 7.66 (d, J = 1.83 Hz, 1H, H-2), 7.08 (dd, J

230	well as two olefinic protons at δ 5.75 (d, J = 12.87 Hz, 1H, H-7) and 6.38 (d, J = 12.96 Hz, 1H, H-8) with a
231	lower coupling constant, corresponding to a <i>cis</i> -configuration double bond. Based on these data and a
232	comparison with those reported in the literature (Akihisa et al., 2000), compound 5 was identified as
233	cis-ferulic acid (Fig. 2).
234	Compound 6 and compound 4 share the same planar structure and the same molecular formula, $C_{11}H_{12}O_4$,
235	determined on the basis of the ESIMS detected ions at m/z 207.0, corresponding to [M - H] ⁻ . The ¹ H NMR
236	spectra for 6 and 4 showed very similar signals, with the exception that a pair of <i>trans</i> -configuration olefinic
237	protons at δ 6.31 (d, J = 15.95 Hz, 1H, H-7) and 7.64 (d, J = 15.95 Hz, 1H, H-8) for 4 was replaced by a pair
238	of <i>cis</i> -configuration olefinic protons at δ 5.85 (d, J = 12.90 Hz, 1H, H-7) and 6.84 (d, J = 12.90 Hz, 1H, H-8)
239	for 6. Based on the comparison of the NMR and MS spectral data with those reported in the literature (Tanaka,
240	Kato & Tsuchiya, 1971), the structure of 6 was determined to be <i>cis</i> -ferulic acid methyl ester (Fig. 2).
241	Compound 7 was isolated as a white amorphous powder. The molecular formula was determined to be
242	$C_{10}H_{10}O_4$ on the basis of its ¹ H NMR, ¹³ C NMR and ESI-MS spectra. ESI-MS analysis gave m/z values of
243	217.1 and 193.1, corresponding to $[M + Na]^+$ and $[M - H]^-$, respectively. The ¹ H and ¹³ C NMR spectra for 7
244	and 4 showed very similar signals, with the exception that the 3-OCH ₃ singlet at δ H 3.92 for 4 was replaced
245	by a new exchangeable proton at δ H 8.57 for 7, and the absence of one carbon signal at δ C 55.9
246	corresponding to 3 -OCH ₃ carbon for 4 . These data indicated that the methoxy at C-3 in 4 was substituted by a
247	hydroxy group in 7. Based on a comparison of these data with information reported in the literature
248	(Balachandran et al., 2012), compound 7 was identified as methyl caffeate (Fig. 2).
249	Compound 8 was isolated as a white amorphous powder. Its molecular formula was established as
250	$C_{14}H_{18}O_8$ by High-resolution mass spectroscopy (HRMS) $[M + Na]^+$ at m/z 337.0906 (calcd 337.0899),

251	indicating six degrees of unsaturation. ¹ H NMR and ¹³ C NMR spectrum of 8 revealed the presence of one
252	para-disubstituted benzene ring, one sugar unit, one carbonyl and one methoxyl. Analysis of the ¹ H- ¹ H COSY,
253	HSQC and HMBC spectra of compound 8 allowed for the complete assignment of the ¹ H and ¹³ C NMR
254	spectral data (Table. 2). Key correlations from H-2 to C-1, C-4 and C-6, from H-3 to C-1, C-2, C-5 and C-7,
255	from 7-OCH ₃ to C-7 were observed in the HMBC experiments. The sugar unit, which was identified as a
256	β -glucopyranosyl group on the basis of its ${}^{3}J_{\text{H-1'}}$, $_{\text{H-2'}}$ coupling constant of 7.20 Hz, was placed at the C-1
257	position of the benzene ring because of the HMBC correlation between the anomeric proton at δ H 5.00 and
258	the C-1 carbon resonance at δ C 161.5. The chemical shifts of all the individual protons and carbons of the
259	sugar unit from C-1' to C-6' were assigned on the basis of ¹ H- ¹ H COSY and HSQC spectra analysis (Fig. 2B).
260	Acid hydrolysis of 8 with 1 N HCl liberated benzene acid and D-glucose, which were identified by gas
261	chromatography-mass spectrometry (GC-MS) analysis of the corresponding trimethylsilyl L-cysteine
262	derivative and a direct comparison with an authentic sample of the same material, prepared in the same
263	manner. This result was further confirmed through a comparison of the retention time of this derivative with
264	that of the authentic D-glucose derivative, with both samples providing the retention time of 7.92 min. Feng et
265	al. (2008) isolated a new compound that had the same planar structure as that of compound 8 and named
266	pseudolaroside C, however, the sugar moiety is not glucose but allose, therefore, they are a pair of isomers
267	with the different sugar unit. Thus, the structure of 8 was unambiguously identified as <i>para</i> -hydroxy methyl
268	benzoate glucoside, which is a new compound isolated and identified for the first time from a natural source
269	(Fig. 2).
270	Compound 9 was obtained as a colorless needle. The molecular formula of the material was determined

271 to be $C_8H_8O_3$ based on its ¹H and ¹³C NMR, and ESI-MS data. ESI-MS analysis revealed an m/z value of

272	151.0, corresponding to [M - H] ⁻ . Analysis of its ¹ H NMR spectrum revealed the presence of a tri-substituted
273	aromatic ring with signals at δ 7.47 (2H, d, J = 5.84 Hz, H-2, H-6) and 7.09 (1H, d, J = 8.48 Hz, H-5), as well
274	as an aldehyde group signal at δ 9.86 (1H, br s, H-7), and three methoxy protons at δ 4.00 (3H, s, 3-OCH ₃).
275	Accordingly, the ¹³ C NMR spectrum of 9 showed six aromatic ring carbon signals at δ 151.8 (C-4), 147.2
276	(C-3), 129.8 (C-2), 127.6 (C-1), 114.4 (C-5) and 108.7 (C-6), one aldehyde group carbon signal at δ 191.0
277	(C-7), one methoxy carbon signal at δ 56.1 (s, 3H, 3-OCH ₃). These data were the same as those reported for
278	vanillic aldehyde in the literature (Wang, Zhang, Zhao, Wang, Liu & Xin, 2013), and compound 9 was
279	consequently identified as vanillic aldehyde (Fig. 2).
280	Compound 10 was isolated as a colorless amorphous powder. The molecular formula of material was
281	determined to be C ₇ H ₆ O ₂ based on its ¹ H NMR and ESI-MS data. ESI-MS analysis of the material gave an
282	m/z peak of 121.0, corresponding to [M - H] ⁻ . The ¹ H NMR spectrum of 10 revealed the presence of an
283	aldehyde group proton at δ 9.79 (s, H-7), and four aromatic ring protons at δ 7.77 (d, J = 8.48 Hz, H-2, H-6)
284	and 6.95 (d, $J = 8.32$ Hz, H-3, H-5), corresponding to a <i>para</i> -disubstituted benzene ring. Based on these data
285	and a comparison with data available in the literature (Shengan, Rong, Wenhan & Hongquan, 2012),
286	compound 10 was determined to be <i>para</i> -hydroxy benzaldehyde (Fig. 2).
287	3.2. Antioxidant activities of the pure compounds isolated from rice bran
288	The antioxidant activities of the 10 pure compounds were tested according to their DPPH and ABTS ⁺

- radical scavenging assay. The results of these experiments have been shown in Fig. 3 and Fig. 4. DPPH
 radical scavenging activity of compounds 1-10 (100µM) ranged from 15% to 97% (Figure 3A). Compound 3, 4,
 5, 6 and 7 displayed a higher DPPH radical-scavenging activity than that of Vitamin E. Compound 3, 5 and 7
- showed the highest antioxidant activity followed by compounds 4 and 6 and compounds 1, 2 and 8. Compound

293	9 and 10 had the lowest DPPH radical-scavenging activity. There was no significant difference $(p > 0.05)$ in
294	antioxidant activities among compound 3, 5 and 7, between 4 and 6, 1 and 2. Based on the data obtained,
295	compound 1-8 were selected to further determine whether their DPPH radical-scavenging capacity were
296	exhibited in a dose-dependent manner and the results were shown in Fig. 4A. The DPPH radical-scavenging
297	activities for compound 3, 5 and 7 increased sharply with increasing concentration in a dose-dependent
298	manner at the range of 0-40 μ M, and increased up to a maximal value of 91.68 % DPPH inhibitory effect at
299	the concentration of 40 μ M, then keep constant, and other samples also showed a dose-dependent manner in
300	DPPH radical-scavenging assay. The IC_{50} of compound 1-8 and Vitamin E were 87.06, 84.98, 14.59, 61.16,
301	16.29, 63.16, 15.26, >100 and 71.17 μ M, respectively. These results indicated that the DPPH
302	radical-scavenging activities of <i>trans</i> -ferulic acid, <i>cis</i> -ferulic acid and methyl caffeate were nearly the same
303	and stronger than that of Vitamin E, followed by <i>trans</i> -ferulic acid methyl ester and <i>cis</i> -ferulic acid methyl
304	ester. The antioxidant activities of cycloeucalenol <i>cis</i> -ferulate and cycloeucalenol <i>trans</i> -ferulate were almost
305	identical and comparable with Vitamin E. However, <i>para</i> -hydroxy methyl benzoate glucoside was less active
306	than Vitamin E since its IC_{50} value was higher. Similarly, as shown in Fig. 4B, all samples showed a
307	dose-dependent ABTS ⁺ scavenging-radical activity. IC_{50} values for compounds 1-8 and Vitamin E were 62.30,
308	60.60, 6.58, 35.35, 7.23, 37.63, 6.74, 65.52 and 57.91 μ M, respectively.

309 It is well documented that ferulic acid and γ -oryzanol are the major antioxidants in rice bran, a 310 substantial of work has been carried out to investigate their antioxidant activity in *vitro* and *vivo* base on 311 different models. Hiramitsu et al. suggested that γ -oryzanol inhibited 61% reaction at a concentration of 10⁻⁴ 312 M in a lipid peroxidation system induced by porcine retinal homogenates using ferric iron or UV light, while 313 α -tocopherol only 14% in the same conditions (Hiramitsu & Armstrong, 1991). Xu & Godber demonstrated

314	that γ -oryzanol components (cycloartenyl ferulate, 24-methylenecycloartanyl ferulate, and campesteryl
315	ferulate) possessed significantly higher antioxidant activity than that of any of the four vitamin E components
316	(α -tocopherol, α -tocopherol, γ -tocopherol, and γ -tocotrienol) in a cholesterol oxidation system accelerated by
317	2,2'-azobis(2-methylpropionamidine) dihydrochloride, of which 24-methylenecycloartanyl ferulate showed
318	the highest antioxidant activity (Xu, Hua, & Godber, 2001). The higher antioxidant activities of γ -oryzanol
319	components might because the structure of γ -oryzanol components is similar to that of cholesterol, an
320	important component in reducing oxidation stress and maintaining the functionality of cells, therefore, in
321	accordance with the structural relationship theory, the γ -oryzanol components may have greater ability to
322	associate with cholesterol in the small droplets of the emulsion and become more efficient in protecting
323	cholesterol against free radical attack. However, they also found that ferulic acid showed the highest
324	antioxidant activity, followed by vitamin E and γ -oryzanol at the three different ratios in a linoleic acid model
325	(Xu & Godber, 2001). The antioxidant properties of ferulic acid could be attributed to its aromatic phenolic
326	ring that stabilizes and delocalizes the unpaired electron within its aromatic ring, thereby acting as free-radical
327	scavengers (Srinivasan, Sudheer, & Menon, 2007). Whereas the triterpene portion of γ -oryzanol may affect its
328	antioxidant activity by lowering the mobility in the system due to its relatively larger molecular structure than
329	free ferulic acid (Xu & Godber, 2001). Wilson et al. reported that oryzanol has a greater effect on lowering
330	plasma lipid and lipoprotein cholesterol concentrations in hypercholesterolemic hamsters. However, they also
331	suggested that ferulic acid may have a greater antioxidant capacity via its ability to maintain serum vitamin E
332	levels compared to rice bran oil and oryzanol. Thus, both oryzanol and ferulic acid may exert similar
333	antiatherogenic properties, but through different mechanisms (Wilson, Nicolosi, Woolfrey, & Kritchevsky,
334	2007). To date there are various antioxidant activity assay models, all of them with strengths and limitations.

335	In some case, it may have some controversy when using different model. There is not one method that can
336	provide unequivocal results and the best solution is to use various methods instead of a one-dimension
337	approach (Carocho & Ferreira, 2013).
338	In the current study, alkaline hydrolysis was used to release phenolic compounds present in the insoluble
339	bound form prior to extract with EtOAc. An investigation of the chemical constituents of EtOAc extract has
340	led to the isolation of a new compound, para-hydroxy methyl benzoate glucoside (8), together with nine
341	known compounds, cycloeucalenol <i>cis</i> -ferulate (1), cycloeucalenol <i>trans</i> -ferulate (2), <i>trans</i> -ferulic acid (3),
342	trans-ferulic acid methyl ester (4), cis-ferulic acid (5), cis-ferulic acid methyl ester (6), methyl caffeate (7),
343	vanillic aldehyde (9) and <i>para</i> -hydroxy benzaldehyde (10). The structures of these compounds were
344	elucidated using a combination of spectroscopic methods and chemical analysis. Among the compounds
345	isolated, compound 3, 5 and 7 exhibited strong DPPH hydroxy radical and ABTS ⁺ radical scavenging
346	activities as compared with Vitamin E, followed by compounds 4 and 6, compound 1 and 2 showed potent
347	DPPH hydroxy radical and ABTS ⁺ radical scavenging activities, compound 8 displayed moderate antioxidant
348	activity against ABTS ⁺ radical, whereas compound 9 and 10 showed weak activities, and compound 3 was the
349	predominant antioxidant ingredient among the isolated bound phenolic compounds.
350	Compound 1 and 2 are a pair of isomers of γ -oryzanol naturally occurring in rice bran and rice germ.
351	γ -oryzanol is a mixture of steryl ferulates, which are formed by esterification of the hydroxyl group of sterols
352	(campesterol, stigmasterol, β -sitosterol) or triterpene alcohols (cycloartanol, cycloartenol, 2,4-methylene

- 353 cycloartanol, cyclobranol) with the carboxylic group of ferulic acid (Goufo & Trindade, 2014). Since 354 γ -oryzanol was first identified in rice bran oil in 1954 (Fang, Yu & Badger, 2003), at least 25 constituents of γ
- 355 -oryzanol have been found to date, with five of them accounting for about 95% of the total γ -oryzanol content,

356	including 2,4-methylenecycloartanyl <i>trans</i> -ferulate (34-44%), cycloartenyl <i>trans</i> -ferulate (19-26%),
357	campesteryl <i>trans</i> -ferulate (15-23%), β -sitosteryl <i>trans</i> -ferulate (7-17%), and stigmasteryl <i>trans</i> -ferulate
358	(1-7%) (Goufo & Trindade, 2014). It has been reported that γ -oryzanol showed various important biological
359	profile such as antioxidant activities, lowering serum cholesterol levels, treating inflammatory diseases,
360	inhibiting tumor growth, decreasing platelet aggregation, promoting blood circulation, reducing blood
361	pressure and also promoting growth and development in humans and animals (Goufo & Trindade, 2014; Cho
362	et al., 2012). Besides the well-documented health benefits, γ -oryzanol also has been reported as a potential
363	additive in various food products, pharmaceuticals and cosmetics (Goufo & Trindade, 2014). Akihisa et al.
364	(2000) isolated and identified five pairs of <i>trans</i> - and <i>cis</i> -ferulate isomers include cycloeucalenol <i>cis</i> -ferulate
365	and cycloeucalenol <i>trans</i> -ferulate from rice bran by column chromatography, TLC, HPLC and ¹ H NMR.
366	However, other studies suggest that these <i>cis</i> -ferulates were most likely formed during the manufacture of rice
367	bran and the multistep separation process of individual γ -oryzanol components, because daylight and
368	long-wavelength UV radiation can induce <i>cis-trans</i> isomerization of feruloyl esters (Goufo & Trindade, 2014;
369	Fang, Yu & Badger, 2003). In the present study, it was found that the content of cycloeucalenol <i>cis</i> -ferulate
370	was increasing continuously following the decreasing of cycloeucalenol trans-ferulate by TLC detection
371	during purification, indicating that cycloeucalenol trans-ferulate was unstable and could convert to
372	cycloeucalenol cis-ferulate. This result therefore implied that trans-ferulates were not really natural products,
373	but artifact products.
374	Compound 3-6 are <i>cis-trans</i> isomers of ferulic acid and its methyl ester derivatives. Ferulic acid is

374 Compound **3-6** are *cis-trans* isomers of ferulic acid and its methyl ester derivatives. Ferulic acid is 375 widely distributed in fruits, vegetables and cereal grains. In rice, ferulic acid is esterified to cell wall 376 components and thus form part of the dietary fiber and exist therefore in a insoluble bound form (Arranz,

377 Silvan & Saura-Calixto, 2010). Ferulic acid is considered as one of the most important phenolic acids, 378 exhibiting a wide spectrum of therapeutic properties like anti-inflammatory, antiatherogenic, antidiabetic, 379 antiageing, neuroprotective, radioprotective and hepatoprotective effects (Adom & Liu, 2002). It also protects 380 against coronary disease, lowers cholesterol in serum and liver, and increases sperm viability (Adom, Sorrells 381 & Liu, 2003). Many of these activities can be attributed to its potent antioxidant capacity because its phenolic nucleus and unsaturated side chain can readily form a resonance stabilized phenoxy radical delocalized across 382 383 the entire molecule (Rice-Evans, Miller & Paganga, 1997). On account of these properties it is receiving 384 increased attention with regard to applications in the food, health, cosmetic, and pharmaceutical industries. Four forms of ferulic acid and its derivates were isolated as the major components of bound phenolics from 385 386 rice bran in this study, two cis-isomers are the converted products of the corresponding trans-isomers due to 387 cis-trans isomerization of the side chain of olefinic protons. Antioxidant experiments revealed that 388 trans-isomers possessed almost identical DPPH hydroxy radical and ABTS⁺ radical scavenging activities to 389 the corresponding *cis*-isomers and were the main antioxidant compounds among bound phenolics, and the 390 antioxidant activity of the ferulic acid methyl ester was slightly lower than the corresponding ferulic acid due 391 to a mehoxyl group instead of a hydroxyl group.

Compound 7, methyl caffeate, is a methyl esterification product of caffeic acid which is the major representative of hydroxycinnamic acids widely present in almost every plant. Caffeic acid showed significant antioxidant activity and might inhibit the formation of mutagenic and carcinogenic nitrosamine compounds (Kuenzig et al., 1984). In vivo, when ingested with the diet, caffeic acid increase the plasma antioxidant capacity and inhibit oxidation of low-density lipoprotein (Gulcin, 2006). Methyl caffeate showed strong

397 antioxidant activities in DPPH and ABTS⁺ assay, indicating that it might be one of the important contributors

- 398 for antioxidant activity of bound phenolics.
- 399 Compound 8, *para*-hydroxy methyl benzoate glucoside, consists of a molecular of *para*-hydroxy benzoic
- 400 acid and glucose by esterification integrated to the aleurone, pericarp and embryo cell walls. Compound 8
- 401 exhibited moderate antioxidant activity against ABTS⁺ radical and might represent a new potential natural
- 402 antioxidant agent.

Compound 9, vanillic aldehyde, was isolated from the seedpods of *Vanilla planifolia* originally. This compound has been shown to have a wide range of bioactivities such as antioxidant, anti-mutagenic, anti-inflammatory, analgesic, hypolipidemic, and hepatoprotective activities (Wang, Zhang, Zhao, Wang, Liu & Xin, 2013). It has been demonstrated that vanillic aldehyde can be conversed from ferulic acid due to microbial metabolism (Venturi, Zennaro, Degrassi, Okeke & Bruschi, 1998). In general, vanillic aldehyde is used as flavoring agents in foods, beverages, cosmetics and pharmaceuticals.

Compound **10**, *para*-hydroxy benzaldehyde, is one of the three isomers of hydroxyl benzaldehyde. This compound has been found in several plants such as the orchid *Gastrodia elata*, *Galeola faberi* and vanilla. It has been reported that *para*-hydroxy benzaldehyde showed antioxidation and inhibition of gamma-aminobutyric acid (GABA) transaminase associated with antiepileptic and anticonvulsive activity (Ha et al., 2000).

It has been documented that cells in humans and other organisms are constantly exposed to a variety of oxidizing agents, some of which are necessary for life (Wang, Zhang, Zhao, Wang, Liu & Xin, 2013). Overproduction of oxidants can cause oxidative stress resulting in damage to DNA and proteins molecules, as well as membrane lipid oxidation and an increased risk of degenerative diseases such as cancer,

418 atherosclerosis, ageing, cardiovascular and inflammatory diseases (Adom & Liu, 2002). Therefore, the 419 consumption of sufficient amounts of antioxidants has been recommended to prevent or slow the oxidative 420 stress induced by free radicals. Phytochemicals derived from natural resources, particularly from fruits, 421 vegetables and cereal grains containing high levels of bound phenolics, have played an important role 422 associated with a decreased risk of cardiovascular disease (Sun, Chu, Wu & Liu, 2002). Moreover, it has been 423 reported that most of bound phenolics, which are strongly covalently linked to cell wall components thus act 424 as part of the dietary fiber that are resistant to digestion and absorption in the human stomach and small 425 intestine, are entrapped by dietary fibre and reach the colon intact, where they are released under the 426 fermentation of colonic microflore, and exert beneficial effects by scavenging the free radicals and 427 counteracting the effects of dietary pro-oxidants (Adom & Liu, 2002). This may partly explain the mechanism 428 of grain consumption in the prevention of colon cancer and other digestive cancers, which is supported by 429 epidemiological studies (Adom, Sorrells & Liu, 2003). The high levels of bound phenolic compounds with 430 significant antioxidant activity present in rice bran indicated that it is a valuable potential resource and worthy 431 of further utilizing and developing on industry scale. It is worth mentioning, however, that the bound phenolic 432 compounds are only a minor component of rice bran. This research therefore suggests that the antioxidant 433 activities of rice bran are derived from the combination of phytochemicals and not from a single compound. 434 This result is therefore consistent with similar findings in whole fruits and vegetables, where the additive and 435 synergistic effects of phytochemicals in whole foods have been reported to be responsible for their potent 436 antioxidant activities, with the potential health benefits being attributed to the complex mixtures of 437 phytochemicals present in whole foods (He & Liu 2008).

438	In summary, this study has demonstrated that the individual bound phenolic compounds present in rice
439	bran can be released by alkaline hydrolysis and obtained by chromatographic purification. The majority of the
440	phenolic compound was ferulic acid with powerful antioxidant activity. Para-hydroxy methyl benzoate
441	glucoside, in particular, has been identified as a new compound and showed moderate antioxidant activity
442	against ABTS ⁺ radical. The current study represents a useful addition to understand the potential application
443	of the bound phenolic compounds, lay the foundation for the clarification of mechanisms associated with
444	combating human diseases, and enhance better understanding of the relationship between bound phenolics
445	and human health.
446	Acknowledgments
447	This work was financially supported by the Fundamental Research Funds for the Central Universities
448	(KYZ201118), the Project of National Key Technology Research and Development Program for the 12th
449	Five-year Plan (2012BAD33B10) and the project funded by special funds of agro-product quality safety risk
450	assessment of Ministry of Agriculture of the People's Republic of China (2014FP11).
451	
452	
453	6
454	6
455	
456	
457	
458	

References:

- 460 Adom, K. K., Sorrells, M. E., & Liu, R. H. (2003). Phytochemical profiles and antioxidant activity of wheat
- 461 varieties. Journal of Agricultural and Food Chemistry, 51(26), 7825-7834.
- 462 Adom, K. K., & Liu, R. H. (2002). Antioxidant activity of grains. Journal of Agricultural and Food
- 463 *Chemistry*, *50*(21), 6182-6187.

- 464 Akihisa, T., Yasukawa, K., Yamaura, M., Ukiya, M., Kimura, Y., Shimizu, N., & Arai, K. (2000). Triterpene
- 465 alcohol and sterol ferulates from rice bran and their anti-inflammatory effects. Journal of Agricultural and
- 466 *Food Chemistry*, 48(6), 2313-2319.
- 467 Arab, F., Alemzadeh, I., & Maghsoudi, V. (2011). Determination of antioxidant component and activity of
 468 rice bran extract. *Scientia Iranica*, *18*(6), 1402-1406.
- 469 Arranz, S., Silvan, J. M., & Saura-Calixto, F. (2010). Nonextractable polyphenols, usually ignored, are the
- 470 major part of dietary polyphenols: a study on the Spanish diet. *Molecular Nutrition & Food Research*, 54(11),
 471 1646-1658.
- 472 Balachandran, C., Duraipandiyan, V., Al-Dhabi, N. A., Balakrishna, K., Kalia, N. P., Rajput, V. S., Khan, I.
- 473 A., & Ignacimuthu, S. (2012). Antimicrobial and Antimycobacterial Activities of Methyl Caffeate Isolated
- 474 from *Solanum torvum* Swartz. Fruit. *Indian Journal of Microbiology*, *52*(4), 676-681.
- 475 Canan, C., Cruz, F. T. L., Delaroza, F., Casagrande, R., Sarmento, C. P. M., Shimokomaki, M., & Ida, E. I.
- 476 (2011). Studies on the extraction and purification of phytic acid from rice bran. *Journal of Food Composition*477 *and Analysis*, 24(7), 1057-1063.
- 477 *una Analysis*, 24(7), 1037-1003.
- Chen, F., Wang, Z., Zhao, G., Liao, X., Cai, T., Guo, L., & Hu, X. (2007). Purification process of octacosanol
 extracts from rice bran wax by molecular distillation. *Journal of Food Engineering*, *79*(1), 63-68.
- 480 Cho, J., Lee, H. J., Kim, G. A., Kim, G. D., Lee, Y. S., Shin, S. C., Park, K., & Moon, J. (2012). Quantitative
- 481 analyses of individual γ -Oryzanol (Steryl Ferulates) in conventional and organic brown rice (*Oryza sativa* 482 L.). *Journal of Cereal Science*, 55(3), 337-343.
- 483 Choi, S. P., Kim, S. P., Kang, M. Y., Nam, S. H., & Friedman, M. (2010). Protective effects of black rice bran
- 484 against chemically-induced inflammation of mouse skin. *Journal of Agricultural and Food Chemistry*, 58(18),
 485 10007-10015.
- 486 Carocho, M., & Ferreira, I. C. (2013). A review on antioxidants, prooxidants and related controversy: natural
- and synthetic compounds, screening and analysis methodologies and future perspectives. *Food and Chemical Toxicology*, *51*, 15-25.
- Dai, J., & Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer
 properties. *Molecules*, 15(10), 7313-7352.
- 491 Fang, N., Yu, S., & Badger, T. M. (2003). Characterization of triterpene alcohol and sterol ferulates in rice
- bran using LC-MS/MS. Journal of Agricultural and Food Chemistry, 51(11), 3260-3267.
- Feng, S., Guo, H., Liu, P., Li, H., & Guo, D. (2008). Chemical constituents in bark of *Pseudolarix kaempferi*. *Chinese Traditional and Herbal Drugs*, 39, 10-12.
- 495 Goufo, P., & Trindade, H. (2014). Rice antioxidants: phenolic acids, flavonoids, anthocyanins,
- 496 proanthocyanidins, tocopherols, tocotrienols, γ -oryzanol, and phytic acid. Food Science & Nutrition, 2(2),
- 497 75-104.
- 498 Gulcin, I. (2006). Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, 217(2-3),
- 499 213-220.

- 500 Hiramitsu, T., & Armstrong, D. (1991). Preventive effect of antioxidants on lipid peroxidation in the retina.
- 501 *Ophthalmic Research*, 23(4), 196-203.
- 502 Ha, J. H., Lee, D. U., Lee, J. T., Kim, J. S., Yong, C. S., Kim, J. A., Ha, J. S., & Huh, K. (2000).
- 4-Hydroxybenzaldehyde from Gastrodia elata B1. is active in the antioxidation and GABAergic
 neuromodulation of the rat brain. *Journal of Ethnopharmacology*, 73(1-2), 329-333.
- 505 He, X., & Liu, R. H. (2008). Phytochemicals of apple peels: isolation, structure elucidation, and their
- antiproliferative and antioxidant activities. Journal of Agricultural and Food Chemistry, 56(21), 9905-9910.
- 507 Kondo, S., Teongtip, R., Srichana, D., & Itharat, A. (2011). Antimicrobial activity of rice bran extracts for
- 508 diarrheal disease. Journal of the Medical Association of Thailand, 94 Suppl 7, S117-S121.
- 509 Kuenzig, W., Chau, J., Norkus, E., Holowaschenko, H., Newmark, H., Mergens, W., & Conney, A. H. (1984).
- 510 Caffeic and ferulic acid as blockers of nitrosamine formation. *Carcinogenesis*, 5(3), 309-313.
- 511 Lai, M. H., Chen, Y. T., Chen, Y. Y., Chang, J. H., & Cheng, H. H. (2012). Effects of rice bran oil on the
- 512 blood lipids profiles and insulin resistance in type 2 diabetes patients. Journal of Clinical Biochemistry and
- 513 *Nutrition*, 51(1), 15-18.
- Liang, D., Hao, Z. Y., Zhang, G. J., Zhang, Q. J., Chen, R. Y., & Yu, D. Q. (2011). Cytotoxic triterpenoid
- saponins from *Lysimachia clethroides*. Journal of Natural Products, 74(10), 2128-2136.
- 516 Liang, Y., Gao, Y., Lin, Q., Luo, F., Wu, W., Lu, Q., & Liu, Y. (2014). A review of the research progress on
- the bioactive ingredients and physiological activities of rice bran oil. *European Food Research and Technology*, 238(2), 169-176.
- McKee, L. H., & Latner, T. A. (2000). Underutilized sources of dietary fiber: a review. *Plant Foods for Human Nutrition*, 55(4), 285-304.
- 521 Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease.
- 522 Oxidative Medicine and Cellular Longevity, 2(5), 270-278.
- 523 Parrado, J., Miramontes, E., Jover, M., Gutierrez, J. F., Collantes De Terán, L., & Bautista, J. (2006).
- 524 Preparation of a rice bran enzymatic extract with potential use as functional food. *Food Chemistry*, 98(4),
 525 742-748.
- Perez-Jimenez, J., & Torres, J. L. (2011). Analysis of nonextractable phenolic compounds in foods: the
 current state of the art. *Journal of Agricultural and Food Chemistry*, 59(24), 12713-12724.
- 528 Qureshi, A. A., Bradlow, B. A., Salser, W. A., & Brace, L. D. (1997). Novel tocotrienols of rice bran 529 modulate cardiovascular disease risk parameters of hypercholesterolemic humans. *The Journal of Nutritional*
- 530 *Biochemistry*, 8(5), 290-298.
- 531 Ray, B., Hutterer, C., Bandyopadhyay, S. S., Ghosh, K., Chatterjee, U. R., Ray, S., Zeittrager, I., Wagner, S.,
- 532 & Marschall, M. (2013). Chemically engineered sulfated glucans from rice bran exert strong antiviral activity
- at the stage of viral entry. *Journal of Natural Products*, 76(12), 2180-2188.
- 534 Rice-Evans, C., Miller, N., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in
- 535 *Plant Science*, 2(4), 152-159.
- 536 Rivero-Perez, M. D., Muniz, P., & Gonzalez-Sanjose, M. L. (2007). Antioxidant profile of red wines
- evaluated by total antioxidant capacity, scavenger activity, and biomarkers of oxidative stress methodologies.
- 538 *Journal of Agricultural and Food Chemistry*, 55(14), 5476-5483.
- 539 Ryden, P., Sugimoto-Shirasu, K., Smith, A. C., Findlay, K., Reiter, W. D., & McCann, M. C. (2003). Tensile
- 540 properties of Arabidopsis cell walls depend on both a xyloglucan cross-linked microfibrillar network and
- 541 rhamnogalacturonan II-borate complexes. *Plant Physiology*, 132(2), 1033-1040.

- 542 Shengan, T., Rong, X., Wenhan, L., & Hongquan, D. (2012). Jaspiferin A and B: Two New Secondary
- 543 Metabolites from the South China Sea Sponge Jaspis stellifera. Records of Natural Products, 6, 398-401.
- 544 Stoggl, W., Huck, C., Wongyai, S., Scherz, H., & Bonn, G. (2005). Simultaneous determination of
- 545 carotenoids, tocopherols, and gamma-oryzanol in crude rice bran oil by liquid chromatography coupled to
- 546 diode array and mass spectrometric detection employing silica C30 stationary phases. Journal of Separation
- 547 Science, 28(14), 1712-1718.
- 548 Su, D., Zhang, R., Hou, F., Zhang, M., Guo, J., Huang, F., Deng, Y., & Wei, Z. (2014). Comparison of the
- 549 free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different
- solvents. *BMC Complementary and Alternative Medicine*, *14*(9), 1-10.
- 551 Sugihara, N., Kanda, A., Nakano, T., Nakamura, T., Igusa, H., & Hara, S. (2010). Novel fractionation method
- for squalene and phytosterols contained in the deodorization distillate of rice bran oil. *Journal of Separation Science*, 59(2), 65-70.
- 554 Srinivasan, M., Sudheer, A. R., & Menon, V. P. (2007). Ferulic acid: therapeutic potential through its 555 antioxidant property. *Journal of Clinical Biochemistry and Nutrition*, 40(2), 92.
- 556 Sun, J., Chu, Y. F., Wu, X., & Liu, R. H. (2002). Antioxidant and antiproliferative activities of common fruits.
- 557 *Journal of Agricultural and Food Chemistry*, 50(25), 7449-7454.
- Tanaka, A., Kato, A., & Tsuchiya, T. (1971). Isolation of methyl ferulate from rice bran oil. *Journal of the American Oil Chemists' Society*, 48(3), 95-97.
- 560 Venturi, V., Zennaro, F., Degrassi, G., Okeke, B. C., & Bruschi, C. V. (1998). Genetics of ferulic acid
- bioconversion to protocatechuic acid in plant-growth-promoting *Pseudomonas putida* WCS358. *Microbiology*,
 144 (Pt 4), 965-973.
- Verschoyle, R. D., Greaves, P., Cai, H., Edwards, R. E., Steward, W. P., & Gescher, A. J. (2007). Evaluation

of the cancer chemopreventive efficacy of rice bran in genetic mouse models of breast, prostate and intestinal
 carcinogenesis. *British Journal of Cancer*, *96*(2), 248-254.

566 Wilson, T. A., Nicolosi, R. J., Woolfrey, B., & Kritchevsky, D. (2007). Rice bran oil and oryzanol reduce

567 plasma lipid and lipoprotein cholesterol concentrations and aortic cholesterol ester accumulation to a greater

- extent than ferulic acid in hypercholesterolemic hamsters. *The Journal of Nutritional Biochemistry*, 18(2),
 105-112.
- 570 Wang, X., Zhang, M., Zhao, Y., Wang, H., Liu, T., & Xin, Z. (2013). Pentadecyl ferulate, a potent antioxidant
- 571 and antiproliferative agent from the halophyte Salicornia herbacea. Food Chemistry, 141(3), 2066-2074.
- 572 Xu, Z., & Godber, J. S. (1999). Purification and identification of components of gamma-oryzanol in rice bran
- 573 Oil. Journal of Agricultural and Food Chemistry, 47(7), 2724-2728.
- Xu, Z., Hua, N., & Godber, J. S. (2001). Antioxidant activity of tocopherols, tocotrienols, and
 gamma-oryzanol components from rice bran against cholesterol oxidation accelerated by
 2,2'-azobis(2-methylpropionamidine) dihydrochloride. *Journal of Agricultural and Food Chemistry*, 49(4),
- **577** 2077-2081.
- 578 Xu, Z., & Godber, J. S. (2001). Antioxidant activities of major components of γ -oryzanol from rice bran using
- a linoleic acid model. *Journal of the American Oil Chemists' Society*, 78(6), 645-649.
- 580 Yoshioka, T., Inokuchi, T., Fujioka, S., & Kimura, Y. (2004). Phenolic compounds and flavonoids as plant
- 581 growth regulators from fruit and leaf of Vitex rotundifolia. Zeitschrift für Naturforschung. C, Journal of
- 582 *Biosciences*, 59(7-8), 509-514.

624	Figure Captions
625	Fig. 1 Extraction and separation process for the bound phenolics of rice bran
626	Fig. 2 Bound phenolic compounds isolated from rice bran and Key COSY and HMBC correlations for
627	compound 1 (A) and 8 (B)
628	Fig. 3 DPPH hydroxy radical-scavenging activity (A), ABTS radical-scavenging activity (B) of the isolated
629	compounds at the concentration of 100 μ M. cycloeucalenol <i>cis</i> -ferulate (1), cycloeucalenol <i>trans</i> -ferulate (2),
630	trans-ferulic acid (3), trans-ferulic acid methyl ester (4), cis-ferulic acid (5), cis-ferulic acid methyl ester (6),
631	methyl caffeate (7), para-hydroxy methyl benzoate glucoside (8), vanillic aldehyde (9) and para-hydroxy
632	benzaldehyde (10). Each value has been presented as the mean \pm SD of three experiments. Note: a-e, results
633	with a different letter differ significantly ($p < 0.05$).
634	Fig. 4 DPPH hydroxy radical-scavenging activity (A) and ABTS radical-scavenging activity (B) of
635	compounds 1-8 under different concentrations.
636	Table 1. NMR spectral data for compound 1 and 2 in $CDCl_3$ at 400 (¹ H) and 100 MHz (¹³ C)
637	Table 2. NMR spectral data for compound 8 in DMSO- d_6 at 400 (¹ H) and 100 MHz (¹³ C)
638	
639	
640	6
641	6
642	
643	

644 Figure. 1

655 Figure. 2

662 Figure. 3

	1		2	
Position	H (J in Hz)	C (Jin Hz)	H (J in Hz)	C(J in Hz)
1	1.27 (m. 1H)	31.6	1.27 (m. 1H)	31.6
	1.65 (m, 1H)		1.65 (m, 1H)	
2	1.65 (m, 1H)	26.5	1.65 (m, 1H)	26.9
	1.83 (m, 1H)		1.84 (m, 1H)	
3	4.71 (s, 1H)	80.4	4.71 (m, 1H)	80.5
4		39.5		39.7
5	1.42 (d, <i>J</i> = 4.35, 12.40 Hz, 1H)	47.2	1.44 (d, $J = 4.35$, 12.40 Hz, 1H)	47.2
6	1.49 (d, $J = 4.35$, 12.40 Hz, 1H)	20.9	1.44 (d, $J = 4.35$, 12.40 Hz, 1H)	20.9
	1.58 (m, 1H)		1.59 (m, 1H)	
7	1.30 (m, 1H)	28.1	1.30 (m, 1H)	28.1
	1.90 (m, 1H)		1.93 (m, 1H)	*
8	1.53 (dd, <i>J</i> = 3.70, 12.15 Hz, 1H)	47.8	1.53 (dd, $J = 3.70$, 12.15 Hz, 1H)	47.8
9		20.1		20.1
10		25.7		25.8
11	1.63 (m, 1H)	26.8	1.15 (m, 1H)	26.5
	2.00 (m, 1H)		2.00 (m. 1H)	
12	1.30 (m, 1H)	35.5	1.30 (m, 1H)	35.5
13		45.2		45.2
14		48.8		48.8
15	1.63 (m, 1H)	32.9	1.63 (m, 1H)	32.8
16	1.13 (m, 1H)	26.0	1.11 (m, 1H)	26.0
17	1.61 (m, 1H)	52.2	1.63 (m, 1H)	52.2
18	0.90 (s, 3H)	18.3	0.91 (s, 3H)	18.3
19	0.35 (d, $J = 3.95$ Hz, 1H)	29.7	0.36 (d, $J = 3.95$ Hz, 1H)	29.7
	0.58 (d, J = 3.90 Hz, 1H)		0.60 (d, $J = 3.90$ Hz, 1H)	
20	1.40 (m, 1H)	36.1	1.40 (m, 1H)	36.1
21	0.90 (s, 3H)	18.2	0.90 (s, 3H)	18.2
22	1.15 (m, 1H)	35.0	1.15 (m, 1H)	35.0
	1.58 (m, 1H)		1.58 (m, 1H)	
23	2.03 (m, 1H)	24.9	2.03 (m, 1H)	24.9
24	5.10 (t, $J = 6.75$ Hz, 1H)	125.2	5.10 (t, $J = 7.20$ Hz, 1H)	125.2
25		130.9		130.8
26	1.69 (s, 3H)	25.4	1.68 (s, 3H)	25.4
27	1.61 (s, 3H)	17.6	1.61 (s, 3H)	17.6
28	0.86 (s, 3H)	17.9	0.97 (s, 3H)	17.9
29	0.90 (s, 3H)	25.4	0.90 (s, 3H)	25.4
30	0.90 (s, 3H)	15.1	0.97 (s, 3H)	15.3
1'		166.4		167.0
2'	5.84 (d, $J = 12.60$ Hz, 1H)	117.7	6.29 (d, $J = 15.90$ Hz, 1H)	116.2
3'	6.79 (d, $J = 12.85$ Hz, 1H)	143.3	7.59 (d, $J = 15.85$ Hz, 1H)	144.3
4'	-	127.4		127.6
5'	7.14 (dd, $J = 8.15$, 2.10 Hz, 1H)	125.5	7.07 (dd, $J = 8.15$, 1.55 Hz, 1H)	122.9
6'	6.88 (d, $J = 8.25$ Hz, 1H)	113.8	6.91 (d, $J = 8.15$ Hz, 1H)	114.8
7'		146.9		149.1
7'-OH	5.79 (s, 1H)		5.89 (s, 1H)	
8'		145.9		147.9
8'-OMe	3.92 (s, 3H)	56.0	3.92 (s, 3H)	55.9

Table 1. NMR spectral data for compound 1 and 2 in CDCl₃ at 400 (1 H) and 100 MHz (13 C)

Position	H(J in Hz)	C(J in Hz)	HMBC (H \rightarrow C)	'H-'H
		1(15		COSY
1	7.12 (dd $I = 8.60$ Hz 2H)	101.3	$C \downarrow C \downarrow$	
3	7.12 (dd, J = 8.60 Hz, 2H) 7.91 (dd, $I = 8.60 \text{ Hz}, 2\text{H})$	131.5	C-1, C-4, C-5 C-1, C-2, C-5, C-7	H_2
4	7.91 (uu, 5 - 0.00 112, 211)	123.3	0-1, 0-2, 0-5, 0-7	11-2
5	7.91 (dd. $J = 8.60$ Hz. 2H)	131.5	C-1. C-3. C-7	Н-6
6	7.12 (dd, J = 8.60 Hz, 2H)	116.4	C-1, C-2, C-4	
7		166.2	,,	
7-OCH ₃	3.81 (s, 3H)	52.3	C-7	
1'	5.00 (dd, J = 7.20 Hz, 1H)	100.2	C-1	H-2'
2'	3.28 (m, 1H)	73.6	C-1', C-3'	
3'	3.30 (m, 1H)	76.9	C-2', C-4'	H-2', H-4'
4′	3.19 (m, 1H)	69.9	C-5', C-6'	
5'	3.39 (m, 1H)	77.5		H-4′
6'	3.48 (m, 1H), 3.69 (m, 1H)	61.0	C-5'	H-5′

Table 2. NMR spectral data for compound **8** in DMSO- d_6 at 400 (¹H) and 100 MHz (¹³C)

675

681	
682	Highlights
683 684 685 686 687 688 689 690	 The bound phenolic compounds present in rice bran were released by alkaline hydrolysis. Para-hydroxy methyl benzoate glucoside was identified in the bound phenolic fraction. Trans-ferulic acid was the major bound phenolic compound in rice bran with strong antioxidant activity.
P	