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Abstract 

The title compounds were synthesized by a sequential one-pot reaction of aryl aldehydes, 

aryl-methyl ketones and thiols promoted by KF/Al2O3. This methodology affords a large 

number of ?-aryl-?-sulfanyl ketone derivatives from aliphatic and aromatic thiols in good 

yields and is applicable also for solid substrates. 

[Supplementary materials are available for this article. Go to the publisher’s online 

edition of Synthetic Communications® for the following free supplemental resource(s): 

Full experimental and spectral details.] 
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Conjugate addition reactions of sulfur nucleophiles to electron-deficient olefins are one 

of the most important synthetic tools for the generation of carbon-sulfur bonds. 

Organosulfur groups are valuable intermediates in organic synthesis[1] and this structural 

unit is frequently present in naturally occurring and biologically active compounds.[2] 

Particularly, the synthetic utility of β-sulfanyl ketones has been demonstrated in the 

syntheses of naturally occurring spiroketal pheromones,[3] alkene protective group,[4] and 

as versatile homoenolate equivalents.[5] More recently, these functionalized ketones were 

found to have ant iproliferative activity of breast cancer cell lines (Figure 1).[6] Thus, the 

development of efficient and new methodologies for synthesizing this class of 

compounds has been emerged in organic synthesis. 

 

Traditional methods for the formation of C-S bonds via thia-Michael addition commonly 

make use of the already available α,β-unsaturated ketones. The 1,4-addition of thiols can 

be catalyzed by alkali metal alkoxides[7] or Lewis acids.[8] Solid catalysts, such as acid 

adsorbed on silica gel,[9] zeolites,[10] natural and synthetic phosphates,[11] montmorillonite 

clays,[12] neutral alumina[13] and base supported on alumina[14] have been used to perform 

the 1,4-addition of thiols to a series of electron-poor alkenes. Besides, the use of non-

volatile and non-toxic solvents, such as water[15] and ionic liquids[16] to perform the 

Michael addition was also described. To the best of our knowledge, there are only a few 

methods to obtained β-aryl-β-sulfanyl ketones by direct one-pot Claisen-Schmidt 

condensation of aryl aldehydes with acetophenones and subsequent addition of thiols.[17] 

Besides scarce, these methods have some disadvantages, such as, cumbersome workup, 

low substrate scope and yield and, in some cases, they are not suitable to solid substrates. 
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Therefore, the development of efficient and practical methods for the synthesis of β-

sulfanyl ketones is attractive. 

 

On the other hand, in recent years glycerol has emerged as a eco-friendly and secure 

solvent for organic reactions,[18] including Pd-catalyzed Heck and Suzuki cross-couplings, 

Cu-catalyzed cross-coupling of diaryl diselenides with aryl boronic acids, base- and acid-

promoted condensations, catalytic hydrogenation and asymmetrical reduction.[19] The low 

toxicity, biodegradability, high boiling point and polarity, and ready availability from 

biomass are some of the peculiar properties of glycerol.[20] More recently, the 

electrophilic activation of carbonyl compounds in glycerol-promoted reactions, allowing 

the elimination of the use of acidic catalysts was demonstrated.[21] 

 

Because our interest in new uses for glycerol, and in continuation on our studies toward 

the development of new and cleaner methods for the synthesis of organochalcogenium 

compounds, we present here a sequential, one-pot procedure for the synthesis of β-

sulfanyl ketones using glycerol as solvent and KF/alumina as catalytic system (Scheme 

1). 

 

RESULTS AND DISCUSSION 

Our initial studies were focused on the development of an optimum set of reaction 

conditions to afford the intermediate chalcone 3a (Table 1). Initially, we reacted 

acetophenone 1a (1.0 mmol) with benzaldehyde 2a (1.0 mmol) using KF/Al2O3 50% 

(0.07g) as base system in glycerol (5.0 mL) at room temperature. Under these conditions, 
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no product was observed. To our satisfaction, increasing the temperature to 90 °C, the 

reaction proceeds smoothly and the desired product 3a was obtained in 78% yield (Table 

1, entry 3). In another experiment, it was observed that using 1.2 mmol of 2a, the product 

3a was obtained in 90% yield (Table 1, entry 4). When others solvents were used, such as 

PEG-400, ethanol, THF and DMF, moderated to good yields of 3a were obtained (Table 

1; entries 5-8). 

 

The influence of the amount of thiol 4a was the next variable studied, aiming to obtain 

via one pot procedure the 1,3-diphenyl-3-(phenylsulfanyl)propan-1-one 5a (Scheme 1). 

We observed that the use of 1.0 or 1.5 mmol of benzenethiol 4a gives the desired product 

5a in moderated yield (Table 1, entries 9 and 10). Fortunately, when the amount of thiol 

4a was increased to 2.0 mmol, 5a was obtained in 78% yield (Table 1, entry 11). 

 

In an optimized reaction, a mixture of acetophenone 1a (1.0 mmol), benzaldehyde 2a (1.2 

mmol) and KF/Al2O3 50% (0,07g) in glycerol (5.0 mL) was stirred for 4 h at 90 °C under 

N2 atmosphere. After that, benzenethiol 4a (2.0 mmol) was added and the stirring was 

maintained for additional 3 h. 

 

Using these reaction conditions, 1,3-diphenyl-3-(phenylsulfanyl)propan-1-one 5a was 

obtained in 78% yield. The possibility of reuse of the KF/Al2O3/glycerol system was also 

investigated. For this pourpose, after the time indicated in Table 1, the reaction was 

extracted with a mixture of hexane/AcOEt 95:5 (3× 2.0 mL) and the remaining glycerol 

phase was directly reused in a new reaction. Unfortunately, it was observed an 
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incomplete consume of starting acetophenone and benzaldehyde, giving only 45% yield 

of the intermediate chalcone 3a. 

 

To extend the scope of our methodology, the possibility of performing the reaction with 

other aryl-methyl ketones, aryl aldehydes and thiols was investigated and, in most cases, 

the reaction proceeded smoothly to give the respective β-aryl-β-sulfanyl ketones 5b-j in 

good yields. 

 

It was observed that the presence of electron-withdrawing and electron-donating groups 

in the aryl thiols caused a slightly decrease in the yield of β-sulfanyl ketones 5 (Table 2, 

entries 2-5). Thus, when p-chloro and p-bromo benzenethiol were added to the previous 

formed chalcone 3a, the respective β-phenyl-β-(4-halophenylthio) ketones 5c and 5d 

were obtained after 7 h in 60 and 63% yield respectively (entries 3 and 4), while o-chloro 

benzenethiol 4e gave 5e in a similar yield after 8 h (Table 2, entry 5). The presence of 

electron-donating group adversely affect the reaction time, being necessary 14 h to obtain 

the functionalized ketone 5b, derived from p-methoxy benzenethiol 4b (Table 2, entry 2 

). In contrast, no apparent effect was observed when substituted ketones 1b-c and 

anisaldehyde 2b were used (Table 2, entries 8-10). Good results were obtained also using 

dodecanethiol 4f, which reacted smoothly to afford 5f in 64% yield after 7 h (Table 2, 

entry 6). 

 

To our satisfaction, through of our methodology it is possible to obtain the final products 

starting from both, liquid and solid substrates. Thus, for example, the reaction of 
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acetophenone 1a, benzaldehyde 2a and β-naphthyl mercaptan 4g furnished the desired 

product 5g exclusively in 57% yield after 14 h (Table 2, entry 7). 

 

In summary, a sequential one-pot reaction of aryl aldehydes, aryl-methyl ketones and 

thiols to synthesize β-aryl-β-sulfanyl ketones using KF/Al2O3 was developed. A range of 

substituted β-sulfanyl ketones was obtained in good yields starting from solid and liquid 

reagents and using glycerol as a green, environmentally friend solvent. 

 

EXPERIMENTAL  

General Remarks 

The reactions were monitored by TLC carried out on Merck silica gel (60 F254) by using 

UV light as visualizant agent and 5% vanillin in 10% H2SO4 and heat as developing 

agents. The 1H and 13C NMR spectra of CDCl3 solutions were recorded with a 500 MHz 

spectrometer (Bruker DRX), as noted. Chemical shifts are expressed as parts per million 

(ppm) downfield from tetramethylsilane as an internal standard. Coupling constants (J) 

are reported in Hertz. Low Resolution Mass Spectra (LRMS, EI) were measured on a 

Shimadzu GCMS-QP2010-Plus mass spectrometer. High-Resolution Mass Spectra: HR-

ESI-MS were obtained on a LTQ Orbitrap Discovery mass spectrometer (Thermo Fisher 

Scientific).  

 

General Procedure For The Directly Synthesis Of β-Aryl-β-Sulfanyl Ketones22  

To a round-bottomed flask containing the aryl-methyl ketone 1a (0.120 g, 1.0 mmol), 

benzaldehyde 2a (0.127 g, 1.2 mmol) and KF/Al2O3 50% (0.07 g), was added glycerol 
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(5.0 mL). The reaction mixture was allowed to stir at 90 °C for 4 hours under N2 

atmosphere. After that, it was added the thiol 4d (0.376, 2.0 mmol) and the reaction 

progress was followed by TLC. After the time indicated in Table 2, the mixture was 

cooled to room temperature, diluted with ethyl acetate (10 mL), and washed with water 

(3x 10 mL). The organic phase was dried over MgSO4 and concentrated under vacuum. 

The residue was purified by flash chromatography on silica gel using ethyl 

acetate/hexane as the eluent, yielding 1,3-diphenyl-3-(4-bromophenylsulfanyl)propan-1-

one 5d (0.249 g, 63%). Yellow solid, mp 106-107 °C; IR (νmax, cm-1): 1674 (C=O). 1H 

NMR (500 MHz, CDCl3): δ 7.88 (d, J = 8.2 Hz, 2H); 7.54 (t, J = 7.4 Hz, 1H); 7.42 (t, J = 

7.6 Hz, 2H); 7.31-7.33 (m, 2H); 7.25 (t, J = 7.6 Hz, 2H); 7.17-7.20 (m, 1H); 7.14 (d, J = 

8.6 Hz, 2H); 4.92 (dd, J = 7.8 and 6.6 Hz, 1H); 3.62 (dd, J = 17.2 and 7.8 Hz, 1H); 3.56 

(dd, J = 17.2 and 6.6 Hz, 1H). 13C NMR (125 MHz, CDCl3); δ (ppm): 196.6, 140.9, 

136.6, 134.2, 133.3, 133.2, 131.9, 128.6, 128.5, 128.0, 127.7, 127.5, 121.8, 48.3, 44.5. 

MS (relative intensity) m/z: 396 (2), 207 (9), 105 (100), 77 (26). HRMS (ESI): m/z calcd. 

for C21H17BrOS [M + H]+: 397.0262; found: 397.0266. 
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Table 1. Optimization in the syntheses of chalcone 3a and β-phenyl-β-sulfanyl ketone 

5aa 

Entry 2a (mmol) 4a (mmol) Solvent Temperature (oC) Product 

(Yield, %)b 

1 1.0 - glycerol 50 3a (42) 

2 1.0 - glycerol 75 3a (53) 

3 1.0 - glycerol 90 3a (78) 

4 1.2 - glycerol 90 3a (90) 

5 1.2 - PEG-400 90 3a (70) 

6 1.2 - ethanol reflux 3a (60) 

7 1.2 - THF reflux 3a (30) 

8 1.2 - DMF 90 3a (61) 

9 1.2 1.0 glycerol 90 5a (59) 

10 1.2 1.5 glycerol 90 5a (65) 

11 1.2 2.0 glycerol 90 5a (78) 

aReactions performed in the presence of 1a (1.0 mmol), 2a, KF/Al2O3 (0.07 g), and 

solvent (5.0 mL) under N2 atmosphere for 4 h to obtain 3a and additional 3 h to 5a.  

bYields are given for isolated product 3a or 5a. 
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Table 2. Scope and generality of the synthesis of the β-aryl-β-sulfanyl ketones 5a-j. 

Entr
y 

Aryl-Methyl 
Ketone 1 

Aldehyde  2 Thiol 4 Product 5 Tim
e (h) 

Yiel
d 

(%)a 
1 O

1a  
H

O

2a  

SH

4a  
O S

5a  

3 78 

2 O

1a  
H

O

2a  

SH

4b

CH3O

 

O S

5b

OCH3

 

10 65 

3 O

1a  
H

O

2a  

SH

4c

Cl

 
O S

5c

Cl

 

3 60 

4 O

1a  
H

O

2a  

SH

4d

Br

 
O S

5d

Br

 

3 63 

5 O

1a  

H

O

2a  
SH

4e

Cl

O S

5e

Cl

 

5 60 

6 O

1a  
H

O

2a

C12H25SH
4f

 

O SC12H25

5f  

3 64 

7 O

1a  
H

O

2a  

SH

4g

 

O S

5g  

10 57 

8 O

1bCH3O

 

H

O

2a  

SH

4a  
O S

5hCH3O

 

3 61 

9 O

1bCH3O  
H

O

2bCH3O

 

SH

4h

CH3

 
O S

5iCH3O

CH3

OCH3

 

7 55 

10 O

1cHO  
H

O

2a  

SH

4a  
O S

5jHO  

12 57 
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aReactions performed in the presence of 1 (1.0 mmol), 2, KF/Al2O3 (0.07 g), and solvent 

(5.0 mL) under N2 atmosphere for 4 h to obtain 3. 

bYields are given for isolated products. 
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Scheme 1. 
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Figure 1. Drugs containing β-sulfanyl ketone unit in their structure 
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