

Tetrahedron: Asymmetry 12 (2001) 1503-1509

TETRAHEDRON: ASYMMETRY

Stereoselective synthesis of (5S, 6S)- and (5S, 6R)-aza-muricatacin from an L-glutamic acid derivative

José M. Andrés, Noemí de Elena, Rafael Pedrosa* and Alfonso Pérez-Encabo

Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Doctor Mergelina s/n, 47011 Valladolid, Spain

Received 17 May 2001; accepted 30 May 2001

Abstract—A stereodivergent synthesis of *threo* and *erythro* aza-muricatacin, a non-natural aza-analogue of the bioactive annonaceous acetogenin muricatacin, is presented. The configuration of the C(5) stereocenter is controlled by diastereoselective alkylation of α -dibenzylamino aldehyde 1 or diastereoselective reduction of α -dibenzylamino ketone 3. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Threo and erythro aza-muricatacin (Fig. 1) are 5-(ahydroxy)-substituted pyrrolidin-2-ones with interesting cytotoxic activity;¹ they are related to muricatacin, a hydroxy lactone, isolated from Annona muricata which also has physiological activity.² (+)-Aza-muricatacin is also a component of the aza-solamine isolated from some species of Annonaceae with related cytotoxic activity.³ As a consequence, the synthesis of different diastereoisomers of aza-muricatacin has attracted much attention. In this way, (+)-syn- and (-)-anti-aza-muricatacins have been prepared by diastereoselective reduction of a ketone obtained from a pyroglutamic acid derivative or diastereoselective condensation of tridecanal with a silvloxypyrrole derivative.^{1a} N-Boc-tertbutyldimethylsilyloxypyrrole readily reacted with tridecanal enantioselectively to (+)-aza-muricatacin in the presence of (R)-Binol as catalyst⁴ and the same pyrrole derivative has been used in a different diastereoselective approach to aza-muricatacin by condensation with a chiral α -hydroxy aldehyde.⁵

2. Results and discussion

Herein we report on the stereoselective preparation of enantiopure syn-(5S,6S)- and anti-(5S,6R)-aza-muricatacin starting from a common α -amino- δ -hydroxypentanal derivative obtained from L-glutamic acid.⁶ The retrosynthetic approach (Scheme 1) used the

0957-4166/01/\$ - see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: S0957-4166(01)00251-8

stereoselective addition of different organometallic reagents to the chiral α -amino aldehyde structure previously described⁷ to *vic*-amino alcohols **2** and further elaboration to the final 5-substituted pyrrolidin-2-one **10**.

The reaction of N,N-dibenzylamino aldehyde 1 with dodecylmagnesium bromide for 1.5 h at 0°C in diethyl

Figure 1.

Scheme 1. Retrosynthetic analysis of (S,S)- and (S,R)-azamuricatacin.

^{*} Corresponding author.

ether lead to the expected Felkin-Ahn anti-2 addition compound⁸ in 70% yield as a single diastereomer as demonstrated by the ¹H NMR analysis of the reaction mixture. Compound 1 was also treated with the zinc reagent derived from dodecyl bromide attempting to prepare syn-2 but this compound was obtained in only low yield, probably due to the difficult formation of the zinc reagent, and very low stereoselection (a 6:4 mixture of syn and anti products was observed). Thus syn-2 was prepared from anti-2 in two steps. Swern oxidation of anti-2 gave amino ketone 3 in 86% yield, which was transformed stereoselectively into syn-2 (93:7 mixture, 86% d.e.) by reduction with sodium borohydride in methanol;9 enantiopure syn-2 was obtained in 76% yield from 3 after purification by flash chromatography on silica gel and hexane/ethyl acetate as eluent.

The stereochemistry of both *anti*-2 and *syn*-2 was assigned on the basis of previously published results,⁷ and confirmed by transformation into the oxazolidinones *cis*-4 and *trans*-4, respectively, by debenzylation and reaction with triphosgene (Scheme 2). The vicinal coupling constants between the protons at C(3) and C(4) in the rings were higher for *cis*-4 (J=7.2 Hz) than for *trans*-4 (J=5.8 Hz) and were consistent with previously reported data.¹⁰

The transformation of *anti-2* and *syn-2* into the corresponding enantiopure aza-muricatacins is summarized in Scheme 3. To this end, anti- and syn-2 were transformed into the MEM derivatives anti- and syn-5 in 90 and 78% yield, respectively, by reaction with MEM chloride in the presence of N-ethyldi-iso-propylamine in methylene chloride at rt for 4 h, then the primary hydroxy group was quantitatively deprotected to anti-6 and syn-6 by treatment with tetrabutylammonium fluoride in THF at 0°C for 10 h. Oxidation of the primary hydroxyl group to give the corresponding carboxylic acid was carried out in two steps. First, anti-6 and syn-6 were subjected to Swern oxidation leading to aldehydes anti-7 and syn-7 in 94 and 98% yield, respectively. Treatment of these aldehydes with sodium chlorite¹¹ gave anti-8 and syn-8 in 67 and 58% yield, respectively. These amino acids were quantitatively debenzylated by hydrogenolysis with palladium hydroxide on carbon and, without purification, the resulting

Scheme 2. Reagents and conditions: (i) $BrMg(CH_2)_{11}CH_3$, Et₂O, 0°C; (ii) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78°C; (iii) NaBH₄, MeOH/THF, -20°C; (iv) (1) H₂, Pd(OH)₂-C, MeOH, rt; (2) (CCl₃O)₂CO, *i*Pr₂NEt, CH₂Cl₂.

Scheme 3. Reagents and conditions: (i) MEMCl, iPr_2NEt , CH₂Cl₂, rt; (ii) TBAF, THF, 0°C; (iii) (COCl)₂, DMSO, Et₃N, CH₂Cl₂, -78°C; (iv) NaClO₂, NaH₂PO₄, 2-methyl-2-butene, $tBuOH/CH_3CN$, 0°C; (v) (1) H₂, Pd(OH)₂–C, MeOH, rt; (2) DCC, 4-PPY, CH₂Cl₂, 20°C; (vi) TiCl₄, CH₂Cl₂, 0°C.

 γ -amino acids were directly ring closed¹² to *anti*-9 and *syn*-9, in 74 and 55% yield, respectively, by treatment with DCC and 4-pyrrolidine pyridine in methylene chloride at rt.

Finally, *anti*-9 and *syn*-9 were transformed into enantiopure (5*S*,6*R*)-aza-muricatacin *anti*-10 and (5*S*,6*S*)aza-muricatacin *syn*-10, respectively, by removal of the MEM protective group. To this end, compounds *anti*-9 and *syn*-9 were treated with aqueous hydrochloric acid or zinc bromide as previously described¹³ but the reaction was very slow and only degradation products were obtained. Attempts to cleave the ether by reaction with *B*-bromo catecholborane¹⁴ were more successful, but the hydroxy derivatives were isolated in only 40% yield. Cleavage of the MEM group was easily achieved by treatment of solutions of *anti*-9 and *syn*-9 with 1 M TiCl₄ in methylene chloride at 0°C for 4 h;¹³ under these conditions *anti*-10 and *syn*-10 were obtained in 70 and 93% yield, respectively.

The isolated (5S,6R)-aza-muricatacin *anti*-10 and (5S,6S)-aza-muricatacin *syn*-10 had concordant physical and spectroscopic data with those previously reported,^{1a,5} thus confirming the assigned stereochemistry for all compounds and that stereochemical integrity was maintained during the transformations of *anti*-2 to *anti*-10 and *syn*-2 to *syn*-10.

3. Conclusion

In summary, the synthesis of two enantiopure diastereoisomers of aza-muricatacin has been easily carried out from a common N,N-dibenzylamino aldehyde derived from L-glutamic acid.

4. Experimental

4.1. General procedures

The reactions were carried out in oven-dried glassware, under an argon atmosphere, and using anhydrous solvents. The ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded on a Bruker AC 300 or Bruker AMX 300, using TMS as the internal standard. IR spectra were recorded on a Philips PU 9706 spectrometer, as a film or a KBr dispersion. Optical rotations were measured on a Perkin–Elmer 241 polarimeter in a 1 dm cell.

4.2. (4*S*,5*R*)-4-(*N*,*N*-Dibenzylamino)-1-(*tert*-butyl-dimethylsilyloxy)-5-heptadecanol *anti*-2

To a solution of $CH_3(CH_2)_{11}MgBr$ (60 mmol, 1.5 equiv.) in ether (60 mL) at 0°C was added dropwise a solution of amino aldehyde 1 (16.46 g, 40 mmol) in ether (150 mL). After stirring the mixture at this temperature for 1.5 h, saturated NH₄Cl (150 mL) was added and the mixture was extracted with ether (3× 100 mL). The combined organic layers were washed with brine, dried over Na₂SO₄ and the solvent was

evaporated under vacuum. After flash chromatography (silica gel: hexane/EtOAc: 50/1), anti-2 was obtained as a colorless oil (16.3 g, 28 mmol, 70%); $[\alpha]_{D}^{23} = +8.6$ (c 1.2, CHCl₃); IR (film): 3400, 1600, 1490, 1450, 1090, 740, 695 cm⁻¹; ¹H NMR (CDCl₃): δ 0.04 (s, 3H, CH₃Si), 0.05 (s, 3H, CH₃Si), 0.89 (t, 3H, J = 6.4 Hz, CH_3CH_2), 0.90 (s, 9H, $C(CH_3)_3$), 1.25 (m, 20H, (CH₂)₁₀CH₃), 1.46 (m, 4H, TBDMSOCH₂CH₂, CHHCHOH, CHHCHN), 1.73 (m, 2H, CHHCHOH, CHHCHN), 2.20 (br s, 1H, OH), 2.64 (m, 1H, CHN), 3.58 (m, 2H, TBDM-SOCH₂), 3.67 (m, 4H, CH₂Ph), 3.71 (m, 1H, CHOH), 7.20–7.40 (m, 10H, Harom.); ¹³C NMR (CDCl₃): δ -5.3 (CH₃Si), 14.1 (CH₃CH₂), 18.3 (C(CH₃)₃), 21.3 (CH₂CH₃), 22.7 (CH₂), 26.0 (C(CH₃)₃), 26.6 (CH₂), 29.4 (CH₂), 29.6 (several CH₂), 30.6 (CH₂), 31.9 (CH₂), 34.6 (CH₂), 55.0 (CH₂Ph), 60.7 (CHN), 63.0 (TBDMSOCH₂), 70.8 (CHOH), 127.0, 128.3, 128.9 (CHarom.), 140.0 (Carom.). Anal. calcd for C₃₇H₆₃NO₂Si: C, 76.36; H, 10.91; N, 2.41. Found: C, 76.06; H, 10.96; N, 2.44%.

4.3. (4*S*)-4-(*N*,*N*-Dibenzylamino)-1-(*tert*-butyl-dimethylsilyloxy)-5-heptadecanone 3

To a stirred solution of oxalyl chloride (1.95 mL, 22.35 mmol) in CH_2Cl_2 (50 mL) cooled to $-78^{\circ}C$ under argon was added dropwise DMSO (3.3 mL, 46.5 mmol). After stirring the mixture for 15 min, a solution of the amino alcohol anti-2 (9.6 g 16.5 mmol) in CH₂Cl₂ (50 mL) was added, and the mixture was stirred for 30 min at -78°C before addition of triethylamine (6.6 mL, 47.4 mmol). Then, the reaction was allowed to warm to rt under stirring for 45 min and the mixture was quenched with water (50 mL). The aqueous phase was extracted with CH₂Cl₂ (45 mL), and the combined organic layers were washed with saturated aqueous NaHCO₃ and brine. The organic phase was dried $(MgSO_4)$ and then concentrated to yield an oil which was purified by flash chromatography (silica gel, hexane/EtOAc: 60/1) (8.23 g, 14.2 mmol, 86%); $[\alpha]_{D}^{23} = -42.2$ (c 1.1, CHCl₃); IR (film): 1700, 1595, 1485, 1445, 1090, 740, 690 cm⁻¹; ¹H NMR (CDCl₃): δ 0.04 (s, 6H, CH₃Si), 0.88 (t, 3H, J = 7.1 Hz, CH₃CH₂), 0.90 (s, 9H, C(CH₃)₃), 1.38 (m, 18H, (CH₂)₉CH₃), 1.42 (m, 4H, CH₂CH₂CO and CH₂CH₂CHN), 1.74 (m, 2H, CH₂CHN), 2.34 (dt, 1H, $J_1 = 16.6$ Hz, $J_2 = 7.3$ Hz, CHHCO), 2.53 (dt, 1H, $J_1 = 16.6$ Hz, $J_2 = 7.2$ Hz, CHHCO), 3.23 (dd, 1H, $J_1 = 8.2$ Hz, $J_2 = 5.4$ Hz, CHN), 3.55 (m, 2H, TBDM-SOCH₂), 3.57 (d, 2H, J=13.7 Hz, CHHPh), 3.70 (d, 2H, J = 13.7 Hz, CHHPh), 7.20–7.40 (m, 10H, Harom.); ¹³C NMR (CDCl₃): δ -5.3 (CH₃Si), 14.1 (CH₃CH₂), 18.3 (C(CH₃)₃), 19.7 (CH₂CH₃), 22.7 (CH₂), 23.8 (CH₂), 26.0 (C(CH₃)₃), 29.4 (CH₂), 29.5 (CH₂), 29.6 (several CH₂), 30.3 (CH₂), 31.9 (CH₂), 41.1 (CH₂CO), 54.5 (CH₂Ph), 62.7 (TBDMSOCH₂), 65.6 (CHN), 127.1, 128.3, 128.8 (CHarom.), 139.6 (Carom.), 212.1 (CO). Anal. calcd for $C_{37}H_{61}NO_2Si$: C, 76.62; H, 10.60; N, 2.41. Found: C, 76.47; H, 10.48; N, 2.37%.

4.4. (4*S*,5*S*)-4-(*N*,*N*-Dibenzylamino)-1-(*tert*-butyl-dimethylsilyloxy)-5-heptadecanol *syn*-2

To a stirred solution of ketone 3 (10.62 g, 18.3 mmol) in MeOH/THF (9:2, 110 mL), cooled to -20°C, was added sodium borohydride (3.12 g, 82.4 mmol, 4.5 equiv.). After stirring the mixture for 2 h, the mixture was quenched with H₂O and extracted several times with ether. The ethereal layer was washed with NaCl solution and dried over MgSO₄, the solvents were removed, and the residue was purified by flash chromatography (silica gel, hexane/EtOAc: 50/1) to afford a colorless oil (8.1 g, 13.9 mmol, 76%); $[\alpha]_D^{23} = +15.2$ (c 1.0, CHCl₃); IR (film): 3410, 1600, 1495, 1455, 1100, 750, 700 cm⁻¹; ¹H NMR (CDCl₃): δ 0.09 (2s, 6H, $(CH_3)_2$ Si), 0.87 (t, 3H, J=6.6 Hz, CH_3 CH₂), 0.94 (s, $C(CH_{3})_{3}),$ 1.23 (m, 22H, $(CH_2)_{10}CH_3,$ 9H, CH₂CH₂CHN), 1.47 (m, 1H, CHHCHN), 1.65 (m, CHHCHN, CHHCHOH), 1.782H. (m, 1H, CHHCHOH), 2.40 (m, 1H, CHN), 3.43 (d, 2H, J =13.2 Hz, CHHPh), 3.46 (m, 1H, CHOH), 3.63 (t, 2H, J = 6.1 Hz, TBDMSOCH₂), 3.86 (d, 2H, J = 13.2 Hz, CHHPh), 4.47 (br s, 1H, OH), 7.20-7.35 (m, 10H, Harom.); ¹³C NMR (CDCl₃): δ -0.03 (CH₃Si), 14.1 $(\underline{C}H_3CH_2)$, 18.3 $(\underline{C}(CH_3)_3)$, 22.2 $(\underline{C}H_2)$, 22.7 $(\underline{C}H_2)$, 26.0 (C(CH₃)₃), 26.1 (CH₂), 29.3 (CH₂), 29.6 (several CH₂), 29.8 (CH₂), 31.9 (CH₂), 32.5 (CH₂), 34.2 (CH₂), 54.0 (CH₂Ph), 63.0 (CHN, TBDMSOCH₂), 70.6 (CHOH), 127.2, 128.4, 129.1 (CHarom.), 139.0 (Carom.). Anal. calcd for $C_{37}H_{63}NO_2Si$: C, 76.36; H, 10.91; N, 2.41. Found: C, 76.53; H, 10.80; N, 2.52%.

4.5. (4*S*,5*R*)-4-[3-(*tert*-Butyldimethylsilyloxy)propyl]-5dodecyloxazolidin-2-one *cis*-4

To a solution of anti-2 (140 mg, 0.24 mmol) in methanol (4 mL) was added Pd(OH)₂-C (28 mg) in one portion. The mixture was stirred under hydrogen for 3.5 h and the catalyst was removed by filtration through Celite and washed with methanol. The filtrate was evaporated under reduced pressure. The residue was dissolved in CH₂Cl₂ (10 mL), and then di-isopropylethylamine (94 µL, 0.54 mmol) and triphosgene (36 mg, 0.12 mmol) were added. The reaction solution was allowed to warm to rt with stirring for 12 h, H₂O (2 mL) and EtOAc (30 mL) were added to the mixture, and the organic phase was separated, dried over MgSO₄, concentrated under reduced pressure, and purified by flash chromatography (silica gel, hexane/ EtOAc: 8/1) to afford a colorless oil (64 mg, 0.15 mmol, 64%; $[\alpha]_{D}^{23} = -5.1$ (*c* 1.0, CHCl₃); IR (film): 3250, 1740, 1240 cm⁻¹; ¹H NMR (CDCl₃): δ 0.06 (s, 6H, SiCH₃), 0.88 (t, 3H, J = 7.1 Hz, CH₃CH₂), 0.89 (s, 9H, C(CH₃)₃), 1.26 (m, 19H), 1.63 (m, 7H), 3.65 (m, 2H, TBDMSOCH₂), 3.76 (m, 1H, CHN), 4.57 (m, 1H, CHO), 6.36 (br s, 1H, NH); ¹³C NMR (CDCl₃): δ -5.4 (CH₃Si), 14.1 (CH₃CH₂), 18.2 (C(CH₃)₃), 22.7 (CH₂), 25.9 (C(CH₃)₃), 27.0 (CH₂), 29.2 (CH₂), 29.3 (CH₂), 29.4 (CH₂), 29.5 (CH₂), 29.6 (several CH₂), 31.9 (CH₂), 55.6 (CHN), 62.6 (TBDMSOCH₂), 80.3 (CHO), 159.6 (C=O). Anal. calcd for C₂₄H₄₉NO₃Si: C,

67.39; H, 11.55; N, 3.27. Found: C, 67.47; H, 11.66; N, 3.15%.

4.6. (4*S*,5*S*)-4-[3-(*tert*-Butyldimethylsilyloxy)propyl]-5dodecyloxazolidin-2-one *trans*-4

Oxazolidinone trans-4 was obtained from the amino alcohol syn-2 (140 mg, 0.24 mmol) by the method described for cis-4, and purified by flash chromatography (silica gel, hexane/EtOAc: 8/1) to afford a colorless oil (56 mg, 0.13 mmol, 55%); $[\alpha]_D^{23} = -41.8$ (c 1.0, CHCl₃); IR (film): 3260, 1740, 1245 cm⁻¹; ¹H NMR (CDCl₃): δ 0.05 (s, 6H, (CH₃)₂Si), 0.88 (t, 3H, J=7.1 Hz, CH₃CH₂), 0.89 (s, 9H, C(CH₃)₃), 1.26 (m, 18H, CH₂), 1.56 (m, 8H, CH₂), 3.46 (m, 1H, CHN), 3.65 (t, 2H, J = 5.2 Hz, TBDMSOCH₂), 4.14 (m, 1H, CHO), 6.34 (br s, 1H, NH); ¹³C $\bar{N}MR$ (CDCl₃): δ -5.4 14.1 (CH_3CH_2), 18.3 ($C(CH_3)_3$), 22.7 (CH₃Si), (CH₂CH₃), 24.8 (CH₂), 25.9 (C(CH₃)₃), 28.7 (CH₂), 29.3 (CH_2), 29.4 (CH_2), 29.5 (CH_2), 29.6 (several CH₂), 31.9 (CH₂), 32.4 (CH₂), 34.8 (CH₂), 57.9 (CHN), 62.5 (TBDMSOCH₂), 82.7 (CHO), 159.3 (C=O). Anal. calcd for C₂₄H₄₉NO₃Si: C, 67.39; H, 11.55; N, 3.27. Found: C, 67.56; H, 11.67; N, 3.22%.

4.7. (4*S*,5*R*)-4-(*N*,*N*-Dibenzylamino)-1-(*tert*-butyldimethylsilyloxy)-5-[(2-methoxyethoxy)methoxy]heptadecane *anti*-5

To a solution of anti-2 (6.75 g, 11.6 mmol) and di-isopropylethylamine (12.5 mL, 71.9 mmol) in CH₂Cl₂ (100 mL) at 0°C was added dropwise MEM chloride (7.95 mL, 69.6 mmol). After stirring the mixture for 4 h at rt, the reaction was quenched with saturated aqueous NH₄Cl (150 mL). The aqueous phase was extracted with CH_2Cl_2 (2×75 mL), and the combined organic layers were washed with brine, dried (Na₂SO₄), concentrated and chromatographed (silica gel, hexane/EtOAc: 25/1) to give anti-5 as a colorless oil (6.99 g 10.4 mmol, 90%); $[\alpha]_D^{23} = -17.4$ (c 1.8, CHCl₃); IR (film): 1600, 1490, 1460, 1250, 740, 695 cm⁻¹; ¹H NMR (CDCl₃): δ 0.03 (s, 3H, SiCH₃), 0.04 (s, 3H, SiCH₃), 0.88 (t, 3H, J = 6.8 Hz, CH₃CH₂), 0.89 (s, 9H, $C(CH_3)_3$), 1.22 (m, 18H, $(CH_2)_9$), 1.52 (m, 4H, CHHCHN, CHHCHOMEM, CH₂CH₂CHN), 1.76 (m, 2H, CHHCHN, CHHCHOMEM), 2.56 (m, 1H, CHN), 3.38 (s, 3H, OCH₃), 3.54 (m, 6H, OCH₂CH₂O and CHHPh), 3.70 (m, 2H, TBDMSOCH₂), 3.77 (d, 2H, J=13.7 Hz, CHHPh), 3.82 (m, 1H, CHOMEM), 4.73 (d, 1H, J=7.0 Hz, OCHHO), 4.78 (d, 1H, J=7.0 Hz, OCHHO), 7.15-7.40 (m, 10H, Harom.); ¹³C NMR $(CDCl_3): \delta -5.3 (CH_3Si), 14.1 (CH_3CH_2), 18.3$ (C(CH₃)₃), 21.9 (CH₂CH₃), 22.7 (CH₂), 25.1 (CH₂; 26.0 (C(CH₃)₃), 29.4 (CH₂), 29.6 (CH₂), 29.7 (several CH_2), 29.9 (CH_2), 31.3 (CH_2), 31.9 (CH_2), 32.5 (CH₂), 54.3 (CH₂Ph), 58.6 (CHN), 59.0 (OCH₃), 63.2 (TBDMSOCH₂), 67.4 (OCH₂CH₂O), 71.8 (OCH₂CH₂O), 78.1 (CHOMEM), 95.1 (OCH₂O), 126.7, 128.0, 128.9 (CHarom.), 140.4 (Carom.). Anal. calcd for C₄₁H₇₁NO₄Si: C, 73.49; H, 10.68; N, 2.09. Found: C, 73.27; H, 10.81; N, 2.07%.

4.8. (4S,5S)-4-(*N*,*N*-Dibenzylamino)-1-(*tert*-butyl-dimethylsilyloxy)-5-[(2-methoxyethoxy)methoxy]-heptadecane *syn*-5

syn-5 was obtained from the amino alcohol syn-2 (3.80 g, 6.5 mmol) by the method described for anti-5, and purified by flash chromatography (silica gel, hexane/ EtOAc: 30/1) to afford a colorless oil (3.40 g, 5.1 mmol, 78%); $[\alpha]_{D}^{23} = +16.8 (c \ 1.1, \text{CHCl}_{3})$; IR (film): 1600, 1490, 1450, 1250, 745, 700 cm⁻¹; ¹H NMR (CDCl₃): δ 0.07 (s, 6H, $(CH_3)_2$ Si), 0.89 (t, 3H, J=7.5 Hz, CH_3CH_2), 0.93 (s, 9H, C(CH₃)₃), 1.11 (m, 4H, CH₂), 1.27 (m, 16H, CH₂), 1.54 (m, 4H, CHHCHN, CHHCHOMEM, 1.77 CH₂CH₂CHN), (m, 2H, CHHCHN, CHHCHOMEM), 2.51 (m, 1H, CHN), 3.37 (s, 3H, OCH_3), 3.43 (d, 2H, J=13.4 Hz, CHHPh), 3.51 (m, 2H, TBDMSOCH₂), 3.56 (m, 1H, CHOMEM), 3.60 (m, 2H, OCH₂CH₂OCH₃, CHOMEM), 3.68 (m, 2H, OCH_2CH_2O), 3.96 (d, 2H, J=13.4 Hz, CHHPh), 4.63 (d, 1H, J=7.0 Hz, OCHHO), 4.70 (d, 1H, J=7.0 Hz, OCHHO), 7.15-7.40 (m, 10H, Harom.); ¹³C NMR $(CDCl_3): \delta -5.2 (CH_3Si), 14.1 (CH_3CH_2), 18.4$ (C(CH₃)₃), 20.1 (CH₂CH₃), 22.7 (CH₂), 25.7 (CH₂), 26.0 (C(CH₃)₃), 29.4 (CH₂), 29.7 (several CH₂), 29.9 (CH₂), 30.7 (CH₂), 31.4 (CH₂), 31.9 (CH₂), 55.4 (CH₂Ph), 58.0 (CHN), 59.0 (CH₃O), 63.2 (TBDMSOCH₂), 67.2 (OCH₂CH₂O), 71.8 (OCH₂CH₂O), 80.0 (CHOMEM), 95.1 (OCH₂O), 126.6, 128.0, 129.2 (CHarom.), 140.9 (Carom.). Anal. calcd for $C_{41}H_{71}NO_4Si$: C, 73.49; H, 10.68; N, 2.09. Found: C, 73. 34; H, 10.64; N, 2.04%.

4.9. (4*S*,5*R*)-4-(*N*,*N*-Dibenzylamino)-5-[(2-methoxy-ethoxy)methoxy]-1-heptadecanol *anti*-6

To a solution of anti-5 (6.53 g, 9.7 mmol) in THF (90 mL) at 0°C was slowly added a solution of tetrabutylammonium fluoride (4.61 g, 14.6 mmol) in THF (45 mL). The mixture was stirred for 10 h at 0°C, and the reaction was quenched by addition of water (90 mL). The aqueous phase was extracted with ether (2×75) mL), and the combined organic extracts were washed with brine, dried (Na_2SO_4) , concentrated and chromatographed (silica gel, AcOEt/hexane: 1/4) to yield anti-6 as a colorless oil (5.36 g, 9.6 mmol, 99%); $[\alpha]_{D}^{23} = -33.7$ (c 1.1, CHCl₃); IR (film): 3420, 1600, 1490, 1450, 745, 700 cm⁻¹; ¹H NMR (CDCl₃): δ 0.89 (t, 3H, J=6.7 Hz, CH₃CH₂), 1.24 (m, 18H, (CH₂)₉), 1.55 (m, 5H), 1.80 (m, 3H), 2.60 (m, 1H, CHN), 3.39 (s, 3H, OCH₃), 3.54 (m, 6H, OCH₂CH₂O, CHHPh and CH₂OH), 3.72 (m, 2H, OCH₂CH₂O), 3.80 (d, 2H, J=13.8 Hz, CHHPh), 3.86 (m, 1H, CHOMEM), 4.74 (d, 1H, J=7.0 Hz, OCHHO), 4.80 (d, 1H, J=7.0 Hz, OCHHO), 7.20-7.40 (m, 10H, Harom.); ¹³C NMR (CDCl₃): δ 14.1 (CH₃CH₂), 22.2 (CH₂CH₃), 22.7 (CH₂), 25.1 (CH₂), 29.4 (CH₂), 29.6 (CH₂), 29.7 (several CH₂), 29.9 (CH₂), 31.3 (CH₂), 31.9 (CH₂), 32.5 (CH₂), 54.3 (CH₂Ph), 58.8 (CHN), 59.0 (OCH₃), 63.0 (CH₂OH), 67.6 $(OCH_2CH_2O),$ 71.8 $(OCH_2CH_2O),$ 77.9 (CHOMEM), 95.1 (OCH₂O), 126.8, 128.1, 129.0 140.2 Anal. calcd for (CHarom.), (Carom.). C35H57NO4: C, 75.63; H, 10.34; N, 2.52. Found: C, 75.76; H, 10.30; N, 2.45%.

4.10. (4*S*,5*S*)-4-(*N*,*N*-Dibenzylamino)-5-[(2-methoxyethoxy)methoxy]-1-heptadecanol *syn*-6

The amino alcohol syn-6 was obtained from syn-5 (3.3 g, 4.9 mmol) by the method described for anti-6 and purified by flash chromatography (silica gel, hexane/ EtOAc: 2/1) to afford a colorless oil (2.64 g, 4.7 mmol, 97%); $[\alpha]_{D}^{23} = +40.7$ (c 1.2, CHCl₃); IR (film): 3420, 1600, 1490, 1450, 745, 700 cm⁻¹; ¹H NMR (CDCl₃): δ 0.60 (m, 1H, CHH), 0.85 (m, 1H, CHH), 0.89 (t, 3H, J=7.1Hz, CH₃CH₂), 1.11 (m, 4H, CH₂), 1.27 (m, 14H, CH₂), 1.50 (m, 2H, CH₂CH₂CHN), 1.75 (m, 4H, CHH-CHOMEM, CHHCHN), 2.25 (br s, 1H, OH), 2.52 (m, 1H, CHN), 3.39 (s, 3H, OCH₃), 3.43 (d, 2H, J=13.4Hz, CHHPh), 3.56 (m, 5H, OCH₂CH₂O, and CHOMEM), 3.70 (m, 1H, CHHOH), 3.85 (m, 1H, CHHOH), 3.99 (d, 2H, J=13.4 Hz, CHHPh), 4.62 (d, 1H, J=7.1 Hz, OCHHO), 4.71 (d, 1H, J=7.1 Hz, OCHHO), 7.15-7.40 (m, 10H, Harom.); ¹³C NMR (CDCl₃): δ 14.1 (CH₃CH₂), 20.2 (CH₂CH₃), 22.7 (CH₂), 25.7 (CH₂), 29.4 (CH₂), 29.7 (several CH₂), 29.9 (CH₂), 30.7 (CH₂), 31.2 (CH₂), 31.9 (CH₂), 55.4 (CH₂Ph), 58.1 59.1 $(OCH_3),$ 63.1 (CHN), (CH₂OH), 67.6 (OCH₂CH₂O), 72.0 (OCH₂CH₂O), 79.9 (CHOMEM), 95.1 (OCH₂O), 126.7, 128.0, 129.2 (CHarom.), 140.9 (Carom.). Anal. calcd for C₃₅H₅₇NO₄: C, 75.63; H, 10.34; N, 2.52. Found: C, 75.49; H, 10.47; N, 2.66%.

4.11. (4*S*,5*R*)-4-(*N*,*N*-Dibenzylamino)-5-[(2-methoxyethoxy)methoxy]heptadecanal *anti*-7

The amino aldehyde anti-7 was obtained from the amino alcohol anti-6 (3.06 g, 5.5 mmol) by Swern oxidation, as described for compound 3, as a colorless oil (2.98 g, 5.4 mmol, 98%); $[\alpha]_D^{23} = -37.4$ (*c* 1.6, CHCl₃); IR (film): 1720, 1600, 1495, 1455, 750, 700 cm⁻¹; ¹H NMR (CDCl₃): δ 0.81 (t, 3H, J=7.0 Hz, CH₃CH₂), 0.94 (m, 2H, CH₂), 1.16 (m, 18H, CH₂), 1.40 (m, 1H, CHHCHOMEM), 1.63 (m, 2H, CHHCHN, CHHCHOMEM), 1.93 (m, 1H, CHHCHN), 2.45 (m, 2H, CHN and CHHCHO), 2.58 (m, 1H, CHHCHO), 3.30 (s, 3H, OCH₃), 3.41 (d, 2H, J=13.8 Hz, CHHPh), 3.47 (m, 2H, OCH₂CH₂O), 3.64 (m, 2H, OCH₂CH₂O), 3.74 (d, 2H, J=13.8 Hz, CHHPh), 3.81 (m, 1H, CHOMEM), 4.68 (d, 1H, J=7.0 Hz, OCHHO), 4.74 (d, 1H, J=7.0 Hz, OCHHO), 7.10-7.30 (m, 10H, Harom.), 9.60 (s, 1H, CHO); ¹³C NMR (CDCl₃): δ 14.1 (CH₃CH₂), 18.2 (CH₂CH₃), 22.7 (CH₂CHN), 25.1 (CH₂), 29.3 (CH₂), 29.6 (CH₂), 29.7 (several CH₂), 29.9 (CH₂), 31.9 (CH₂), 32.5 (CH₂), 42.3 (CH₂CHO), 54.1 (CH₂Ph), 58.4 (CHN), 59.0 (OCH₂), 67.6 (OCH₂CH₂O), 71.7 (OCH₂CH₂), 76.6 (CHOMEM), 95.0 (OCH₂O), 126.9, 128.2, 128.9 (CHarom.), 140.0 (Carom.), 202.9 (CHO). Anal. calcd for C₃₅H₅₅NO₄: C, 75.91; H, 10.01; N, 2.53. Found: C, 75.75; H, 10.19; N, 2.61%.

4.12. (4*S*,5*S*)-4-(*N*,*N*-Dibenzylamino)-5-[(2-methoxyethoxy)methoxy]heptadecanal *syn*-7

The amino aldehyde syn-7 was obtained from the amino alcohol syn-6 (5.38 g, 9.7 mmol) by Swern oxidation, as described for compound 3, as a colorless

oil (5.04 g, 9.1 mmol, 94%); $[\alpha]_{D}^{23} = +14.6$ (c 0.8, CHCl₃); IR (film): 1715, 1600, 1490, 1450, 745, 695 cm⁻¹; ¹H NMR (CDCl₃): δ 0.82 (t, 3H, J=6.7 Hz, CH₃CH₂), 1.14 (m, 20H, CH₂), 1.47 (m, 1H, CHHCHOMEM), 1.68 (m, 1H, CHHCHN), 1.88 (m, 2H, CHHCHOMEM, CHHCHN), 2.38 (m, 1H, CHN), 2.47 (m, 2H, CH₂CHO), 3.30 (s, 3H, OCH₃), 3.46 (m, 5H, OCH₂CH₂O, CHOMEM and CHHPh), $OCH_2CHHO),$ 3.57 (m, 1H, 3.67 (m, 1H. OCH₂CHHO), 3.85 (d, 2H, J=13.4 Hz, CHHPh), 4.57 (d, 1H, J=7.1 Hz, OCHHO), 4.64 (d, 1H, J=7.1Hz, OCHHO), 7.10-7.30 (m, 10H, Harom.), 9.67 (s, 1H, CHO); ¹³C NMR (CDCl₃): δ 14.0 (CH₃CH₂), 16.9 (CH₂CH₃), 22.6 (CH₂CHN), 25.4 (CH₂), 29.3 (CH₂), 29.6 (several CH_2), 29.8 (CH_2), 31.3 (CH_2), 31.8 (CH_2), 41.6 (CH_2 CHO), 55.0 (CH_2 Ph), 57.6 (CHN), 58.9 (OCH₃), 67.5 (OCH₂CH₂O), 71.6 (OCH₂CH₂O), 79.3 (CHOMEM), 94.9 (OCH₂O), 126.7, 128.0, 129.0 (CHarom.), 140.4 (Carom.), 202.2 (CHO). Anal. calcd for C₃₅H₅₅NO₄: C, 75.91; H, 10.01; N, 2.53. Found: C, 75.80; H, 10.13; N, 2.59%.

4.13. (4*S*,5*R*)-4-(*N*,*N*-Dibenzylamino)-5-[(2-methoxyethoxy)methoxy]heptadecanoic acid *anti*-8

To a solution of amino aldehyde anti-7 (5.0 g, 9 mmol) and 2-methyl-2-butene (11.4 mL, 108 mmol, 12 equiv.) in t-BuOH/CH₃CN (5/3, 120 mL) was added dropwise a solution containing 80% NaClO₂ (6.1 g, 54 mmol, 6 equiv.) and NaH₂PO₄·2H₂O (8.4 g, 54 mmol, 6 equiv.) in H₂O (100 mL) at 0°C. The resulting solution was stirred at 0°C for 30 min and quenched by addition of a 5% aqueous $Na_2S_2O_5$ solution (100 mL). The solution was adjusted to pH 6 and the mixture was extracted with EtOAc (3×50 mL), the combined organic phases were washed with brine, dried (Na_2SO_4) and the solvent was evaporated. The product was purified by flash chromatography (silica gel, hexane/EtOAc: 4/1) yielding anti-8 as a colorless oil (3.44 g, 6 mmol, 67%); $[\alpha]_D^{23} = -17.3$ (c 1.0, CHCl₃); IR (film): 3600-2400, 1740-1700, 1600, 1495, 1445, 745, 695 cm⁻¹; ¹H NMR (CDCl₃): δ 0.89 (t, 3H, J = 6.7 Hz, CH_3CH_2), 1.02 (m, 2H, CH_2), 1.24 (m, 18H, CH₂), 1.46 (m, 1H, CHHCHOMEM), 1.65 (m, 1H, CHHCHOMEM), 1.82 (m, 1H, CHHCHN), 2.08 (m, 1H, CHHCHN), 2.49 (t, 2H, J=7.2 Hz, CH_2CO_2H), 2.67 (m, 1H, CHN), 3.38 (s, 3H, OCH₃), 3.57 (m, 4H, OCH₂CH₂O and CHHPh), 3.72 (m, 2H, OCH₂CH₂O), 3.93 (d, 2H, J=13.8 Hz, CHHPh), 3.98 (m, 1H, CHOMEM), 4.77 (d, 1H, J=7.0 Hz, OCHHO), 4.84 (d, 1H, J=7.0 Hz, OCHHO), 7.20-7.40 (m, 10H, Harom.); ¹³C NMR (CDCl₃): δ 14.1 (CH₃CH₂), 20.5 (CH₂CH₃), 22.7 (CH₂CHN), 25.2 (CH₂CO₂H), 29.3 (CH₂), 29.5 (CH₂), 29.6 (several CH₂), 29.8 (CH₂), 31.9 (CH₂), 32.5 (CH₂), 32.9 (CH₂), 54.2 (CH₂Ph), 59.0 (OCH₃), 59.4 (CHN), 67.7 (OCH₂CH₂O), 71.7 (OCH₂CH₂O), 76.3 (CHOMEM), 94.8 (OCH₂O), 127.3, 128.3, 129.3 (CHarom.), 138.5 (Carom.), 179.0 (CO₂H). Anal. calcd for $C_{35}H_{55}NO_5$: C, 73.78; H, 9.73; N, 2.46. Found: C, 73.57; H, 9.78; N, 2.30%.

4.14. (4*S*,5*S*)-4-(*N*,*N*-Dibenzylamino)-5-[(2-methoxyethoxy)methoxy]heptadecanoic acid *syn*-8

The amino acid syn-8 was obtained from syn-7 (2.55 g, 4.6 mmol) by the procedure described for anti-8 and purified by flash chromatography (silica gel, hexane/EtOAc: 4/1) to afford a colorless oil (1.52 g, 2.67 mmol, 58%); $[\alpha]_D^{23} = +$ 23.1 (*c* 0.6, CHCl₃); IR (film): 3600-2400, 1720, 1600, 1490, 1450, 750, 700 cm⁻¹; ¹H NMR (CDCl₃): δ 0.80 (m, 1H, CHH), 0.89 (t, 3H, J=6.6 Hz, CH₃CH₂), 0.95 (m, 1H, CHH), 1.22 (m, 18H, CH₂), 1.52 (m, 1H, CHHCHOMEM), 1.78 (m, 1H, CHHCHOMEM), 1.90 (m, 1H, CHHCHN), 2.03 (m, 1H, CHHCHN), 2.30 (m, 1H, CHHCHO), 2.46 (m, 1H, CHHCHO), 2.65 (m, 1H, CHN), 3.38 (s, 3H, OCH_3), 3.54 (m, 2H, OCH_2CH_2O), 3.60 (d, 2H, J=13.2 Hz, CHHPh), 3.63 (m, 1H, CHOMEM), 3.68 (m, 1H, OCH₂CHHO), 3.77 (m, 1H, OCH₂CHHOCH₃), 3.94 (d, 2H, J=13.2 Hz, CHHPh), 4.68 (d, 1H, J=7.1 Hz, OCHHO), 4.74 (d, 1H, J=7.1 Hz, OCHHO), 7.20–7.40 (m, 10H, Harom.); ¹³C NMR (CDCl₃): δ 14.1 (CH₃CH₂), 20.0 (CH₂CH₃), 22.7 (CH₂CHN), 25.2 (CH₂CO₂H), 29.3 (CH₂), 29.7 (several CH₂), 29.9 (\underline{CH}_2) , 31.3 (\underline{CH}_2) , 31.9 (\underline{CH}_2) , 32.2 (\underline{CH}_2) , 55.0 (CH₂Ph), 58.1 (CHN), 59.0 (OCH₃), 67.6 (OCH₂CH₂O), 71.7 (OCH₂CH₂O), 78.9 (CHOMEM), 94.9 (OCH₂O), 127.0, 128.2, 129.4 (CHarom.), 139.6 (Carom.), 178.8 (CO₂H). Anal. calcd for $C_{35}H_{55}NO_5$: C, 73.78; H, 9.73; N, 2.46. Found: C, 73.99; H, 9.90; N, 2.55%.

4.15. (5*S*,6*R*)-5-[1-(2-Methoxyethoxymethoxy)tridecyl]pyrrolidin-2-one *anti*-9

To a solution of N,N-dibenzylamino acid anti-8 (1.71) g, 3 mmol) in methanol (30 mL) was added 20% Pd(OH)₂-C (425 mg) in one portion. The mixture was stirred under hydrogen at atmospheric pressure and the reaction was monitored by TLC. After 2 h, when reaction had reached completion, the catalyst was removed by filtration through Celite and washed with methanol. The filtrate was concentrated under reduced pressure to afford the crude acid which was dissolved in CH₂Cl₂ (30 mL) and stirred at rt during addition of DCC (705 mg, 3.42 mmol) and 4-PPY (48 mg, 0.32 mmol). The resultant solution was stirred for 5 h at rt (reaction complete by TLC) and the precipitated DCU was filtered off. The filtrate was washed twice with water, once with 5% aqueous acetic acid, and once with water. The organic phase was dried over MgSO₄ and then concentrated to yield a residue, which was purified by flash chromatography (silica gel, EtOAc) to afford a colorless oil (825 mg, 2.22 mmol, 74%); $[\alpha]_{D}^{23} = -10.0$ (c 0.7, CHCl₃); IR (film): 3200, 3060, 1685, 1035 cm⁻¹; ¹H NMR (CDCl₃): δ 0.86 (t, 3H, J=6.7 Hz, CH₃CH₂), 1.24 (m, 22H, CH₂), 2.02 (m, 2H), 2.27 (m, 2H, CH₂CONH), 3.38 (s, 3H, OCH₃), 3.58 (m, 4H, OCH₂CH₂O, OCH₂CHH, CHN), 3.79 (m, 2H, CHOMEM, OCH₂CHHO), 4.70 (d, 1H, J= 7.2 Hz, OCHHO), 4.74 (d, 1H, J=7.2 Hz, OCHHO), 6.31 (br s, 1H, NH); ¹³C NMR (CDCl₃): δ 14.1 (CH₃CH₂), 21.4 (CH₂CH₃), 22.6 (CH₂), 25.6 (CH₂), 29.3 (CH₂), 29.6 (several CH₂), 29.7 (CH₂), 30.0

(CH₂), 30.3 (CH₂), 31.9 (CH₂), 56.6 (CHN), 59.0 (OCH₃), 67.1 (OCH₂CH₂O), 71.7 (OCH₂CH₂O), 78.7 (CHOMEM), 94.7 (OCH₂O), 178.4 (CONH). Anal. calcd for $C_{21}H_{41}NO_4$: C, 67.88; H, 11.12; N, 3.77. Found: C, 67.96; H, 11.01; N, 3.90%.

4.16. (5*S*,6*S*)-5-[1-(2-Methoxyethoxymethoxy)tridecyl]pyrrolidin-2-one *syn*-9

The lactam syn-9 was obtained from syn-8 (1.42 g, 2.5 mmol) by debenzylation and cyclization as described for compound *anti-9*. The product was purified by flash chromatography (silica gel, EtOAc) to afford a colorless solid (511 mg, 1.4 mmol, 55%); mp 38-40°C (from hexane); $[\alpha]_D^{23} = +38.1$ (c 0.5, CHCl₃); IR (Nujol): 3400, 3160, 1690, 1450, 790 cm⁻¹; ¹H NMR (CDCl₃): δ 0.81 (t, 3H, J=6.7 Hz, CH_3CH_2), 1.12–1.50 (m, 22H, (CH₂)₁₁CH₃), 1.63 (m, 1H, CHHCHN), 2.05 (m, 1H, CHHCHN), 2.28 (m, 2H, CHHCONH), 3.27 (m, 1H, CHOMEM), 3.36 (s, 3H, OCH₃), 3.51 (m, 2H, OCHHCH₂OCH₃), 3.59 (m, 2H, OCH₂CHHOCH₃, CHN), 3.74 (m, 1H, OCH₂CHHOCH₃), 4.67 (d, 1H, J=7.3 Hz, OCHHO), 4.72 (d, 1H, J=7.3 Hz, OCHHO), 6.70 (br s, 1H, NH); ¹³C NMR (CDCl₃): δ 14.0 (CH₃CH₂), 22.6 (CH₂CH₃), 24.2 (CH₂), 24.6 (CH₂), 29.3 (CH₂), 29.5 (CH₂), 29.6 (several CH₂), 30.6 (CH₂), 30.8 (CH₂), 31.8 (CH₂), 57.6 (CHN), 58.9 (OCH₃), 67.7 (OCH₂CH₂O), 71.5 (OCH₂CH₂O), 84.1 (CHOMEM), 95.9 (OCH₂O), 177.5 (CONH). Anal. calcd for C₂₁H₄₁NO₄: C, 67.88; H, 11.12; N, 3.77. Found: C, 67.88; H, 10.96; N, 3.89%.

4.17. (5*S*,6*R*)-5-(1-Hydroxytridecyl)pyrrolidin-2-one, *erythro* aza-muricatacin *anti*-10^{1a}

A cold solution (0°C) of lactam anti-9 (65 mg, 0.17 mmol) in CH₂Cl₂ (2 mL) was treated with a 1 M solution of TiCl₄ in CH₂Cl₂ (0.26 mL, 0.26 mmol) and the resultant mixture stirred at 0°C for 4 h. After hydrolysis with a saturated NaHCO₃ solution, the mixture was extracted with EtOAc (2×5 mL). The combined organic layers were dried over MgSO₄, concentrated and the residue purified by flash chromatography (silica gel, EtOAc) to provide anti-10 as a colorless solid (34 mg 0.12 mmol, 70%); mp 86-88°C (from hexane/CH₂Cl₂); $[\alpha]_D^{23} = +4.9$ (c 0.9, CHCl₃); IR (KBr): 3600–3100, 1680, 1460 cm⁻¹; ¹H NMR (CDCl₃): δ 0.88 (t, 3H, J=6.6 Hz, CH₃CH₂), 1.26 (m, 20H, $(CH_2)_{10}CH_3$), 1.50 (m, 2H, CH_2), 2.06 (m, 2H, CHHCHN), 2.33 (m, 2H, CH₂CONH), 3.54 (br s, 1H, OH), 3.66 (m, 2H, CHN, CHOH), 7.19 (br s, 1H, NH); ¹³C NMR (CDCl₃): δ 14.1 (CH₃CH₂), 19.8 (CH₂CH₃), 22.7 (CH₂), 26.1 (CH₂), 29.3 (CH₂), 29.6 (several CH₂), 30.6 (CH₂), 31.9 (CH₂), 32.5 (CH₂), 59.3 (CHN), 72.3 (CHOH), 180.0 (CONH). Anal. calcd for $C_{17}H_{33}NO_2$: C, 72.04; H, 11.73; N, 4.94. Found: C, 69.68; H, 10.66; N, 6.61%.

4.18. (5*S*,6*S*)-5-(1-Hydroxytridecyl)pyrrolidin-2-one, *threo* aza-muricatacin *syn*-10

This compound was obtained from *syn-9* (74 mg, 0.2 mmol) by the procedure described for *anti-10* as a

colorless solid (53 mg, 0.19 mmol, 93%); mp 73–74°C (from hexane); $[\alpha]_{D}^{23} = +9.3$ (*c* 1.0, CHCl₃); [Lit.⁵ mp 63–64°C; $[\alpha]_{D}^{23} = +10.3$ (*c* 0.4, CHCl₃)]; IR (KBr): 3400, 3200, 1670, 1370 cm⁻¹; ¹H NMR (CDCl₃): δ 0.88 (t, 3H, J = 6.7 Hz, CH₃CH₂), 1.26 (m, 20H, (CH₂)₁₀CH₃), 1.47 (m, 2H, CH₂), 1.78 (m, 1H, CHHCHN), 2.13 (m, 1H, CHHCHN), 2.35 (m, 2H, CHHCONH), 3.34 (m, 1H, CHN), 3.53 (q, 1H, J = 7.1 Hz, CHOH), 4.12 (bs, 1H, OH), 7.39 (br s, 1H, NH); ¹³C NMR (CDCl₃): δ 14.1 (CH₃CH₂), 22.6 (CH₂CH₃), 23.7 (CH₂), 25.5 (CH₂), 29.3 (CH₂), 29.6 (several CH₂), 30.6 (CH₂), 31.9

Acknowledgements

(CH₂), 33.3 (CH₂), 59.9 (CHN), 75.1 (CHOH), 179.1

(CONH). Anal. calcd for C₁₇H₃₃NO₂: C, 72.04; H, 11.73; N, 4.94. Found: C, 71.90; H, 11.59; N, 5.08%.

The authors would like to thank the Spanish DGESYC (Project PB98-0361) and Junta de Castilla y León (Project VA67/99) for financial support.

References

- (a) Baussanne, I.; Schwardt, O.; Royer, J.; Pichon, M.; Figadère, B.; Cavé, A. *Tetrahedron Lett.* 1997, *38*, 2259– 2262; (b) Cavé, A.; Chaboche, C.; Figadére, B.; Harmange, J.-C.; Laurens, A.; Peyrat, J. F.; Pichon, M.; Szlosek, M.; Cotte-Lafitte, J.; Quéro, A. M. *Eur. J. Med. Chem.* 1997, *32*, 617–623.
- Rieser, M. J.; Kozlowski, J. F.; Wood, K. V.; McLaughlin, J. L. *Tetrahedron Lett.* 1991, 32, 1137–1140.
- Pichon, M.; Hocquemiller, R.; Figadère, B. *Tetrahedron* Lett. 1999, 40, 8567–8570 and references cited therein.
- Pichon, M.; Jullian, J.-C.; Figadère, B.; Cavé, A. Tetrahedron Lett. 1998, 39, 1755–1758.
- Rassu, G.; Pinna, L.; Spanu, P.; Zanardi, F.; Battistini, L.; Casiraghi, G. J. Org. Chem. 1997, 62, 4513–4517.
- Oestreich, M.; Fröhlich, R.; Hoppe, D. *Tetrahedron Lett.* 1998, 39, 1745–1748.
- (a) Andrés, J. M.; Barrio, R.; Martínez, M. A.; Pedrosa, R.; Pérez-Encabo, A. J. Org. Chem. 1996, 61, 4210–4213;
 (b) Andrés, J. M.; Pedrosa, R. Tetrahedron 1998, 54, 5607–5616;
 (c) Andrés, J. M.; Pedrosa, R. Tetrahedron: Asymmetry 1998, 9, 2493–2498;
 (d) Andrés, J. M.; de Elena, N.; Pedrosa, R. Tetrahedron 2000, 56, 1523–1531.
- 8. Reetz, M. T. Chem. Rev. 1999, 99, 1121-1162.
- Reetz, M. T.; Drewes, M. W.; Lennick, K.; Schmitz, A.; Holdgrün, X. Tetrahedron: Asymmetry 1990, 1, 375–378.
- (a) Dufour, M. N.; Jouin, P.; Poncet, J.; Pantaloni, A.; Castro, B. J. Chem. Soc., Perkin Trans. 1 1986, 1895– 1899; (b) Yamazaki, T.; Iwatsubo, H.; Kitazume, T. Tetrahedron: Asymmetry 1994, 5, 1823–1830.
- Bal, B. S.; Childers, W. E.; Pinnick, H. W. Tetrahedron 1981, 37, 2091–2096.
- 12. Tanner, D.; Somfai, P. Tetrahedron 1988, 44, 619-624.
- Corey, E. J.; Gras, J.-L.; Ulrich, P. Tetrahedron Lett. 1976, 11, 809–812.
- Boeckman, R. K; Potenza, J. C. Tetrahedron Lett. 1985, 26, 1411–1414.