

Bioorganic & Medicinal Chemistry 12 (2004) 139-149

Bioorganic & Medicinal Chemistry

Synthesis and biological evaluation of disubstituted N^6 -cyclopentyladenine analogues: the search for a neutral antagonist with high affinity for the adenosine A₁ receptor

Rianne A. F. de Ligt,^{a,†} Pieter A. M. van der Klein,^a Jacobien K. von Frijtag Drabbe Künzel,^a Anna Lorenzen,^b Fatna Ait El Maate,^a Shelly Fujikawa,^a Rosemarijn van Westhoven,^a Thijs van den Hoven,^a Johannes Brussee^a and Ad P. IJzerman^{a,*}

^aDivision of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands

^bInstitute of Pharmacology, University of Heidelberg, D-69120 Heidelberg, Germany

Received 3 January 2003; accepted 10 October 2003

Abstract—Novel 3,8- and 8,9-disubstituted N^6 -cyclopentyladenine derivatives were synthesised in moderate overall yield from 6-chloropurine. The derivatives were made in an attempt to find a new neutral antagonist with high affinity for adenosine A₁ receptors. N^6 -Cyclopentyl-9-methyladenine (N-0840) was used as a lead compound. Binding affinities of the new analogues were determined for human adenosine A₁ and A₃ receptors. Their intrinsic activity was assessed in [³⁵S]GTP γ S binding experiments. Elongation of the 9-methyl of N-0840 to a 9-propyl substituent was very well tolerated. A 9-benzyl group, on the other hand, caused a decrease in adenosine A₁ receptor affinity. Next, the 8-position was examined in detail, and affinity was increased with appropriate substitution. Most derivatives were A₁-selective and 20 of the new compounds (6–9, 15–21, 23–26, 28, 31, 33, 35, and 36) had higher adenosine A₁ receptor affinity than the reference substance, N-0840. Compound 31 (N^6 -cyclopentyl-8-(N-methyl-isopropylamino)-9-methyladenine, LUF 5608) had the highest adenosine A₁ receptor affinity, 7.7 nM. In the [³⁵S]GTP γ S binding experiments, derivatives 5, 14, 22, 23, 25, 26, 33 and 34 did not significantly change basal [³⁵S]GTP γ S binding, thus behaving as neutral antagonists. Moreover, four of these compounds (23, 25, 26, and 33) displayed a 4- to 10-fold increased adenosine A₁ receptor affinity for adenosine A₁ receptors. In addition, four new derivatives, LUF 5666 (23), LUF 5668 (25), LUF 5669 (26) and LUF 5674 (33), behaved as neutral antagonists when tested in [³⁵S]GTP γ S binding studies. Thus, these compounds have improved characteristics as neutral antagonists.

© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Most of the 'classical' adenosine A_1 receptor antagonists, for example DPCPX (1,3-dipropyl-8-cyclopentylxanthine) and CGS 15943 (9-chloro-2-(2furyl)[1,2,4]triazolo[1,5-*c*]quinazolin-5-amine), have been shown to act as inverse agonists.¹ In the same study, [³⁵S]GTP γ S binding experiments revealed also three neutral antagonists for human adenosine A_1 receptors, N^6 - cyclopentyl-9-methyladenine (N-0840, compound 3), (\pm) - N^{6} -(endonorbornan-2-yl)-9-methyladenine (N-0861), and N^{6} -(5'-endohydroxy-endonorbornan-2-yl)-9-methyladenine (WRC-0342). However, these compounds had relatively poor affinity for the human adenosine A₁ receptor, 1549, 1023, and 1047 nM, respectively.¹ The purpose of our research was, therefore, to design novel neutral antagonists with higher affinity for human adenosine A₁ receptors.

N-0840 was used as a lead compound, which was predominantly substituted at two different positions (Fig. 1).

The N9-position was primarily explored to introduce substituents with the capacity for radiolabelling. Moreover, to increase adenosine A_1 receptor affinity, we focussed

Keywords: Adenosine A_1 receptor; Inverse agonism; Neutral antagonist; N-0840 derivatives; [³⁵S]GTP γ S binding.

^{*} Corresponding author. Tel.: +31-71-527-4651; fax: +31-71-527-4565; e-mail: ijzerman@lacdr.leidenuniv.nl

[†] Current address: TNO Nutrition and Food Research, Zeist, The Netherlands.

^{0968-0896/\$ -} see front matter \odot 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2003.10.023

Figure 1. Chemical structure of N^6 -cyclopentyl-9-methyladenine (N-0840) and effects on adenosine A₁ receptor affinity induced by modifications at different positions of the adenine molecule.

on substitution at the 8-position, since other positions had already been examined closely. For example, the N^6 -cyclopentyl is known to induce high adenosine A₁ receptor affinity and selectivity.^{2,3} Furthermore, small substituents, for example a chlorine atom, at the 2-position of adenines³ or adenosines⁴ only have limited effects on adenosine A₁ receptor affinity. Additionally, larger and bulkier substituents at this position of adenosines seem to favour A_{2A} and/or A₃ receptor selectivity,^{5–8} and this finding may also be true for corresponding substitution at adenines.⁹

Finally, Linden and co-workers¹⁰ investigated the C8position of adenines to some extent. They synthesised 8substituted N^6 -norbornyl-9-methyladenines and found that nitrogen-containing groups at this position enhance adenosine A₁ receptor affinity. Moreover, introduction of alkynyl chains on the C8-position of adenosine led to selective adenosine A₃ receptor antagonists.¹¹

In this paper, we describe the synthesis of 32 novel N-0840 derivatives, which were all tested in radioligand

binding experiments for adenosine A_1 and A_3 receptor affinity. Furthermore, their intrinsic activity was determined with [³⁵S]GTP γ S binding studies to establish whether these compounds acted as adenosine A_1 receptor neutral antagonists.

2. Results and discussion

2.1. Chemistry

The synthesis of the 3,8- and 8,9-disubstituted N^6 -cyclopentyladenines (compounds 5–37) was accomplished via the routes illustrated in Schemes 1–4.

First, 8-bromo- N^6 -cyclopentyladenine (5) and 8-bromo- N^6 -cyclopentyl-9-methyl-adenine (6) were prepared from 6-chloropurine (compound 1, Scheme 1).^{3,12,13} During the bromination of N^6 -cyclopentyl-9-methyl-adenine (3), partial dealkylation of the N^6 -position occurred, which resulted in product 7.¹⁴

To investigate the effect of N9-substitution (Fig. 1), the appropriate alkyl halide was reacted with compound 5 in the presence of K₂CO₃ and DMF.¹⁵ Although 9alkylation is usually dominant, minor amounts of alkylation at N3 and/or N7 have been reported.16,17 Probably due to the bromine atom on C8 a mixture of two compounds with the same mass was formed. These mixtures were separated and purified with column chromatography to provide the products 8-14 in moderate to low yields (Scheme 2). Assignment of the two compounds was made by NMR analysis and by comparison of the methylated products with compound 6, which was prepared via another route (Scheme 1). Chemical shifts of the H-2 proton for N9-substituted compounds (6, 8, 9, 10) were between 8.35 and 8.41 ppm and for the N3-substituted compounds (12, 13, 14) between 7.95 and 7.97 ppm. Similarly, chemical shifts of

Scheme 1. Synthesis of 8-bromo- N^6 -cyclopentyladenine (5), 8-bromo- N^6 -cyclopentyl-9-methyladenine (6) and 8-bromo-9-methyladenine (7): (i) NaH/DMF, MeI; (ii) cyclo-pentylamine, *n*-BuOH/Et₃N, 120 °C; (iii) Br₂ in Na₂HPO₄ buffer.

Scheme 2. Synthesis of N3- and N9-substituted N^6 -cyclopentyladenines: (i) alkylhalide, K₂CO₃, DMF.

Scheme 3. Synthesis of 9-alkyl- N^6 -cyclopentyl-8-oxoadenines and N^6 -cyclopentyl-8-(ethylthio)-9-methyladenine: (i) R'-OH, K*t*BuO; (ii) EtSH, K*t*BuO, EtOH, 50 °C; (iii) 1 M aq NaOH, reflux, 3 h.

Scheme 4. Synthesis of 8-amino substituted N⁶-cyclopentyl-9-methyl-adenines: (i) H_3CNH_2/H_2O , rt; (ii) NaH/DMF, alkylhalide, rt; (iii) amine/dioxane, Δ .

the N⁶–H proton were between 5.58 and 5.74 ppm for the N9 substituted compounds and between 6.23 and 6.50 ppm for the N3 substituted compounds. NOESY experiments on 12, 13 and 14 showed a substantial correlation between the C–H protons on N3 and C2 that was not found for the N9-substituted compounds (data not shown).

When allyl bromide was used, only the N9-substituted product **8** was formed. The N9-substituents were chosen for their suitability for future radiolabelling. The propyl group was included to estimate the effect of ${}^{3}\text{H}_{2}$ reduction of the allyl's double bond. Furthermore, a benzyl group was introduced at this site as a template to verify whether the N9-position held enough space to accommodate an (iodinated) 4-iodobenzyl substituent.

Next, we explored substitution at the 8-position in an attempt to increase adenosine A_1 receptor affinity of these N-0840 derivatives (Fig. 1). The derivatives **6**, **8**, and **9** were dissolved in MeOH and refluxed in the presence of KOtBu, to synthesise their 8-methoxy analogues, resulting in high yields of products **15** and **16** and a low yield of derivative **17** (Scheme 3).¹⁸ A similar procedure was carried out with 8-bromo- N^6 -cyclopentyl-9-methyladenine (**6**) in the presence of ethanol, isopropanol, and *n*-propanol, giving good to high yields of the products **18**, **19**, and **20**. For comparison with **18**, N^6 -cyclopentyl-8-thioethyl-9-methyladenine (**21**) was synthesised.

We also tried to introduce a hydroxyl group at the 8position. During this reaction (Scheme 3) N^6 -cyclopentyl-9-methyl-8-oxoadenine (**22**) was formed in a tautomeric equilibrium with the desired N^6 -cyclopentyl-8-hydroxy-9-methyladenine.¹⁹ However, high adenosine A₁ receptor affinity for this compound was not anticipated, since Martin et al.¹⁰ reported a K_i value of 10 μ M for N^6 -endonorbornyl-8-hydroxy-9-methyladenine compared to 10 nM for the non-substituted analogue.

Additionally, in their study,¹⁰ the authors adequately demonstrated the favourable presence of an amino group, and therefore in our study, amino substituents were investigated in more detail. In Scheme 4, the various methods to generate 8-amino substituted N^{6} -cyclopentyl-9-methyladenines (compounds 23–37)^{20,21} are summarised. Compounds 24–27 were synthesised from N^{6} -cyclopentyl-8-(*N*-methylamino)-9-methyladenine (23) under mild conditions at room temperature in DMF.^{12,22} In addition, the other amines were capable of replacing the 8-bromine atom in 6 directly, resulting in the products 28–37. For this route higher temperatures and a different solvent (dioxane) were required.

2.2. Biological evaluation

All compounds were tested in radioligand displacement experiments to determine their affinity for human adenosine A₁ and A₃ receptors expressed on CHO and HEK293 cells, respectively. The radioligand [³H]DPCPX was used on adenosine A₁ receptors, while [¹²⁵I]-ABMECA [N^6 -(4-amino-3-iodobenzyl)-5'-N-ethylcarboxamidoadenosine] was used on adenosine A₃ receptors. Tables 1 and 2 summarise the results from these ligand binding experiments. Except for derivatives **5** and **14**, the compounds had poor or negligible affinity for adenosine A₃ receptors. Moreover, these compounds

Table 1. Affinities of 3,8- and 8,9-disubstituted N^6 -cyclopentyladenine analogues at human adenosine A₁ and A₃ receptors expressed as K_i values (in nM±SEM, n=3) or percentage displacement at 10 μ M

Compd	C8	N9-R	N3-R′	$K_{\rm i}$ (nM)	$K_{\rm i}$ (nM) or % displacement at 10 μ M	
				A ₁ receptor ^a	A ₃ receptor ^b	A_3/A_1
DPCPX	_	_	_	2.4 ± 0.1	1700 ± 170	708
N-0840	Н	Methyl	_	852 ± 163	15%	
5	Br	Η	_	2646 ± 623	1670 ± 630	0.6
6	Br	Methyl		43 ± 7	37%	
7 °	Br	Methyl	—	467 ± 61	23%	
8	Br	Allyl	—	35 ± 9	5730 ± 1520	164
9	Br	Propyl	_	33 ± 1	7760 ± 170	235
10	Br	Benzyl	_	1220 ± 240	44%	
11	Н	Benzyl	_	1810 ± 360	28%	
12	Br		Methyl	2760 ± 167	43%	
13	Br	_	Propyl	995 ± 160	$10,600 \pm 3100$	11
14	Br	_	Benzyl	870 ± 140	1860 ± 420	2
15	OCH ₃	Allyl	_	208 ± 36	32%	
16	OCH_3	Propyl	_	270 ± 20	38%	
17	OCH_3	Methyl	_	120 ± 7	21%	
18	OC_2H_5	Methyl	_	106 ± 10	46%	
19	$OCH(CH_3)_2$	Methyl	_	40 ± 7	5600 ± 730	140
20	OC_3H_7	Methyl	—	235 ± 56	9190 ± 2200	39
21	SC_2H_5	Methyl	_	224 ± 70	39%	
22	=0	Methyl	—	1610 ± 530	17%	

^a Displacement of [³H]DPCPX from CHO-A₁⁺⁺ membranes.

^bDisplacement of [¹²⁵I]IBMECA from HEK293-A₃ membranes. K_i determined if displacement > 50%.

^c No N⁶-cyclopentyl substituent.

(5 and 14) along with derivatives 13 and 20 were only moderately A_1 -selective, that is they possessed an A_3/A_1 ratio <100. All other compounds, on the other hand, showed good selectivity for adenosine A_1 receptors.

Furthermore, most of the novel derivatives (6–9, 15–21, 23–26, 28, 31, 33, 35, and 36) had significantly higher affinity for the human adenosine A_1 receptor (7.7–467 nM) compared to the reference compound N-0840 (852 nM, Table 1).

Elongation of the 9-methyl group of 6 to a propyl group (derivative 9) hardly affected adenosine A_1 receptor affinity, while 9-benzyl substitution (compound 10) caused a strong decrease in affinity (43 and 33 nM vs 1220 nM, Table 1). The corresponding N3-substituted compounds (12-14) also had relatively low affinities. Thus, the most likely candidate for radiolabelling may be derivative 8, in which the 9-allyl group can be reduced with ${}^{3}\text{H}_{2}$ to yield a radioligand analogue of product 9. Along these lines, Thompson et al.³ found the following rank order in affinities of 9-substituted N^6 cyclopentyladenines for rat adenosine A1 receptor, 9phenyl < 9-cyclopentyl < 9-methyl ≈ 9 -ethyl. However, a high affinity in the low nanomolar range is preferable for a radioligand, and 8-bromo-N⁶-cyclopentyl-9-propyladenine did not meet this criterion with its affinity of 33 nM (Table 1).

With an appropriate substituent at the 8-position of N-0840 (Fig. 1) adenosine A_1 receptor affinity was increased (Tables 1 and 2). For example, elongation of the O-alkyl substituent (products 17–20) was favourable for adenosine A_1 receptor binding, and product 19 (Oisopropoxy) was the best derivative in this series. Comparing derivatives 18 (ethoxy), 21 (thioethyl), and 28 (aminoethyl), a substituent with an oxygen atom gave the best results. However, Martin et al.¹⁰ already argued that this C8-position does not tolerate hydrogen bonding substituents. Consequently, replacement of the free hydrogen in product 28 by a methyl group, as in derivative 25, resulted in an almost 4-fold increased adenosine A_1 receptor affinity. In general, the secondary amines as substituents (compounds 23, 28-30) led to lower adenosine A_1 receptor affinities than the tertiary (compounds 24-27, 31, 33, 34) and cyclic (compounds 35, 36) amines. Moreover, lengthening of the methyl (25) to an ethyl group (derivative 33), and 'ring closure' to a six-membered ring, as in derivative 36, slightly improved affinity. Apparently there is sufficient space to accommodate bulkier substituents. Derivative 31 (LUF 5608) with a branched N-methyl-N-isopropylamino substituent on C8 had the best adenosine A_1 receptor affinity in this study, that is 7.7 nM (Table 2).

Next, the efficacy of the compounds was investigated with $[^{35}S]GTP\gamma S$ binding experiments (Table 3).

Table 2. Affinities of 8-substituted N^6 -cyclopentyl-9-methyladenine (N-0840, see also Table 1) analogues at human adenosine A₁ and A₃ receptors expressed as K_i values (in nM±SEM, n=3) or percentage displacement at 10 μ M (assays as in footnotes to Table 1)

Compd	C8 substituent	$K_{\rm i}$ (nM) or % displacement at 10 μ M		Compd	C8 substituent	$K_{\rm i}$ (nM) or % displacement at 10 μ M		
		A ₁ receptor	A ₃ receptor (%)			A ₁ receptor	A ₃ receptor (%)	$A_3/A_1 \\$
N-0840 23	H NHCH ₃	$852 \pm 163 \\ 206 \pm 27$	15 23	24	}_N	169 ± 28	20	
28	NHC ₂ H ₅	$344\!\pm\!97$	19		X			
29	, ⊢N H	2040 ± 200	54	25	⊱N	89±9	28	
30	}-N	3560 ± 1530	37	26	}_N	160 ± 23	31	
32		5900 ± 1300	32	27	, ►N	1011 ± 125	n.d.	
35	≻N	403±63	28	31	}N	7.7±1.4	14,200±1960	1844
36	₽N	68±6	40	33	}_N	75±8	18	
37	}_N_O	2840 ± 307	11	34	⊱n	706 ± 70	30	

 $[^{35}S]$ GTPγS binding was measured on membranes of CHO cells expressing the human adenosine A₁ receptor at high density (CHO-A₁⁺⁺, ~3 pmol/mg of protein). DPCPX was included as a reference adenosine A₁ inverse agonist and N-0840 as a neutral antagonist.¹ The high receptor expression was necessary to distinguish neutral antagonists from inverse agonists. Namely, DPCPX as well as some of the novel compounds (5–9, 18–22, 28, and 31) were unable to modulate basal [³⁵S]GTPγS binding to membranes from CHO cells expressing a lower (~0.65 pmol/mg of protein) adenosine A₁ receptor number (data not shown).

Since agonists activate G proteins via receptor activation, basal [${}^{35}S$]GTP γS binding (set to 100%) increases in the presence of an agonist, while inverse agonists show the opposite effect ([${}^{35}S$]GTP γS binding < 100%). For example, DPCPX decreased basal [${}^{35}S$]GTP γS binding to CHO-A₁⁺⁺ membranes to 60% of control (Table 3). A neutral antagonist, such as N-0840, had no (significant) effect on basal [${}^{35}S$]GTP γS binding (107%, Table 3).

Eight of the newly synthesised compounds (5, 14, 22, 23, 25, 26, 33 and 34) did not significantly change basal

 $[^{35}S]GTP\gamma S$ binding, thus behaving as neutral adenosine A₁ receptor antagonists. Moreover, four of these products (23, 25, 26, and 33) showed a 4- to 10-fold increased adenosine A₁ receptor affinity compared to N-0840, while the others had similar (14 and 34) or lower (5 and 22) affinity (Tables 1 and 2). All other compounds, except for compounds 10, 11 and 13, significantly decreased basal [35S]GTPyS binding to a varying extent, and acted as (partial) inverse agonists. Moreover, compound 31, with the highest affinity for adenosine A₁ receptors, showed the largest decrease of basal [³⁵S]GTPγS binding, to 56% of control. This compound has an N-methyl, N-isopropylamino group on the C8 position, as is the case in WRC-0571 [8-(Nmethylisopropylamino) - N^6 - (5' - endohydroxy - endonorbornan-2-yl)-9-methyladenine], a partial inverse agonist.¹ Comparable compounds without a C8substituent, WRC-0342 and N-0861, acted as neutral antagonists. Thus, the inverse agonistic behaviour of WRC-0571 may be caused by the 8-(N-methyl-N-isopropyl)-amino group, which is also present in compound **31**. The nature of 8-amino substitution appears to matter, since some 8-amino substituted N-0840 derivatives behaved as inverse agonists (e.g., 24, 28-31, 35,

Table 3. Affinities of 3,8- and 8,9-disubstituted N^6 -cyclopentyladenine analogues at human adenosine A₁ receptors expressed as K_i values (in nM±SEM), and their effect on [³⁵S]GTPγS binding (% of basal)

Compd	% [³⁵ S]GTPγS binding ^{a,b}	Compd	% [³⁵ S]GTPγS binding ^{a,b}
DPCPX	60 ± 8	21	61 ± 4
N-0840	107 ± 10	22	104 ± 6
5	91 ± 4	23 (LUF 5666)	91 ± 2
6	76 ± 4	24	85 ± 1
7	81 ± 4	25 (LUF 5668)	90 ± 1
8	76 ± 4	26 (LUF 5669)	90 ± 1
9	64 ± 3	27	n.d.
10	162 ± 13	28	72 ± 4
11	156 ± 6	29	76 ± 1
12	84 ± 1	30	73 ± 2
13	151 ± 6	31 (LUF 5608)	56 ± 2
14	93 ± 4	32	n.d.
15	75 ± 1	33 (LUF 5674)	92 ± 1
16	75 ± 1	34	99 ± 2
17	61 ± 2	35	77 ± 3
18	74 ± 4	36	80 ± 3
19	62 ± 4	37	n.d.
20	60 ± 3		

n.d., not determined.

^a At $10 \times K_i$.

 b CHO-A1 $^{++}$ membranes (basal [35S]GTPγS binding ${\sim}450$ cpm/µg of protein).

36), while others showed neutral antagonistic behaviour (e.g., **23**, **25**, **26**, **33**, **34**).

Interestingly, compounds **10**, **11** and **13** increased basal [35 S]GTP γ S binding to 151–162% of basal. These compounds seem to act as partial agonists, since the full adenosine A₁ receptor agonist, N^6 -cyclopentyladenosine (CPA), showed an increase to 317% (data not shown). An explanation for these observations is not readily given. However, their increase in basal [35 S]GTP γ S binding was limited, compared to the effect of the full agonist CPA (approximately 20% of CPA's effect). Thus, if these compounds are indeed partial agonists, they only have a very low intrinsic activity. The fact that their partial agonistic behaviour was not observed in cAMP determinations (data not shown) also indicates a very low intrinsic activity.

3. Conclusions

The 3,8- and 8,9-disubstituted N^6 -cyclopentyladenine derivatives described in the present study were synthesised, starting from commercially available 6-chloropurine. It appeared that in the synthetic process N9substitution was favoured over N3-substitution. Furthermore, elongation of the 9-methyl group in N-0840 to a 9-propyl was tolerated without loss of adenosine A₁ receptor affinity. A broad range of substituents was introduced at the 8-position. In general, tertiary aliphatic and cyclic amines represented derivatives with good adenosine A₁ receptor affinity. Compound **31**, with a branched tertiary amine, had a more than 100-fold higher affinity than the reference compound N-0840, 7.7 and 852 nM, respectively. Next, we evaluated the intrinsic activity of all compounds. In [35 S]GTP γ S binding experiments, eight derivatives (5, 14, 22, 23, 25, 26, 33, 34) behaved as neutral antagonists, and four of these products (23, 25, 26, and 33) showed a gain in adenosine A₁ receptor affinity compared to N-0840. On the other hand, derivative 31 behaved as full inverse agonist, decreasing basal [35 S]GTP γ S binding to 56%.

In summary, we have synthesised various 3,8- and 8,9disubstituted N^6 -cyclopentyladenine derivatives with higher adenosine A₁ receptor affinity than the reference compound N-0840. Four of the newly synthesised compounds, LUF 5666 (23), LUF 5668 (25), LUF 5669 (26), and LUF 5674 (33), are classified as neutral antagonists for human adenosine A₁ receptors with substantially higher affinities than the lead compound N-0840. Derivative **31** (LUF 5608), with the highest adenosine A₁ receptor affinity of this series, acted as a full inverse agonist on this receptor.

4. Experimental

All chemicals and solvents used were commercially available and of analytical grade, unless stated otherwise. [³H]DPCPX (111.6 Ci/mmol), [³⁵S]GTP γ S (1250 Ci/mmol) and [³H]cAMP (32.4 Ci/mmol) were purchased from NEN (Du Pont Nemours, 's-Hertogenbosch, The Netherlands). CPA, DPCPX, and N-0840 were obtained from Research Biochemicals Inc. (Natick, USA).

4.1. Chromatography

Thin-layer chromatography was carried out using aluminium sheets with silica gel F_{254} from Merck. Spots were visualised under UV light (254 nm). Preparative column chromatography was performed on silica gel (230–400 mesh, ASTM).

4.2. Instruments and analyses

Elemental analyses were performed for C, H, and N (Department of Analytical Chemistry, Leiden University, The Netherlands). ¹³C NMR spectra were measured at 50.1 MHz with a JEOL JNM-FX 200 spectrometer equipped with a PG 200 computer operating in the Fourier transform mode. ¹H NMR spectra were measured at 200 MHz, using the above-mentioned spectrometer, or at 300 MHz, using a Bruker WM-300 spectrometer equipped with an ASPECT-2000 computer operating in the Fourier transform mode. Chemical shifts are given in ppm (δ) relative to tetramethylsilane (TMS) as internal standard. NOESY experiments were obtained with a Bruker DMX-600 instrument (t_{mix} : 1 s).

All high-resolution mass spectra were measured on a Finnigan MAT 900 mass spectrometer equipped with a direct insertion probe for EI experiments (70 eV with resolution 1000). Melting points were determined in a Büchi capillary melting point apparatus and are uncorrected.

4.2.1. 6-Chloro-9-methyladenine (2). To a suspension of 6-chloropurine (1, 3.0 g, 19.4 mmol) in DMF (95 mL), NaH (60% in mineral oil, 0.776 g, 19.4 mmol) was added in 20 min. After stirring for 1 h, the reaction mixture was cooled in an ice bath while methyl iodide (1.21 mL, 19.4 mmol) was added. After stirring this reaction mixture for 16 h at room temperature, it was neutralised with acetic acid, and the DMF was evaporated. The product was purified with column chromatography (ethyl acetate) and crystallised from EtOH. Yield 1.77 g (54%). Mp 135–137 °C. ¹H NMR (DMSO- d_6) δ 3.88 (s, 3H, CH_3), 8.40 (s, 1H, H-2), 8.54 (s, 1H, H-8).

4.2.2. N^{6} -Cyclopentyl-9-methyladenine (3) (N-0840). 6-Chloro-9-methyladenine (2, 1.77 g, 10.5 mmol), cyclopentylamine (1.04 mL, 10.5 mmol), triethylamine (2.92 mL, 21.0 mmol), and *n*-butanol (5 mL) were added to a pressure tube and heated at 120 °CC for 16 h. Purification was performed using column chromatography (5% MeOH/ethyl acetate). Yield 1.77 g (78%). Mp 102–106 °C (lit. 109 °C³). ¹H NMR (CDCl₃) δ 1.41–2.10 (m, 8H, 4×CH₂), 3.49 (s, 3H, CH₃), 4.64 (bs, 1H, CH), 6.00 (d, 1H, N⁶H), 7.72 (s, 1H, H-2), 8.41 (s, 1H, H-8).

4.2.3. *N*⁶-Cyclopentyladenine (4). *N*⁶-Cyclopentyladenine (4) was prepared as described for 3 starting from 6chloropurine (1, 3 g, 19.4 mmol). Yield 3.43 g (87%). ¹H NMR (CDCl₃) δ 1.57–2.19 (m, 8H, 4×CH₂), 8.00 (s, 1H, *H*-2), 8.45 (s, 1H, *H*-8).

4.2.4. 8-Bromo- N^6 **-cyclopentyladenine (5).** A freshly prepared Na₂HPO₄ solution (10% w/v, pH = 7, 220 mL) saturated with bromine was added to N^6 -cyclopentyladenine (**4**, 4.20 g, 20.7 mmol) dissolved in dioxane (220 mL). After stirring the solution overnight, 1.8 M NaHSO₃ was added dropwise until the solution turned light yellow. After evaporation of the solvent, the solid residue was dissolved in acetone, and the remaining salts were filtered off. Purification was performed using column chromatography (5% MeOH/CH₂Cl₂). Yield 3.68 g (63%). Mp 210 °C (dec). ¹H NMR (CDCl₃) δ 1.14–1.64 (m, 8H, 4×CH₂), 2.96 (m, 1H, CH), 4.13 (d, 1H, N⁶H), 7.45 (m, 1H, N-9-H), 7.82 (s, 1H, H-2). MS: m/e 282 (MH ⁺). Anal. (C₁₀H₁₂BrN₅) C, H, N.

4.2.5. 8-Bromo- N^6 -cyclopentyl-9-methyladenine (6) and 8-bromo-9-methyladenine (7). 8-Bromo- N^6 -cyclopentyl-9-methyladenine (6) was prepared in a similar manner as 5, starting from N^6 -cyclopentyl-9-methyladenine (3, 1.41 g, 6.49 mmol). Two organic products were formed and extracted with ethyl acetate (100 mL, three times). Separation and purification was performed by chromatography (ethyl acetate).

6. Yield 0.88 g (46%). Mp 105–108 °C. ¹H NMR (CDCl₃) δ 1.50–2.17 (m, 8H, 4×CH₂), 3.76 (s, 3H, CH₃), 4.58 (m, 1H, CH), 5.58 (d, 1H, N⁶H), 8.36 (s, 1H, H-2). HRMS (ESI-MS) for C₁₁H₁₅N₅Br [M+H]⁺: found, 296.0533; calcd, 296.051. Anal. (C₁₁H₁₄N₅Br·0.4DMF) C, H, N.

4.2.5.2. 7. Yield 0.46 g (31%). Mp 260 °C (dec). ¹H NMR (DMSO- d_6) δ 3.64 (s, 3H, CH_3), 7.35 (s, 2H, NH₂), 8.12 (s, 1H, H-2). HRMS (ESI-MS) for C₆H₇N₅Br [M+H]⁺: found, 227.9807; calcd, 227.9884. Anal. (C₆H₆N₅Br) C, H, N.

4.3. General procedure for the synthesis of N3- and N9substituted N^6 -cyclopentyladenine (8–14): method A

The appropriate alkyl halide (5 equiv), 8-bromo- N^{6} -cyclopentyladenine (5, 1 equiv), K₂CO₃ (2 equiv), and DMF were mixed and stirred for 1 h. After filtration, the filtrate was evaporated and purified by column chromatography (ethyl acetate/PE 40-60).

4.3.1. 9-Allyl-8-bromo- N^{6} **-cyclopentyladenine (8).** This was prepared according to method A, starting from allyl bromide in a yield of 23%. Mp 62–63°C. ¹H NMR (CDCl₃) δ 1.52–2.17 (m, 8H, 4×CH₂), 4.60 (m, 1H, CH), 4.82 (m, 2H, CH₂CH=CH₂), 5.16 (m, 2H, CH=CH₂), 5.67 (d, 1H, N⁶H), 5.95 (m, 1H, CH=CH₂), 8.36 (s, 1H, H-2). Anal. (C₁₃H₁₆BrN₅) C, H, N.

4.3.2. 8-Bromo- N^6 -cyclopentyl-9-propyladenine (9) and 8-bromo- N^6 -cyclopentyl-3-propyl adenine (13). These were prepared according to method A, starting from propyl iodide in a yield of 41 and 28%, respectively. Separation was performed by column chromatography (ethyl acetate/PE 40-60).

9. Mp 94–95 °C. ¹H NMR (CDCl₃) δ 0.97 (t, 3H, CH₃), 1.50–2.16 (m, 10H, CH₂CH₂CH₃, 4×CH₂), 4.16 (t, 2H, CH₂CH₂CH₃), 4.61 (m, 1H, CH), 5.72 (d, 1H, N⁶H), 8.35 (s, 1H, H-2). Anal. (C₁₃H₁₈BrN₅) C, H, N.

13. Mp 138–140 °C. ¹H NMR (CDCl₃) δ 0.95 (t, 3H, CH₃), 1.59-2.08 (m, 10H, CH₂CH₂CH₃, 4×CH₂), 4.28 (t, 2H, CH₂CH₂CH₃), 4.55 (m, 1H, CH), 6.23 (m, 1H, N⁶H), 7.95 (s, 1H, H-2). Anal. (C₁₃H₁₈BrN₅) C, H, N.

4.3.3. 9-Benzyl-8-bromo- N^6 -cyclopentyladenine (10) and 3-benzyl-8-bromo- N^6 -cyclopentyl adenine (14). These were prepared according to method A, starting from benzyl bromide in a yield of 35 and 23%, respectively. Separation was performed by column chromatography (ethyl acetate/PE 40-60).

10. Mp 128–129 °C. ¹H NMR (CDCl₃) δ 1.45–2.19 (m, 8H, 4×CH₂), 4.63 (m, 1H, CH), 5.42 (s, 2H, CH₂), 5.74 (d, 1H, N⁶H), 7.35 (m, 5H, CH_{phenyl}), 8.41 (s, 1H, H-2). HRMS (ESI-MS) for C₁₇H₁₉N₅Br [M+H]⁺: found, 372.0803; calcd, 372.0823. Anal. (C₁₇H₁₈N₅Br·0.5MeOH) C, H, N.

14. Mp 104–106 °C. ¹H NMR (CDCl₃) δ 1.54–2.17 (m, 8H, 4×CH₂), 4.54 (m, 1H, CH), 5.48 (s, 2H, CH₂), 6.50 (d, 1H, N⁶H), 7.36 (m, 5H, CH_{phenyl}), 7.97 (s, 1H, H-2). HRMS (ESI-MS) for C₁₇H₁₉N₅Br [M+H]⁺: found, 372.0788; calcd, 372.0823.

4.3.4. 9-Benzyl- N^6 **-cyclopentyladenine (11).** This was prepared according to method A, starting from N^6 -cyclopentyladenine (4, 0.2 g, 1 mmol) and benzyl bromide

(0.12 mL, 1 mmol) in a yield of 27%. The product was purified with hexane. Mp 122–123 °C. ¹H NMR (CDCl₃) δ 1.52–2.28 (m, 8H, 4×CH₂), 4.65 (bs, 1H, CH), 5.35 (s, 2H, CH₂), 5.99 (d, 1H, N⁶H), 7.30 (m, 5H, CH_{phenyl}), 7.72 (s, 1H, H-2), 8.42 (s, 1H, H-8). HRMS (ESI-MS) for C₁₇H₂₀N₅ [M + H]⁺: found, 294.1663; calcd, 294.1719.

4.3.5. 8-Bromo- N^{6} **-cyclopentyl-3-methyladenine (12).** This was prepared according to method A, starting from methyl iodide. The mixture was separated by flash chromatography. One compound was identical to 8-bromo- N^{6} -cyclopentyl-9-methyladenine (**6**). Compound **12** was isolated in a yield of 23%. Mp 175–177 °C. ¹H NMR (CDCl₃) δ 1.51–2.15 (m, 8H, 4×CH₂), 3.98 (s, 3H, CH₃), 4.53 (m, 1H, CH), 6.31 (d, 1H, N⁶H), 7.97 (s, 1H, H-2). Anal. (C₁₁H₁₄BrN₅) C, H, N.

4.4. General procedure for the synthesis of 9-alkyl- N^{6} -cyclopentyl-8-oxyadenines (15–20): method B

The appropriate 8-bromo- N^6 -cyclopentyl-9-alkyladenine (6, 1 equiv), the corresponding alcohol, and KOtBu (1 equiv) was mixed and refluxed for 2–64 h. The reaction mixture was then neutralised with acetic acid, and the products were purified with column chromatography.

4.4.1. 9-Allyl-*N*⁶**-cyclopentyl-8-methoxyadenine** (15). This was prepared according to method B, starting from 9-allyl-8-bromo-*N*⁶**-cyclopentyladenine** (8) and MeOH in a yield of 91%. Purification was performed with column chromatography (ethyl acetate/PE 40-60). Mp 50–52 °C. ¹H NMR (CDCl₃) δ 1.50–2.18 (m, 8H, 4×C*H*₂), 4.14 (s, 3H, OC*H*₃), 4.60 (m, 3H, C*H*₂CH=CH₂, C*H*), 5.10 (m, 2H, CH=C*H*₂), 5.40 (d, 1H, N⁶*H*), 5.92 (m, 1H, C*H*=CH₂), 8.30 (s, 1H, *H*-2). Anal. (C₁₄H₁₉N₅O) C, H, N.

4.4.2. N⁶-Cyclopentyl-8-methoxy-9-propyladenine (16). This was prepared according to method B, starting from 8-bromo- N^6 -cyclopentyl-9-propyladenine (9) and MeOH in a yield of 88%. Purification was performed with column chromatography (ethyl acetate/PE 40-60). Mp 58–60 °C. ¹H NMR (CDCl₃) δ 0.97 (t, 3H, *CH*₃), 1.50–2.14 (m, 10H, CH₂CH₂CH₃, 4×CH₂), 3.95 (t, 2H, CH₂CH₂CH₃), 4.14 (s, 3H, OCH₃), 4.60 (m, 1H, *CH*), 5.39 (d, 1H, N⁶H), 8.31 (s, 1H, H-2). Anal. (C₁₄H₂₁N₅O) C, H, N.

4.4.3. N⁶-Cyclopentyl-8-methoxy-9-methyladenine (17). This was prepared according to method B, starting from 8-bromo- N^6 -cyclopentyl-9-methyladenine (6) and MeOH in a yield of 19% (16 mg). Purification was performed with column chromatography (MeOH/ethyl acetate). Mp 80–90 °C. ¹H NMR (CDCl₃) δ 1.59–2.18 (m, 8H, 4×CH₂), 3.55 (s, 3H, CH₃), 4.15 (s, 3H, OCH₃), 4.42 (m, 1H, CH), 5.25 (d, 1H, N⁶H), 8.30 (s, 1H, H-2). HRMS (ESI-MS) for C₁₂H₁₈N₅O [M+H]⁺: found, 284.1586; calcd, 248.1511.

4.4.4. N⁶-Cyclopentyl-8-ethoxy-9-methyladenine (18). This was prepared according to method B, starting from 8-bromo- N^6 -cyclopentyl-9-methyladenine (6) and abs EtOH (10 mL) in a yield of 67% (0.20 g). Purifica-

tion was performed with column chromatography (ethyl acetate) and crystallisation with $CH_2Cl_2/hexane$. Mp 93–97 °C. ¹H NMR (CDCl₃) δ 1.48 (t, 3H, CH_2CH_3), 1.52–2.20 (m, 8H, 4×CH₂), 3.54 (s, 3H, CH₃), 4.55 (m, 3H, CH₂CH₃, CH), 5.75 (d, 1H, N⁶H), 8.29 (s, 1H, H-2). HRMS (ESI-MS) for C₁₃H₂₀N₅O [M+H]⁺: found, 262.1731; calcd, 262.1668. Anal. (C₁₃H₁₉N₅O·1.3H₂O) C, H, N.

4.4.5. N⁶-Cyclopentyl-8-isopropoxy-9-methyladenine (19). This was prepared according to method B, starting from 8-bromo- N^6 -cyclopentyl-9-methyladenine (6) and 2-propanol (10 mL) in a yield of 84% (0.26 g). Purification was performed with column chromatography (MeOH/CH₂Cl₂). Mp 75–83 °C. ¹H NMR (CDCl₃) δ 1.45 (d, 6H, CH(CH₃)₂), 1.50–2.22 (m, 8H, 4×CH₂), 3.52 (s, 3H, CH₃), 4.64 (m, 1H, CH), 5.19–5.38 (m, 1H, CH(CH₃)₂), 5.88 (d, 1H, N⁶H), 8.26 (s, 1H, H-2). HRMS (ESI-MS) for C₁₄H₂₂N₅O [M+H]⁺: found, 276.1827; calcd, 276.1824.

4.4.6. N⁶-Cyclopentyl-9-methyl-8-propoxy-adenine (20). This was prepared according to method B, starting from 8-bromo- N^6 -cyclopentyl-9-methyladenine (6) and n-propanol (10 mL) in a yield of 99% (0.31 g). Purification was performed with column chromatography (ethyl acetate). Mp 77–79 °C. ¹H NMR (CDCl₃) δ 1.05 $CH_2CH_2CH_3),$ (t, 3H. 1.45 - 2.24(m, 10H. CH₂CH₂CH₃, 4××CH₂), 3.55 (s, 3H, CH₃), 4.43 (t, 2H, CH₂CH₂CH₃), 4.61 (m, 1H, CH), 5.63 (d, 1H, N⁶H), 8.28 (s, 1H, H-2). HRMS (ESI-MS) for C₁₄H₂₂N₅O $[M+H]^+$: found, 276.1812; calcd, 276.1824.

4.4.7. ⁶N-Cyclopentyl-8-(ethylthio)-9-methyladenine (21). A mixture of 8-bromo- N^6 -cyclopentyl-9-methyladenine (6, 0.34 g, 1.13 mmol), ethanethiol (0.17 mL, 2.26 mmol), KO*t*Bu (0.25 g, 2.26 mmol), and EtOH (7 mL) was added in a pressure tube and stirred at 50° CC overnight. Purification was performed with column chromatography (ethyl acetate) and crystallisation with hexane. Yield 0.29 g (93%). Mp 94–96°C C. ¹H NMR (CDCl₃) δ 1.44 (t, 3H, CH₂CH₃), 1.49–2.22 (m, 8H, $4 \times \times CH_2$), 3.30 (q, 2H, CH₂CH₃), 3.67 (s, 3H, CH₃), 4.62 (m, 1H, CH), 5.59 (d, 1H, N⁶H), 8.32 (s, 1H, H-2). HRMS (ESI-MS) for C₁₃H₂₀N₅S [M+H]⁺: found, 278.1443; calcd, 278.1439. Anal. (C₁₃H₁₉N₅S·0.9H₂O) C, H, N.

4.4.8. *N*⁶-Cyclopentyl-9-methyl-8-oxo-adenine (22). 8-Bromo-*N*⁶-cyclopentyl-9-methyladenine (6, 0.22 g, 0.73 mmol) was refluxed for 3 h in a 1 N NaOH solution (9.42 mL). The reaction mixture was neutralised with a 10% HCl solution, and chilled on ice. Purification was performed with column chromatography (ethyl acetate). Yield 0.12 g (70%). Mp 188–190 °C C. ¹H NMR (CDCl₃) δ 1.48–2.14 (m, 8H, 4××CH₂), 3.37 (s, 3H, CH₃), 4.47 (m, 1H, CH), 5.81 (d, 1H, N⁶H), 8.30 (s, 1H, H-2), 10.56 (s, 1H, N-7-H). HRMS (ESI-MS) for C₁₁H₁₆N₅O [M+H]⁺: found, 234.1349; calcd, 234.1355.

4.4.9. ⁶-Cyclopentyl-8-(*N*-methylamino)-9-methyladenine (23, LUF 5666). 8-Bromo- N^6 -cyclopentyladenine ((5, 501 mg, 1.69 mmol) was dissolved in a 40% w/v aqueous methylamine solution (150 mL, excess) and

stirred for 16 h at room temperature. The reaction mixture was then concentrated in vacuo and the product was crystallised from water. Yield 423 mg (99%). Mp 131–135 °C C. ¹H NMR (CDCl₃) δ 1.57–2.14 (m, 8H, 4××CCH₂), 3.17 (d, 3H, N⁸-CH₃), 3.53 (s, 3H, N-9-CH₃), 4.39 (q, 1H, N⁸H), 4.62 (m, 1H, CH), 5.79 (d, 1H, N⁶H), 8.25 (s, 1H, H-2). ¹³C NMR (CDCl₃): δ 23.69 (2C, CH₂CH₂CH₂, cyclopentyl), 29.63 (CH₃, N-9), 33.37 (2C, CHCH₂CH₂, cyclopentyl), 41.52 (CH₃, methylamine), 52.32 (CH, cyclopentyl), 116.91 (C-8), 151.02 (C-2), 150.36, 152.24, 155.94 (C-6, C-5, C-4). HRMS (ESI-MS) for C₁₂H₁₉N₆ [M+H]⁺: found, 247.1572; calcd, 247.1671.

4.4.10. N⁶-Cyclopentyl-8-(N,N-dimethylamino)-9-methyladenine (24). N⁶-Cyclopentyl-8-(N-methylamino)-9methyladenine (23, 76 mg, 0.31 mmol) was dissolved in 1.5 mL DMF and NaH (60% in mineral oil, 13.5 mg, 0.31 mmol), and stirred for 15 min. Then methyl iodide was added (53 mg, 0.34 mmol) an the reaction mixture was stirred for 16 h at room temperature. Afterwards, 10 mL of water was added to the mixture and the organic product was extracted with CH₂Cl₂ (two times, 4 mL). Purification was performed with column chromatography (MeOH/CH₂Cl₂) and the product was collected as oil. Yield 34 mg (43%). ¹H NMR (CDCl₃) δ 1.50–2.17 (m, 8H, $4 \times CH_2$), 2.93 (s, 3H, N⁸-CH₃), 3.60 (s, 3H, N-9-CH₃), 4.64 (m, 1H, CH), 5.49 (d, 1H, N⁶H), 8.26 (s, 1H, H-2). ¹³C NMR (CDCl₃): δ 23.69 (2C, CH₂CH₂CH₂, cyclopentyl), 29.66 (CH₃, N-9), 33.39 (2C, CHCH₂CH₂, cyclopentyl), 41.52 (2C, CH₃, dimethylamine), 52.29 (CH, cyclopentyl), 116.79 (C-8), 151.09 (C-2), 150.24, 152.24, 155.88 (C-6, C-5, C-4). HRMS (ESI-MS) for $C_{13}H_{21}N_6$ [M+H]⁺: found, 261.1856; calcd, 261.1828.

N⁶-Cyclopentyl-8-(N-methyl-N-ethylamino)-9-4.4.11. methyladenine (25, LUF 5668). This was prepared as 24, starting with N^6 -cyclopentyl-8-(N-methylamino)-9methyladenine (23, 61 mg, 0.25 mmol) in DMF/NaH and ethyl iodide (10.3 mg, 0.25 mmol). Yield 24 mg (36%, oil). ¹H NMR (CDCl₃) δ 1.11–1.48 (t, 3H, CH₂CH₃), 1.52–2.16 (m, 8H, 4×CH₂), 2.92 (s, 3H, N⁸-CH₃), 3.41-3.22 (q, 2H, CH₂CH₃), 3.59 (s, 3H, N-9-CH₃), 4.65 (m, 1H, CH), 5.50 (d, 1H, N⁶H), 8.27 (s, 1H, H-2). ¹³C NMR (CDCl₃): δ 12.50 (CH₃, ethyl), 23.69 $(2C, CH_2CH_2CH_2, cyclopentyl), 29.57 (CH_3, N-9),$ 33.42 (2C, CHCH₂CH₂, cyclopentyl), 38.15 (CH₃, methylamine), 48.34 (CH₂N, ethyl), 52.38 (CH, cyclopentyl), 116.91 (C-8), 151.06 (C-2), 150.18, 152.27, 155.51 (C-6, C-5, C-4). HRMS (ESI-MS) for C₁₄H₂₃N₆ [M+H]⁺: found, 275.1961; calcd, 275.1984.

4.4.12. N⁶-Cyclopentyl-8-(*N*-methyl-*N*-propylamino)-9methyladenine (26, LUF 5669). This was prepared as 24, starting with *N*⁶-cyclopentyl-8-(*N*-methylamino)-9methyladenine (23, 62 mg, 0.25 mmol) in DMF/NaH and ethyl iodide (49.3 mg, 0.29 mmol). Yield 26 mg (36%, oil). ¹H NMR (CDCl₃) δ 0.93 (t, 3H, CH₂CH₂CH₃), 1.40–2.19 (m, 10H, CH₂CH₂CH₃, 8H, 4×CH₂), 2.93 (s, 3H, N⁸-CH₃), 3.17 (t, 2H, N⁸-CH₂), 3.60 (s, 3H, N-9-CH₃), 4.57 (m, 1H, CH), 5.43 (d, 1H, N⁶H), 8.27 (s, 1H, H-2). ¹³C NMR (CDCl₃): δ 11.25 (CH₃, propyl), 20.56 (CH₂CH₂N, propyl), 23.72 (2C, CH₂CH₂CH₂CH₂, cyclopentyl), 29.66 (CH₃, N-9), 33.45 (2C, CHCH₂CH₂, cyclopentyl), 38.85 (CH₃, methylamine), 52.32 (CH, cyclopentyl), 55.53 (CH₂N, propyl), 116.94 (C-8), 150.99 (C-2), 150.18, 152.17, 155.72 (C-6, C-5, C-4). HRMS (ESI-MS) for $C_{15}H_{25}N_6$ [M+H]⁺: found, 289.2156; calcd, 289.2141.

N⁶-Cyclopentyl-8-(N-butyl-N-methylamino)-9-4.4.13. methyladenine (27). This was prepared as 24, starting N⁶-cyclopentyl-8-(N-methylamino)-9-methyladewith nine (23, 39 mg, 0.16 mmol) in DMF/NaH and butyl iodide (49 mg, 0.29 mmol). Yield 12 mg (26%, oil). ¹H NMR (CDCl₃) δ 0.93 (t, 3H, CH₂CH₂CH₂CH₃), 1.19-2.20 (m, 12H, CH₂CH₂CH₂CH₃, butyl, 4×CH₂), 2.94 (s, 3H, N⁸-CH₃), 3.21 (m, 2H, N⁸-CH₂), 3.61 (s, 3H, N-9-CH₃), 4.59 (m, 1H, CH), 5.44 (d, 1H, N⁶H), 8.29 (s, 1H, H-2). ¹³C NMR (CDCl₃): δ 13.82 (CH₃, butyl), 20.19 (CH₂CH₂CH₂N, butyl), 23.70 (2C, CH₂CH₂CH₂, cyclopentyl), 29.38 (CH₂CH₂N, butyl), 29.68 (CH₃, N-9), 33.43 (2C, CHCH₂CH₂, cyclopentyl), 38.85 (CH₃, methylamine), 50.67 (CH₂N, butyl), 52.31 (CH, cyclopentyl), 116.97 (C-8), 151.02 (C-2), 149.99, 152.25, 154.67 (C-6, C-5, C-4). HRMS (ESI-MS) for C₁₆H₂₇N₆ [M+H]⁺: found, 303.2245; calcd, 303.2297.

4.5. General procedure for the synthesis of 8-aminosubstituted N^6 -cyclopentyl-9-methyl adenines (28–33, 35– 37): method C

The appropriate amine was added in excess to a solution of 8-bromo- N^6 -cyclopentyl-9-methyladenine (6) in dioxane. The reaction mixture was stirred in a pressure tube at 80–120 °C for 16–120 h, and the resulting products were purified with column chromatography.

4.5.1. N⁶-Cyclopentyl-8-(*N*-ethylamino)-9-methyladenine (28). This was prepared according to method C, starting from a 70% w/v ethylamine solution and stirred at 80 °C for 48 h. Purification was performed with column chromatography (MeOH/ethyl acetate). Yield 0.29 g (99%). Mp 77–81 °C. ¹H NMR (CDCl₃) δ 1.34 (t, 3H, CH₂CH₃), 1.50–2.17 (m, 8H, 4×CH₂), 3.50 (s, 3H, CH₃), 3.56 (m, 2H, CH₂CH₃), 4.05 (bs, 1H, N⁸H), 4.59 (m, 1H, CH), 5.37 (d, 1H, N⁶H), 8.23 (s, 1H, H-2). HRMS (ESI-MS) for C₁₃H₂₁N₆ [M+H]⁺: found, 261.1906; calcd, 261.1828. Anal. (C₁₃H₂₀N₆·0.4SiO₂) C, H, N.

4.5.2. N⁶-Cyclopentyl-8-(*N*-cyclopentylamino)-9-methyladenine (29). This was prepared according to method C, starting from cyclopentylamine solution and stirred at 120 °C for 120 h. Purification was performed with column chromatography (MeOH/ethyl acetate). Yield 0.17 g (53%). Mp 62–65 °C. ¹H NMR (CDCl₃) δ 1.46–2.19 (m, 16H, 8×CH₂), 3.48 (s, 3H, N-9-CH₃), 4.18–4.32 (m, 1H, N⁸CH), 4.52 (d, 1H, N⁸H), 4.46–4.64 (m, 1H, CH), 5.78 (d, 1H, N⁶H), 8.21 (s, 1H, H-2). HRMS (ESI-MS) for C₁₆H₂₅N₆ [M+H]⁺: found, 301.2152; calcd, 301.2141.

4.5.3. N⁶-cyclopentyl-8-(*N*-phenylamino)-9-methyladenine (30). This was prepared according to method C, starting from a 70% w/v aniline solution and stirred at 100 °C for 32 h. Purification was performed with column chromatography (ethyl acetate) and crystallisation with CH₂Cl₂/hexane. Yield 0.12 g (53%). Mp 191– 195 °C. ¹H NMR (CDCl₃) δ 1.38–2.28 (m, 8H, 4×CH₂), 3.59 (s, 3H, N-9-CH₃), 4.60 (m, 1H, CH), 5.45 (d, 1H, N⁶H), 6.80 (bs, 1H, N⁸H), 7.02 (t, 1H, CH_{phenyl}), 7.31 (t, 2H, CH_{phenyl}), 7.50 (d, 2H, CH_{phenyl}), 8.31 (s, 1H, H-2). HRMS (ESI-MS) for C₁₈H₂₁N₆ [M+H]⁺: found, 309.1795; calcd, 309.1828.

4.5.4. N⁶-Cyclopentyl-8-(*N*-methylisopropylamino)-9-methyladenine (31, LUF 5608). This was prepared according to method C, starting from a 70% w/v aqueous *N*-methylisopropylamine solution and stirred at 80 °C for 48 h. Purification was performed with column chromatography (ethyl acetate) and crystallisation with hexane. Yield 0.12 g (37%). Mp 59–62 °C. ¹H NMR (CDCl₃) δ 1.22 (d, 6H, CH(CH₃)₂), 1.49–2.19 (m, 8H, 4×CH₂), 2.81 (m, 3H, N⁸CH₃), 3.60 (s, 3H, N-9-CH₃), 3.73 (m, 1H, CH(CH₃)₂), 4.57 (m, 1H, CH), 5.89 (m, 1H, N⁶H), 8.29 (s, 1H, *H*-2). HRMS (ESI-MS) for C₁₅H₂₅N₆ [M+H]⁺: found, 289.2114; calcd, 289.2141.

N⁶-Cyclopentyl-8-(N-methyl-N-benzylamino)-9-4.5.5. methyladenine (32). This was prepared according to method C, starting from a 70% w/v aqueous N-methylbenzylamine solution and stirred at 80 °C for 66 h, and subsequently at 100 °C for 48 h. Purification was performed with column chromatography (MeOH/CH₂Cl₂). Yield 52 mg (46%, oil). ¹H NMR (CDCl₃): δ 1.55-2.17 (m, 8H, $4 \times CH_2$), 2.88 (m, 3H, N⁸CH₃), 3.67 (s, 3H, N-9-CH₃), 4.43 (s, 2H, CH₂), 4.64 (m, 1H, CH), 5.60 (d, 1H, N⁶H), 7.35–7.39 (m, 5H, CH_{phenyl}), 8.30 (s, 1H, H-2). ${}^{13}C$ NMR (CDCl₃): δ 23.67 (2C, CH₂CH₂CH₂, cyclopentyl), 29.60 (CH₃, N-9), 33.39 (2C, CHCH₂CH₂, cyclopentyl), 38.73 (CH₃, methylamine), 52.44 (CH, cyclopentyl), 57.56 (CH₂, benzyl), 116.73 (C-8), 127-136 (6C, phenyl), 151.02 (C-2), 150.17, 152.24, 155.42 (C-6, C-5, C-4). HRMS (ESI-MS) for $C_{19}H_{25}N_6$ [M+H]⁺: found, 337.2113; calcd, 337.2141.

4.5.6. N⁶-Cyclopentyl-8-(*N*,*N*-diethylamino)-9-methyladenine (33, LUF 5674). 8-Bromo-N⁶-cyclopentyl-9methyladenine (6, 80 mg, 0.27 mmol) and diethylamine (1.0 mL, 10 mmol) were dissolved in 2 mL dioxane and 1 mL water. The mixture was transferred into a pressure tube, and heated in a boiling water bath for 40 h. Purification was performed with column chromatography (acetone/hexane) and the product was collected as oil. Yield 26 mg (35%). ¹H NMR (CDCl₃) δ 1.10–1.23 (t, 3H, CH₂CH₃), 1.52–2.11 (m, 8H, 4×CH₂), 3.21–3.32 (q, 2H, CH₂CH₃), 3.58 (s, 3H, N-9-CH₃), 4.61 (m, 1H, CH), 5.73 (d, 1H, N⁶H), 8.27 (s, 1H, H-2). ¹³C NMR (CDCl₃): δ 12.89 (CH₃, ethylamine), 23.72 (2C₄) CH₂CH₂CH₂, cyclopentyl), 29.33 (CH₃, N-9), 33.42 (2C CHCH₂CH₂, cyclopentyl), 45.43 (CH₂N, ethyl), 52.38 (CH, cyclopentyl), 117.09 (C-8), 151.09 (C-2), 149.99, 152.33, 154.48 (C-6, C-5, C-4). HRMS (ESI-MS) for $C_{15}H_{25}N_6 [M + H]^+$: found, 289.2172; calcd, 289.2141.

4.5.7. N⁶-Cyclopentyl-8-(*N*-ethyl-*N*-butylamino)-9-methyladenine (34). This was prepared as 33, starting with 8-bromo- N^6 -cyclopentyl-9-methyladenine (6, 72 mg, 0.24 mmol) and *N*-ethylbutylamine (1 mL, 14 mmol). Purification was performed with column chromatography (acetone/hexane). Yield 23 mg (30%, oil). ¹H NMR (CDCl₃) δ 0.90 (t, 3H, CH₂CH₂CH₂CH₃), 1.15 (t, 3H, CH₂CH₃), 1.21–2.18 (m, 12H, CH₂CH₂CH₂CH₃, butyl, 4×CH₂), 3.20–3.35 (m, 4H, CH₂CH₃, N⁸-CH₂), 3.59 (s, 3H, N-9-CH₃), 4.58 (m, 1H, CH), 5.65 (d, 1H, N⁶H), 8.28 (s, 1H, H-2). ¹³C NMR (CDCl₃): δ 12.87 (CH₃, ethyl), 13.87 (CH₃, butyl), 20.18 (CH₂CH₂CH₂N, butyl), 23.73 (2C, CH₂CH₂CH₂, cyclopentyl), 29.40 (CH₂CH₂N, butyl), 29.82 (CH₃, N-9), 33.46 (2C, CHCH₂CH₂N, butyl), 52.41 (CH, cyclopentyl), 117.08 (C-8), 151.01 (C-2), 149.98, 152.29, 154.65 (C-6, C-5, C-4). HRMS (ESI-MS) for C₁₇H₂₉N₆ [M+H]⁺: found, 317.2451; calcd, 317.2454.

4.5.8. N⁶-Cyclopentyl-8-(*N*-pyrrolidino)-9-methyladenine (35). This was prepared according to method C, starting from a 70% w/v pyrrolidine solution and stirred at 100 °C for 16 h. Purification was performed with column chromatography (ethyl acetate). Yield 0.13 g (62%). Mp 95–96 °C. ¹H NMR (CDCl₃) δ 1.35–2.23 (m, 12H, 4×CH₂, N⁸-CH₂CH₂), 3.58 (m, 4H, N⁸-CH₂), 3.68 (s, 3H, N-9-CH₃), 4.57 (m, 1H, CH), 5.75 (d, 1H, N⁶H), 8.25 (s, 1H, H-2). HRMS (ESI-MS) for C₁₅H₂₃N₆ [M+H]⁺: found, 287.1982; calcd, 287.1984. Anal. (C₁₅H₂₂N₆·0.3SiO₂) C, H, N.

4.5.9. N⁶-Cyclopentyl-8-(*N*-piperidino)-9-methyladenine (36). This was prepared according to method C, starting from a 70% w/v aqueous piperidine solution and stirred at 100 °C for 16 h. Purification was performed with column chromatography (ethyl acetate) and crystallisation with hexane. Yield 0.21 g (95%). Mp 137–139 °C. ¹H NMR (CDCl₃) δ 1.37–2.26 (m, 14H, 4×*CH*₂, 3×*CH*₂), 3.19 (m, 4H, N⁸-*CH*₂), 3.60 (s, 3H, N-9-*CH*₃), 4.59 (m, 1H, *CH*), 5.61 (d, 1H, N⁶*H*), 8.30 (s, 1H, *H*-2). Anal. (C₁₆H₂₄N₆) C, H, N.

4.5.10. N⁶-Cyclopentyl-8-morpholino-9-methyladenine (37). This was prepared according to method C, starting from a 70% w/v aqueous morpholine solution and stirred at 120 °C for 66 h. Purification was performed with column chromatography (MeOH/CH₂Cl₂). Yield 83 mg (95%). Mp 118–122 °C. ¹H NMR (CDCl₃) δ 1.4-2.2 (m, 8H, 4×CH₂), 3.25–3.30 (t, 4H, CH₂OCH₂), 3.63 (s, 3H, N-9-CH₃), 3.92–3.87 (t, 4H, CH₂NCH₂), 4.59 (m, 1H, CH), 5.45 (d, 1H, N⁶H), 8.32 (s, 1H, H-2). HRMS (ESI-MS) for C₁₅H₂₃N₆O [M+H]⁺: found, 303.1916; calcd, 303.1933.

4.6. Radioligand displacement experiments

The adenosine A_1 receptor binding assays were carried out on membranes of CHO cells that have a high adenosine A_1 receptor density (~3 pmol/mg of protein, CHO- A_1^{++}). Membrane aliquots, containing 6 µg of protein and increasing concentrations of the compound, were incubated in 400 µL of 50 mM Tris–HCl, pH 7.4 at 25 °C for 60 min in the presence of ~1.6 nM [³H]DPCPX. Non-specific binding was measured in the presence of 10 µM CPA. Incubations were stopped by dilution with the above-mentioned buffer, and bound radioligand was separated by rapid filtration through Whatman GF/B filters using a Brandel harvester. Filters were subsequently washed three times with the same icecold buffer. Bound radioactivity was measured by scintillation spectrometry after the addition of 3.5 mL of Packard Emulsifier Safe. Adenosine A₃ binding experiments were done with membranes of HEK293 cells expressing the human adenosine A₃ receptor (HEK293-A₃). Briefly, membrane aliquots (40 μ g of protein) were incubated at 37 °C for 60 min with ~ 0.1 nM of [¹²⁵I]AB-MECA ([¹²⁵I]N⁶-(4-amino-3-iodobenzyl)-5'-Nethylcarboxamidoadenosine), and a fixed concentration of all compounds (10 µM) or range of concentrations for selected compounds (5, 8, 9, 13, 14, 19, 20, and 32), in a final volume of 200 µL of 50 mM Tris/10 mM MgCl₂/1 mM EDTA (ethylenediaminetetra-acetic acid)/ 0.01% CHAPS [3-([3-cholamidopropyl]-dimethylammonio)-1-propanesulfonate] buffer. Nonspecific binding was measured in the presence of 100 μ M *R*-PIA $[(R)-N^6$ -phenylisopropyladenosine]. Binding reactions were terminated by dilution with ice-cold buffer. Samples were then filtered through Whatman GF/B glassfiber filters using a Brandel cell harvester, and filters were washed three times. Bound radioactivity was measured in a Beckman 5500B γ -counter.

4.7. $[^{35}S]GTP\gamma S$ binding

The modulation of $[^{35}S]$ GTP γ S binding was determined according to the method of Lorenzen et al.²³ with minor modifications. Incubations were performed at 25 °C for 90 min with 4–5 µg of membrane protein. The GDP and NaCl concentrations were 3 µM and 100 mM, respectively. Basal $[^{35}S]$ GTP γ S binding was set to 100%. Under these conditions, CPA behaved as a full agonist stimulating basal $[^{35}S]$ GTP γ S binding to 317%.

4.8. Data analysis

 K_i values were calculated using a non-linear regression curve fitting program (GraphPad Prism, GraphPad Software Inc., San Diego, CA, USA). The K_d value of [³H]DPCPX at CHO-A₁⁺⁺ membranes used was 1.6 nM. The intrinsic activities of the compounds are reported as the percentage of basal [³⁵S]GTP γ S binding (set at 100%) remaining in the presence of concentrations of $10 \times K_i$ determined from receptor binding experiments.

Acknowledgements

We thank Steve Hill (Nottingham University, UK) for providing the CHO- A_1^{++} cells and Karl-Norbert Klotz

(University of Würzburg, Germany) for the HEK293 cells stably transfected with the human adenosine A₃ receptor. Cees Erkelens is acknowedged for his expert help in the NOESY experiments. The authors (R.d.L. and A.IJ.) acknowledge financial support from the EU BIOMED2 programme '*Inverse agonism. Implications for drug design*' (#BMH4-CT97-2152).

References and notes

- Shryock, J. C.; Ozeck, M. J.; Belardinelli, L. Mol. Pharmacol. 1998, 53, 886.
- Moos, W. H.; Szotek, D. S.; Bruns, R. F. J. Med. Chem. 1985, 28, 1383.
- Thompson, R. D.; Secunda, S.; Daly, J. W.; Olsson, R. A. J. Med. Chem. 1991, 34, 2877.
- Knutsen, L. J.; Lau, J.; Petersen, H.; Thomsen, C.; Weis, J. U.; Shalmi, M.; Judge, M. E.; Hansen, A. J.; Sheardown, M. J. J. Med. Chem. 1999, 42, 3463.
- Matsuda, A.; Shinozaki, M.; Yamaguchi, T.; Homma, H.; Nomoto, R.; Miyasaka, T.; Watanabe, Y.; Abiru, T. J. Med. Chem. 1992, 35, 241.
- Van Tilburg, E. W.; Van der Klein, P. A.; Von Frijtag Drabbe Künzel, J.; De Groote, M.; Stannek, C.; Lorenzen, A.; IJzerman, A. P. J. Med. Chem. 2001, 44, 2966.
- Van Tilburg, E. W.; Von Frijtag Drabbe Künzel, J.; De Groote, M.; IJzerman, A. P. J. Med. Chem. 2002, 45, 420.
- Volpini, R.; Costanzi, S.; Lambertucci, C.; Vittori, S.; Cristalli, G. Curr. Pharm. Des. 2002, 8, 99.
- Cristalli, G.; Camaioni, E.; Costanzi, S.; Vittori, S.; Volpini, R.; Klotz, K.-N. Drug Dev. Res. 1998, 45, 176.
- Martin, P. L.; Wysocki, R. J., Jr.; Barrett, R. J.; May, J. M.; Linden, J. J. Pharmacol. Exp. Ther. 1996, 276, 490.
- Volpini, R; Costanzi, S.; Lambertucci, C.; Vittori, S.; Lorenzen, A.; Klotz, K.-N.; Cristalli, G. *Bioorg. Med. Chem. Lett.* 2001, 11, 1931.
- Young, R. C.; Jones, M.; Milliner, K. J.; Rana, K. K.; Ward, J. G. J. Med. Chem. 1990, 33, 2073.
- Fink, C. A.; Spada, A. P. Nucleosides Nucleotides 1992, 11, 1077.
- 14. Ikehara, M.; Uesugi, S.; Kaneko, M. J. Chem. Soc. Chem. Commun. 1967, 17.
- Jacobson, K. A.; Siddiqi, S. M.; Olah, M. E.; Ji, X. D.; Melman, N.; Bellamkonda, K.; Meshulam, Y.; Stiles, G. L.; Kim, H. O. *J. Med. Chem.* **1995**, *38*, 1720.
- Reitz, A. B.; Graden, D. W.; Jordan, A. D., Jr.; Maryanoff, B. E. J. Org. Chem. 1990, 55, 5761.
- 17. Rasmussen, M.; Hope, J. M. Aust. J. Chem. 1982, 35, 525.
- 18. Guida, W. C.; Mathre, D. J. J. Org. Chem. 1980, 45, 3172.
- 19. Cho, B. P.; Evans, F. E. Nucleic Acids Res. 1991, 19, 1041.
- 20. Chattopadyaya, J. B.; Reese, C. B. Synthesis 1977, 725.
- Roelen, H.; Veldman, N.; Spek, A. L.; Von Frijtag Drabbe Künzel, J.; Mathôt, R. A.; IJzerman, A. P. J. Med. Chem. 1996, 39, 1463.
- Komoda, Y.; Shimizu, M.; Kaneko, S.; Yamamoto, M.; Ishikawa, M. Chem. Pharm. Bull. 1982, 30, 502.
- 23. Lorenzen, A.; Fuss, M.; Vogt, H.; Schwabe, U. Mol. Pharmacol. 1993, 44, 115.