

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry

Bioorganic & Medicinal Chemistry 16 (2008) 2741-2752

A new generation of adenosine receptor antagonists: From di- to trisubstituted aminopyrimidines

Jacobus P. D. van Veldhoven, Lisa C. W. Chang, Jacobien K. von Frijtag Drabbe Künzel, Thea Mulder-Krieger, Regina Struensee-Link, Margot W. Beukers, Johannes Brussee and Adriaan P. IJzerman*

Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, PO Box 9502, 2300 RA Leiden, The Netherlands

Received 28 September 2007; revised 3 January 2008; accepted 8 January 2008 Available online 12 January 2008

Abstract—New adenosine receptor ligands were designed as hybrid structures between previously synthesized substituted dicyanopyridines and aminopyrimidines, yielding two series of cyano-substituted diphenylaminopyrimidines. We were interested in assessing the effect of this substitution pattern on both affinity and intrinsic activity, as the dicyanopyridines comprised both agonists and inverse agonists, whereas the original aminopyrimidines were exclusively inverse agonists. It was found that the new compounds were generally selective for adenosine A_1 receptors, although affinity for the adenosine A_{2A} receptor was also noticed for some of the compounds. In a cAMP second messenger assay the compounds behaved as inverse agonists rather than agonists. Among the more A_1 receptor-selective compounds were 5 (LUF6048), 27 (LUF6040) and 53 (LUF6056) with K_i values of 8.1, 1.2 and 5.7 nM, respectively.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Adenosine receptors belong to the large super family of G protein-coupled receptors. Four subtypes have been cloned and characterized, A1, A2A, A2B and A3. Their individual physiological roles and pharmacology have been extensively reviewed.¹ Traditionally, agonists for adenosine receptors were derivatives of adenosine, and antagonists were often xanthines, such as caffeine, theophylline and structural analogues. This simple scenario has changed dramatically, most particularly for the adenosine A1 receptor. For instance, many different classes of adenosine A1 receptor antagonists have now been designed, synthesized and tested. These include all kinds of different mono-, bi-, tri- and even quadricyclic mostly nitrogen containing aromatic compounds.² Among our own efforts were two classes of substituted pyrimidines, exemplified as A in Figure 1.³ Very interestingly, also agonists have greater structural diversity than originally anticipated. The ribose group in adenosine, long thought to be mandatory for agonistic activity, was shown to be absent in a series of 2-aminopyridine-

Figure 1. Rationale for the design of the di- and trisubstituted aminopyrimidines (compound C). A: diphenyl substituted aminopyrimidines as adenosine receptor antagonists;³ B: general structure of non-ribose agonists for the adenosine receptors.^{4,5}

Keywords: Adenosine; Adenosine A₁ receptor; Inverse agonist; Cyanopyrimidines.

^{*} Corresponding author. Tel.: +31 0 71 527 4651; fax: +31 0 71 527 4565; e-mail: ijzerman@lacdr.leidenuniv.nl

^{0968-0896/\$ -} see front matter @ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2008.01.013

3,5-dicarbonitriles. Nevertheless, Rosentreter et al. in a series of patents⁴ disclosed these compounds to be agonists for adenosine receptors. On these findings we elaborated and synthesized analogous compounds,⁵ indeed confirming the agonistic activity on adenosine receptors of some of these derivatives (**B** in Fig. 1). In particular, LUF5853, in which R¹ and R² combined into a dioxymethylene bridge, was a potent and selective full agonist for the adenosine A₁ receptor (K_i hA₁ = 11 nM).

In the present study, hybrid structures of **A** and **B** were designed, predominantly to explore the role of (i) cyano substitution at the pyrimidine core structure and (ii) the introduction of a dioxymethylene bridge on one of the two phenyl rings (compound **C**). We were interested in assessing the effect of this substitution pattern on both affinity and intrinsic activity. It was learned that such compounds were generally selective for adenosine A_{1} receptors, although affinity for the adenosine A_{2A} receptor was also noticed for some of the compounds. In a cAMP second messenger assay the compounds behaved as inverse agonists rather than agonists.

2. Results and discussion

2.1. Chemistry

Compounds 3–7 and 23–37 were synthesized according to Scheme 1. Chalcone 2 was prepared via an aldol condensation in the presence of NaOH⁶ while 1 was commercially available. Guanidine was freed from its hydrochloride salt form with aqueous NaOH and reacted with the appropriate chalcone according to a method described by Al-Hajjar and Sabri.^{3,7} The primary amines 3 and 4 were obtained in 29–32% yield. Acid chlorides were reacted with the 2-aminopyrimidines (3 and 4) in pyridine to give the desired 2-amidopyrimidines 5–7 in 33–73% yield.⁸

Bromination was done at the 5-position of the 2-aminopyrimidine with Br₂ in the presence of CaCO₃ in CHCl₃ (8 and 9),⁹ followed by reaction with acid chlorides in pyridine at room temperature to obtain the corresponding amides (10–22) in modest to good yields (20-92%)yield).⁸ The carbonitrile was introduced by substitution of the bromine with CuCN in pyridine in a sealed tube at 250 °C under microwave conditions.¹⁰ This final step gave the 2-amido-5-cyanopyrimidines (23-37) in 17-66% yield. Compounds 43-47 were synthesized according to Scheme 2. The amine 42, the unsubstituted analogue of compound 43, was previously described by Chang³ starting from ethyl benzoylacetate and benzamidine. To synthesize its methylenedioxy analogue 43, we chose a new pathway starting from piperonal. Nucleophilic addition of hydroxylamine to piperonal (38) gave the arylnitrile (39) in high yield via dehydration of the oxime intermediate.¹¹ The enaminonitrile (40) was obtained in high vield by reaction of acetonitrile with 39 in the presence of potassium tert-butoxide.¹² The pyrimidine ring was created by refluxing 40 and N,N-dimethylbenzamide in phosphorous oxychloride.¹³ Subsequent substitution with ammonia in a sealed vessel gave the aminopyrimidine 43 in a good yield.³ Pyrimidine 43 was reacted at room temperature with several acid chlorides and gave good yields of the screening compounds 44-47. Unexpectedly the subsequent bromination of 44-47 failed with various methods. Analogous to Scheme 1, bromination of 43 followed by microwave-assisted amide formation at 100 °C failed. Hence the procedure of Scheme 2 was not suitable for the synthesis of the cyano products 51–58; these compounds were synthesized according to Scheme 3. Functionalised malononitrile⁵ was refluxed in methanol in the presence of benzamidine hydrochloride and K_2CO_3 to yield only 6% of 51. The yield was improved by an additional oxidation with KMnO₄ to oxidize the dihydropyrimidine-intermediate resulting in 51% yield of the aminopyrimidine-carbonitrile а

Scheme 1. Synthetic route to 2-amido-4,6-disubstituted-pyrimidine-5-carbonitriles. Reagents and conditions: (a) guanidine-HCl, NaOH, H₂O, ethanol, 2 h, 130 °C, MW; (b) RCOCl, pyridine; (c) Br₂, CaCO₃, CHCl₃; (d) RCOCl, pyridine; (e) CuCN, pyridine, 20 min, 250 °C, MW.

Scheme 2. Synthetic route to 4-amido-2,6-disubstituted-pyrimidines. Reagents and conditions: (a) hydroxylamine HCl, *N*-methylpyrrolidone, 115 °C, 4 h; (b) acetonitrile, *t*-BuOK, benzene, 20 h; (c) *N*,*N*-dimethylbenzamide, POCl₃, 120 °C, 1 h; (d) NH₃, ethanol, sealed vessel, 20 h; (e) RCOCl, pyridine, 100 °C, 1 h; (f) Br₂, CaCO₃, CHCl₃, reflux or Br₂, AcOH, 100 °C.

Scheme 3. Synthetic route to 4-amido-2,6-disubstituted-pyrimidine-5-carbonitriles. Reagents and conditions: (a) K_2CO_3 , MeOH, reflux, 2 h; (b) KMnO₄, acetone, 15 min; (c) RCOCl, pyridine, MW.

51.^{14,15} The reaction of **51** and **52** with aliphatic acid chlorides gave only low yields of **53–58** and required heating in the microwave synthesizer,⁸ whereas aromatic acid chlorides and *tert*-butyryl chloride failed.

2.2. Structure–activity relationships

The two series of pyrimidine derivatives were tested in radioligand binding and second messenger assays, and the results of these experiments are presented in Tables 1 and 2. The unsubstituted aminodiphenylpyrimidine 3 showed appreciable affinity for the adenosine A_1 receptor already, only 2- to 3-fold lower than the standard reference ligands CPA (agonist) and DPCPX (antagonist/inverse agonist). The same held true for position isomer 42^3 in Table 2. Both compounds also shared a modest selectivity for the A₁ receptor when compared to the A_{2A} receptor. Substitution of one of the phenyl groups with a dioxymethylene moiety (4 and 43) did not affect the pharmacological profile very much. Additional substitution of the free amine group to yield aliphatic carboxamides (5–7 and 44–47) generally decreased A_{2A} receptor affinity, except for 47. The most selective compound in this comparison was 5 with an affinity of 8.1 nM for the adenosine A1 receptor. As the major focus of this study the introduction of a cyano group on the 5-position in both series (23-37 and 51-58) often led to an increase in both A_1 and A_{2A} receptor affinity, while maintaining the low or negligible affinity for the adenosine A_3 receptor. Fine examples are 23 and 51 when compared to 3 and 42, respectively. A slight increase in A_1 receptor affinity was paralleled by a more substantial gain in A2A receptor affinity, rendering 23 and 51 less selective overall. Further substitution of 23 and 51 with again the dioxymethylene moiety on one of the phenyl groups, yielding 24 ($K_i = 1.8 \text{ nM}$) and 52 ($K_i = 4.9 \text{ nM}$), respectively, improved A₁ receptor affinity somewhat without affecting A2A receptor affinity substantially. Substitution of the free amino group of 24 and 52 yielded carboxamido compounds 25, 26 and 53–55. The latter three compounds showed a remarkable decrease in A_{2A} receptor affinity, while having also little affinity for the adenosine A₃ receptor. As a result cyclopentyl derivative 53 in particular was very selective (>175-fold) for the adenosine A1 receptor with a K_i value of 5.7 nM. We then returned to the diphenyl substituted pyrimidines, that is, without the dioxymethylene moiety but with the cyano substituent,

Table 1. Affinities of the substituted-pyrimidines 3-7 and 23-37 in radioligand binding assays of human adenosine receptors

Compound	\mathbb{R}^1	\mathbb{R}^2	R ³	$K_{\rm i}$ (nM) or % displacement ^a			% Change in cAMP ^e
				hA ₁ ^b	hA _{2A} ^c	hA ₃ ^d	
CPA	_	_	_	10 ± 1.3	1652 ± 344	281 ± 56	51 ± 1
DPCPX	_	_	_	6.1 ± 1.6	129	1700 ± 170	133 ± 1
3	Н	Н	Н	17.7 ± 4.6	405 ± 183	34%	123 ± 8
4	OCH ₂ O	Н	Н	34.8 ± 14.1	381 ± 62	48%	118 ± 11
5 LUF6048	OCH ₂ O	CO-c-Pent	Н	8.1 ± 1.8	26%	52%	121 ± 3
6	OCH ₂ O	CO-Pr	Н	43.0 ± 15.0	8%	25%	125 ± 3
7	OCH_2O	CO-1-EtPr	Н	17.6 ± 8.7	33%	46%	125 ± 5
23	Н	Н	CN	3.3 ± 1.0	22.7 ± 2.3	8%	123 ± 11
24	OCH_2O	Н	CN	1.8 ± 0.1	5.2 ± 0.2	46%	120 ± 5
25	OCH ₂ O	CO-c-Pent	CN	2.8 ± 1.3	27.2 ± 5.8	26%	138 ± 6
26	OCH_2O	CO-Pr	CN	8.3 ± 0.2	21.3 ± 5.2	21%	146 ± 14
27 LUF6040	Н	CO-c-Pent	CN	1.2 ± 0.3	159 ± 30	26%	121 ± 5
28	Н	CO-Pr	CN	2.9 ± 0.3	48.2 ± 6.8	31%	132 ± 3
29	Н	CO-1-EtPr	CN	6.4 ± 0.3	54.5 ± 9.4	31%	128 ± 6
30	Н	CO-i-Pr	CN	2.9 ± 1.0	35.3 ± 12.7	43%	134 ± 4
31	Н	CO-c-Pr	CN	9.4 ± 3.1	45.5 ± 8.2	45%	121 ± 11
32	Н	CO-4-Cl-Ph	CN	92.3 ± 38.2	32.9 ± 19.2	21%	116 ± 10
33	Н	CO-2-furan	CN	26%	42%	0%	
34	Н	CO-4-MeO-Ph	CN	102 ± 3.4	300 ± 67	13%	114 ± 6
35	Н	CO-4-Me-Ph	CN	115 ± 85	158 ± 25	4%	110 ± 3
36	Н	CO-Ph	CN	38%	48%	6%	_
37	Н	CO-3,4-diCl-Ph	CN	58%	35%	0%	

^a $K_i \pm \text{SEM}$ (*n* = 3), % displacement (*n* = 2).

^b Displacement of specific $[^{3}H]$ DPCPX binding in CHO cell membranes expressing human adenosine A₁ receptors or % displacement of specific binding at 1 μ M concentrations.

^c Displacement of specific [³H]ZM 241385 binding in HEK 293 cell membranes expressing human adenosine A_{2A} receptors or % displacement of specific binding at 1 μM concentrations.

^d Displacement of specific [¹²⁵I]AB-MECA binding in HEK 293 cell membranes expressing human adenosine A₃ receptors or % displacement of specific binding at 1 µM concentrations.

^e% Change of cAMP production ± SEM (n = 3) in CHO cell membranes expressing human adenosine A₁ receptors, with 0% as basal cAMP production in the absence of any ligand, 100% representing forskolin-stimulated (10 µM) cAMP production. The forskolin-induced cAMP production was inhibited by CPA (full agonist, reduction from 100% to 51%) and further stimulated by DPCPX (full inverse agonist, increase from 100% to 133%). All compounds were tested at 100× their K_i value in the presence of forskolin, as was the case for CPA and DPCPX (see text).

yielding compounds 27–37 (Table 1) and 56–58 (Table 2). Various substitution patterns on the amido group were explored. Either introduction of 2-furan (33) or aromatic substitution according to Topliss¹⁶ (32, 34–37) was not favored by any of the three receptor sub-types. Alkyl, branched alkyl or cycloalkyl substitution was better accommodated by the 5-cyanoamidopyrimidines, as is evident from the radioligand binding data for 27–31 and 56–58. Again cyclopentyl substitution appeared favorable, compound 27 displaying nanomolar affinity for the adenosine A₁ receptor ($K_i = 1.2$ nM) with 132-fold (A_{2A}) and >833-fold (A₃) selectivity. Similarly, although less prominent, 56 was a potent and selective A₁ receptor ligand.

The recent discoveries of non-ribose agonists^{4,5} required our attention to also focus on performing functional assays at the adenosine A_1 receptor with these compounds.

In fact the current two series of compounds were designed as hybrids between these non-ribose agonists and pyrimidine antagonists as detailed in Figure 1. Production of cAMP was determined in the same cells as used for the preparation of membranes for our radioligand binding studies on the A₁ receptor. In these cells the reference agonist N^6 -cyclopentyladenosine (CPA) inhibited the (forskolin-stimulated) cAMP production by almost 50% (Tables 1 and 2). In contrast, the reference inverse agonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) further increased the forskolin-induced cAMP production by approximately 30%. When we tested all compounds in this setup at a single concentration of 100× their K_i value (to ensure full receptor occupancy), we learned that all compounds resembled DPCPX much more than CPA. In all cases a further enhancement of cAMP production was observed compared to the cAMP concentrations in the presence of

 Table 2. Affinities of the substituted-pyrimidines 42–58 in radioligand binding assays of human adenosine receptors

Compound	\mathbb{R}^1	R ²	R ³	$K_{\rm i}$ (nM) or % displacement ^a			% Change in cAMP ^e
				hA ₁ ^b	hA _{2A} ^c	hA ₃ ^d	
CPA	_	_	_	10 ± 1.3	1652 ± 344	281 ± 56	51 ± 1
DPCPX	_	_	_	6.1 ± 1.6	129	1700 ± 170	133 ± 1
42	Н	Н	Н	25.2 ± 12.3	169 ± 15	42%	123 ± 4
43	OCH ₂ O	Н	Н	15.6 ± 5.7	557 ± 92	15%	131 ± 9
44	OCH ₂ O	CO-c-Pent	Н	17.3 ± 5.6	339 ± 31	186 ± 25	136 ± 7
45	OCH ₂ O	CO-Pr	Н	6.8 ± 2.6	222 ± 58	53.9 ± 2.4	135 ± 6
46	OCH ₂ O	CO-1-EtPr	Н	27.9 ± 11.6	574 ± 49	634 ± 34	139 ± 14
47	OCH ₂ O	CO-c-Pr	Н	13.0 ± 6.8	69.2 ± 12.7	30.7 ± 2.7	142 ± 16
51	Н	Н	CN	10.8 ± 6.0	19.0 ± 3.6	58%	122 ± 8
52	OCH ₂ O	Н	CN	4.9 ± 1.6	44.3 ± 2.5	50%	128 ± 5
53 LUF 6056	OCH ₂ O	CO-c-Pent	CN	5.7 ± 1.6	14%	27%	126 ± 4
54	OCH ₂ O	CO-Pr	CN	13.4 ± 6.1	23%	50%	131 ± 4
55	OCH ₂ O	CO-1-EtPr	CN	18.4 ± 0.6	0%	6%	140 ± 7
56	Н	CO-c-Pent	CN	5.3 ± 2.5	280 ± 35	22%	131 ± 9
57	Н	CO-Pr	CN	12.6 ± 1.3	69.5 ± 7.2	38%	125 ± 12
58	Н	CO-c-Pr	CN	27.9 ± 9.3	49.8 ± 2.6	27%	125 ± 11

^a $K_i \pm \text{SEM}$ (n = 3), % displacement (n = 2).

^b Displacement of specific [³H]DPCPX binding in CHO cell membranes expressing human adenosine A₁ receptors or % displacement of specific binding at 1 μM concentrations.

^c Displacement of specific [³H]ZM 241385 binding in HEK 293 cell membranes expressing human adenosine A_{2A} receptors or % displacement of specific binding at 1 µM concentrations.

^d Displacement of specific [¹²⁵I]AB-MECA binding in HEK 293 cell membranes expressing human adenosine A₃ receptors or % displacement of specific binding at 1 µM concentrations.

^e% Change of cAMP production ± SEM (n = 3) in CHO cell membranes expressing human adenosine A₁ receptors, with 0% as basal cAMP production in the absence of any ligand, 100% representing forskolin-stimulated (10 µM) cAMP production. The forskolin-induced cAMP production was inhibited by CPA (full agonist, reduction from 100% to 51%) and further stimulated by DPCPX (full inverse agonist, increase from 100% to 133%). All compounds were tested at 100× their K_i value in the presence of forskolin, as was the case for CPA and DPCPX (see text).

forskolin only. These results suggest that the compounds are all antagonists/inverse agonists for the adenosine A_1 receptor. This claim was substantiated with a more detailed analysis of the behavior of two of the more potent compounds, **27** and **53**. Concentration–effect curves were recorded for both compounds in the presence of 10 µM forskolin and 100 nM CPA (Fig. 2), yielding IC₅₀ values (n = 3) of 0.15 ± 0.02 µM for **27** and 1.4 ± 0.2 µM for **53**. This corresponds to apparent affinities (K_B -values) of approximately 3 and 28 nM, respectively, quite comparable to the K_i values of the two compounds obtained in radioligand binding studies.

3. Conclusion

This series of pyrimidine derivatives with affinity for adenosine receptors are hybrid structures based on cyanopyridine agonists and pyrimidine antagonists/inverse agonists. All compounds synthesized were inverse agonists rather than agonists. Among the more A_1 receptor selective compounds were 5, 27 and 53 with K_i values of 8.1, 1.2 and 5.7 nM, respectively.

Figure 2. Concentration–effect curves for compounds 27 (\blacksquare) and 53 (\blacktriangle) inhibiting the CPA (100 nM)-induced decrease in forskolin (10 μ M)-stimulated cAMP production in CHO cells expressing the human adenosine A₁ receptor (n = 3).

4. Experimental

4.1. Chemistry

All reagents used were obtained from commercial sources and all solvents were of analytical grade. ¹H

and ¹³C NMR spectra were recorded on a Bruker AC 200 (¹H NMR, 200 MHz; ¹³C NMR, 50.29 MHz) spectrometer with tetramethylsilane as an internal standard. Chemical shifts are reported in δ (ppm) and the following abbreviations are used: s, singlet; d, doublet; dd, double doublet; t, triplet; m, multiplet; br, broad; ar, aromatic protons. Melting points were determined on a Büchi melting point apparatus and are uncorrected. Elemental analyses were performed by the Leiden Institute of Chemistry and are within 0.4% of the theoretical values unless otherwise stated. Reactions were routinely monitored on TLC using Merck silica gel F₂₅₄ plates. Microwave reactions were performed in an Emrys Optimizer (Biotage AB, formerly Personal Chemistry). Wattage was automatically adjusted so as to maintain the desired temperature. The yields of all products were not optimized. All the final products (Tables 1 and 2) were purified by column chromatography followed by recrystallization.

4.1.1. Synthesis of 3,4-methylenedioxychalcone (2). Prepared as described in the literature.⁶

4.1.2. General procedure for the synthesis of 2-amino-4,6disubstituted-pyrimidines.³ To a mixture of the chalcone (4 mmol, 1 equiv) and guanidine hydrochloride (4.1 mmol, 1.05 equiv) in EtOH (3 mL) was added an aqueous solution (1 mL) of NaOH (12 mmol, 3.05 equiv). This mixture was heated at 130 °C in a sealed tube in the microwave for 2 h. The solvent was removed in vacuo and the organics were extracted with hot acetone. The crude product was purified by recrystallization from methanol or column chromatography on SiO₂, eluting with a methanol–dichloromethane solvent system. The same system was used for TLC evaluation, usually yielding $R_{\rm f}$ values in between 0.3 and 0.5.

4.1.2.1. 2-Amino-4,6-diphenyl-pyrimidine (3). Prepared as described in the literature.³

4.1.2.2. 2-Amino-4-benzo[**1,3]dioxol-5yl-6-phenyl-pyrimidine (4)**.⁷ Yield 32%; white solid. ¹H NMR δ (CDCl₃): 8.08–7.99 (m, 2H, phenyl-*H*), 7.65–7.59 (m, 2H, Ar-*H*), 7.52–7.45 (m, 3H, phenyl-*H*), 7.36 (s, 1H, pyrimidinyl-*H*), 6.91 (d, 1H, Ar-*H*), 6.04 (s, 2H, $-\text{OC}H_2\text{O}-$), 5.13 (br s, 2H, N*H*₂). ¹³C NMR δ (DMSO): 164.8, 164.2, 163.9, 149.3, 147.9, 137.5, 131.6, 130.4, 128.6, 127.0, 121.7, 108.3, 107.0, 101.6. Anal. Calcd for C₁₇H₁₃N₃O₂·0.2 H₂O: C, 69.26; H, 4.57; N, 14.25. Found: C, 69.20; H, 4.46; N, 14.49.

4.1.3. General procedure for the synthesis of 2-amido-4benzo[1,3]dioxol-5yl-6-phenyl-pyrimidines.⁸ To a solution of the 2-amino-4-benzo[1,3]dioxol-5yl-6-phenylpyrimidine (1.4 mmol, 1.0 equiv) in anhydrous pyridine (3.5 mL) was added the appropriate acid chloride (2.1 mmol, 1.5 equiv) and stirred at room temperature for 2 h, after which according to TLC no starting material was visible. The solvent was evaporated under reduced pressure and the crude product purified by column chromatography, eluting with dichloromethane. The same solvent was used for TLC evaluation, usually yielding $R_{\rm f}$ values in between 0.3 and 0.5. Recrystallization from methanol gave the corresponding amide in crystalline form.

4.1.3.1. Cyclopentane carboxylic acid (4benzo[1,3]dioxol-5vl-6-phenyl-pyrimidin-2-vl)-amide (5) **LUF 6048.** Yield 51%; white solid. ¹H NMR δ (DMSO): 8.13-8.08 (m, 3H, phenyl-H + NH), 7.70 (dd, 1H, $J^{1} = 4.9$ Hz, $J^{2} = 1.8$ Hz, År-H), 7.70 (s, 1H, pyrimidinyl-H), 7.64 (d, 1H, J = 1.5 Hz, Ar-H), 7.55–7.50 (m, 3H, phenyl-H), 6.93 (d, 1H, J = 8.0 Hz, Ar-H), 6.06 (s, 2H, -OCH2O-), 3.54-3.47 (m, 1H, CH-cyclopentyl), 2.04–1.58 (m, 8H, CH₂-cyclopentyl). ¹³C NMR δ (CDCl₃): 176.1, 165.5, 165.0, 157.5, 149.9, 148.2, 136.5, 130.7, 128.6, 126.9, 121.7, 108.2, 107.1, 106.4, 101.4, 45.6, 29.9, 25.8. Anal. Calcd for C₂₃H₂₁N₃O₃: C, 71.30; H, 5.46; N, 10.85. Found: C, 71.24; H, 5.61; N, 11.21.

4.1.3.2. *N*-(**4-Benzo**[**1,3**]**dioxol-5yl-6-phenyl-pyrimidin-2-yl)-butyramide (6).** Yield 33%; off-white solid. ¹H NMR δ (CDCl₃): 8.14–8.08 (m, 2H, phenyl-*H*), 8.04 (br s, 1H, N*H*), 7.70 (dd, 1H, $J^1 = 6.4$ Hz, $J^2 = 1.8$ Hz, Ar-*H*), 7.70 (s, 1H, pyrimidinyl-*H*), 7.64 (d, 1H, J = 1.8 Hz, Ar-*H*), 7.56–7.50 (m, 3H, phenyl-*H*), 6.94 (d, 1H, J = 8.0 Hz, Ar-*H*), 6.07 (s, 2H, $-\text{OC}H_2\text{O}-$), 3.00 (t, 2H, J = 8.9 Hz, $-\text{C}H_2\text{C}H_2\text{C}H_3$), 1.07 (t, 3H, J = 7.3 Hz, $-\text{CH}_2\text{C}H_2\text{C}H_3$). ¹³C NMR δ (CDCl₃): 173.7, 165.6, 165.1, 157.5, 150.1, 148.2, 136.5, 130.8, 128.6, 126.9, 121.7, 108.3, 107.1, 106.4, 101.5, 39.1, 18.1, 13.7. Anal. Calcd for C₂₁H₁₉N₃O₃: C, 69.79; H, 5.30; N, 11.63. Found: C, 70.16; H, 5.43; N, 12.01.

4.1.3.3. N-(4-Benzo[1,3]dioxol-5yl-6-phenyl-pyrimidin-2-yl)-2-ethyl-butyramide (7). Yield 73%; white solid. ¹H NMR δ (CDCl₃): 8.15–8.10 (m, 2H, phenyl-H), 8.08 (br s, 1H, NH), 7.78-7.70 (m, 2H, Ar-H + pyrimidinyl-H), 7.67 (d, 1H, J = 1.8 Hz, Ar-H), 7.55–7.50 (m, 3H, phenyl-*H*), 6.94 (d, 1H, J = 8.4 Hz, Ar-*H*), 6.06 $-OCH_{2}O_{-}),$ 3.07 - 2.842H. (m, 1H, (s. -CH(CH₂CH₃)₂), 1.96-1.55 (m, 4H, -CH(CH₂CH₃)₂), 1.00 (t, 6H, J = 7.3 Hz, $-CH(CH_2CH_3)_2$). ¹³ \tilde{C} NMR δ (CDCl₃): 175.3, 165.6, 165.1, 157.5, 150.0, 148.2, 136.6, 130.7, 128.7, 127.0, 121.8, 108.3, 107.2, 106.7, 101.4, 49.9, 24.8, 11.7. Anal. Calcd for C₂₃H₂₃N₃O₃: C, 70.93; H, 5.95; N, 10.79. Found: C, 70.72; H, 6.06; N, 10.97.

4.1.4. General procedure for the synthesis of 2-amino-5bromo-4,6-disubstituted-pyrimidines.⁹ To a mixture of the 2-amino-4,6-disubstituted-pyrimidine (14.96 mmol, 1.0 equiv) and CaCO₃ (8.98 mmol, 0.6 equiv) in CHCl₃ (70 mL) was added drop wise to a solution of bromine (16.47 mmol, 1.1 equiv) in CHCl₃ (10 mL). The reaction mixture was stirred at room temperature overnight. Upon completion as judged by TLC (ethylacetate/petroleum ether, 1:3) the reaction mixture was separated between water (pH 9 with 2 M NaOH solution) and dichloromethane (3× 50 mL). The combined organic layers were dried over MgSO₄, concentrated in vacuo and recrystallized from ethanol resulting in the corresponding crystalline form. **4.1.4.1. 2-Amino-5-bromo-4,6-phenyl-pyrimidine (8).** Yield 70%; white solid. ¹H NMR δ (CDCl₃): 7.70–7.61 (m, 4H, phenyl-*H*), 7.52–7.42 (m, 6H, phenyl-*H*), 5.49 (br s, 2H, NH₂). MS (ESI): 327.0.

4.1.4.2. 2-Amino-4-benzo[1,3]dioxol-5yl-5-bromo-6phenyl-pyrimidine (9). Yield 70%; white solid. ¹H NMR δ (DMSO): 7.62–7.59 (m, 2H, phenyl-*H*), 7.51–7.47 (m, 3H, phenyl-*H*), 7.22–7.16 (m, 2H, Ar-*H*), 7.03 (d, 2H, Ar-*H*), 7.01 (br s, 2H, NH₂), 6.12 (s, 2H, –OCH₂O–). ¹³C NMR δ (DMSO): 167.0, 166.1, 148.1, 146.7, 139.1, 132.6, 129.1, 128.9, 127.8, 123.4, 109.5, 107.8, 103.0, 101.5.

4.1.5. General procedure for the synthesis of 2-amido-5-bromo-4,6-disubstituted-pyrimidines.⁸ Starting from compound **8**. The experimental procedure was identical to the general procedure of compounds **5**–7.

4.1.5.1. Cyclopentane carboxylic acid (4-benzo-[1,3]dioxol-5-yl)-5-bromo-6-phenyl-pyrimidin-2-yl-amide (10). Yield 65%; white solid. ¹H NMR δ (CDCl₃): 8.00 (br s, 1H, NH), 7.75–7.71 (m, 2H, phenyl-H), 7.51– 7.47 (m, 3H, phenyl-H), 7.39 (dd, 1H, $J^1 = 8.0$ Hz $J^2 = 1.8$ Hz, Ar-H), 7.32 (d, 1H, J = 1.8 Hz, Ar-H), 6.92 (d, 1H, J = 8.0 Hz, Ar-H), 6.05 (s, 1H, $-\text{OCH}_2\text{O}$ -), 3.38–3.20 (m, 1H, CH-cyclopentyl), 2.05–1.51 (m, 8H, CH₂-cyclopentyl). ¹³C NMR δ (CDCl₃): 175.4, 167.8, 166.7, 155.1, 148.9, 147.2, 137.9, 131.5, 129.7, 129.1, 127.8, 124.3, 110.1, 109.9, 107.7, 101.3, 45.6, 29.9, 25.8.

4.1.5.2. *N*-(**4-Benzo**[**1,3**]**dioxol-5yl**)-**5-bromo-6-phenyl-pyrimidin-2-yl-butyramide** (**11**). Yield 79%; white solid. ¹H NMR δ (CDCl₃): 8.02 (br s, 1H, N*H*), 7.75–7.70 (m, 2H, phenyl-*H*), 7.53–7.48 (m, 3H, phenyl-*H*), 7.39–7.30 (m, 2H, Ar-*H*), 6.92 (d, 1H, J = 8.0 Hz, Ar-*H*), 6.06 (s, 1H, $-\text{OC}H_2\text{O}$), 2.79 (t, 2H, J = 7.7 Hz, $-CH_2\text{CH}_2\text{CH}_3$), 1.85–1.60 (m, 2H, $-CH_2CH_2CH_3$), 0.97 (t, 3H, J = 7.3 Hz, $-CH_2CH_2CH_3$).

4.1.5.3. Cyclopentane carboxylic acid (5-bromo-4,6diphenyl-pyrimidin-2-yl)-amide (12). Yield 20%; white solid. ¹H NMR δ (CDCl₃): 8.02 (br s, 1H, NH), 7.80–7.74 (m, 4H, phenyl-H), 7.51–7.48 (m, 6H, phenyl-H), 3.32– 3.24 (m, 1H, CH-cyclopentyl), 1.99–1.50 (m, 8H, CH₂cyclopentyl). ¹³C NMR δ (DMSO): 175.5, 167.6, 155.2, 137.8, 129.7, 129.2, 127.8, 45.6, 29.9, 25.8. MS (ESI): 423.0.

4.1.5.4. N-(5-Bromo-4,6-diphenyl-pyrimidin-2-yl)butyramide (13). Yield 63%; white solid. ¹H NMR δ (CDCl₃): 8.03 (br s, 1H, NH), 7.82-7.73 (m, 4H, phenyl-H), 7.55–7.47 (m, 6H, phenyl-H), 2.79 (t, 1H, 1.87 - 1.70J = 7.3 Hz, $-CH_2CH_2CH_3),$ (m, 2H. J = 7.7 Hz, 0.97 $-CH_2CH_2CH_3),$ (t, 3H. $-CH_2CH_2CH_3).$

4.1.5.5. *N*-(**5-Bromo-4,6-diphenyl-pyrimidin-2-yl)-2**ethyl-butyramide (14). Yield 46%; white solid. ¹H NMR δ (CDCl₃): 8.01 (br s, 1H, N*H*), 7.83–7.75 (m, 4H, phenyl-*H*), 7.53–7.48 (m, 6H, phenyl-*H*), 2.87– 2.60 (m, 1H, $-CH(CH_2CH_3)_2$), 1.85–1.47 (m, 4H, $-CH(CH_2CH_3)_2)$, 0.95 (t, 6H, J = 7.2 Hz, $-CH(CH_2CH_3)_2)$.

4.1.5.6. *N*-(**5-Bromo-4,6-diphenyl-pyrimidin-2-yl)-isobutyramide (15).** Yield 36%; white solid. ¹H NMR δ (CDCl₃): 8.05 (br s, 1H, N*H*), 7.83–7.76 (m, 4H, phenyl-*H*), 7.54–7.48 (m, 6H, phenyl-*H*), 3.18–3.04 (m, 1H, -C*H*(CH₃)₂), 1.27 (s, 3H, -CH(CH₃)₂), 1.24 (s, 3H, -CH(CH₃)₂). ¹³C NMR δ (CDCl₃): 176.5, 167.6, 155.3, 137.8, 129.8, 129.3, 127.8, 110.6, 35.2, 18.9.

4.1.5.7. Cyclopropane carboxylic acid (5-bromo-4,6diphenyl-pyrimidin-2-yl)-amide (16). Yield 71%; white solid. ¹H NMR δ (CDCl₃): 8.25 (br s, 1H, N*H*), 7.78–7.73 (m, 4H, phenyl-*H*), 7.56–7.45 (m, 6H, phenyl-*H*), 2.58– 2.40 (m, 1H, -C*H*CH₂CH₂-), 1.25–1.14 (m, 2H, -CHCH₂CH₂-), 0.96–0.87 (m, 2H, -CHCH₂CH₂).

4.1.5.8. *N*-(**5-Bromo-4,6-diphenyl-pyrimidin-2-yl)-4chloro-benzamide (17).** Yield 92%; white solid. ¹H NMR δ (CDCl₃): 8.92 (br s, 1H, N*H*), 7.81–7.69 (m, 6H, phenyl-*H* + Ar-*H*), 7.47–7.23 (m, 8H, phenyl-*H* + Ar-*H*).

4.1.5.9. Furan-2-carboxylic acid (5-bromo-4,6-diphenyl-pyrimidin-2-yl)-amide (18). Yield 54%; white solid. ¹H NMR δ (CDCl₃): 8.92 (br s, 1H, N*H*), 7.85–7.81 (m, 4H, phenyl-*H*), 7.52–7.47 (m, 7H, phenyl-*H* + furan-*H*), 7.32 (d, 1H, J = 3.7 Hz, furan-*H*), 6.57 (dd, 1H, $J^1 = 1.8$ Hz $J^2 = 1.8$ Hz, furan-*H*). ¹³C NMR δ (CDCl₃): 167.7, 155.0, 154.6, 147.1, 144.7, 137.7, 129.8, 129.4, 127.9, 116.4, 112.6, 111.2.

4.1.5.10. *N*-(**5-Bromo-4,6-diphenyl-pyrimidin-2-yl)-4**methoxy-benzamide (19). Yield 29%; white solid. ¹H NMR δ (CDCl₃): 8.61 (br s, 1H, N*H*), 7.92–7.80 (m, 6H, phenyl-*H* + Ar-*H*), 7.52–7.46 (m, 6H, phenyl-*H*), 6.97 (d, 2H, *J* = 5.1 Hz, Ar-*H*), 3.87 (s, 3H, –OC*H*₃). ¹³C NMR δ (CDCl₃): 167.6, 164.2, 162.8, 155.7, 137.8, 129.8, 129.4, 129.3, 127.9, 126.0, 113.8, 111.0, 55.2.

4.1.5.11. *N*-(**5-Bromo-4,6-diphenyl-pyrimidin-2-yl)-4**methyl-benzamide (20). Yield 63%; white solid. ¹H NMR δ (CDCl₃): 8.63 (br s, 1H, N*H*), 7.86–7.81 (m, 6H, phenyl-*H* + Ar-*H*), 7.52–7.48 (m, 6H, phenyl-*H*), 7.28 (d, 2H, *J* = 7.6 Hz, Ar-*H*), 2.42 (s, 3H, C*H*₃). ¹³C NMR δ (CDCl₃): 167.7, 164.7, 162.8, 155.7, 142.8, 137.8, 131.0, 129.8, 129.3, 129.2, 127.9, 127.4, 111.0, 21.3.

4.1.5.12. *N*-(**5-Bromo-4,6-diphenyl-pyrimidin-2-yl)-benzamide (21).** Yield 26%; white solid. ¹H NMR δ (CDCl₃): 8.66 (br s, 1H, N*H*), 7.94–7.90 (m, 2H, phenyl-*H*), 7.88– 7.79 (m, 4H, phenyl-*H*), 7.58–7.44 (m, 9H, phenyl-*H*). ¹³C NMR δ (CDCl₃): 167.7, 164.8, 155.6, 137.7, 133.9, 132.2, 129.8, 129.3, 128.6, 127.9, 127.3, 111.2.

4.1.5.13. *N*-(**5-Bromo-4,6-diphenyl-pyrimidin-2-yl)-3,4-dichloro-benzamide (22).** Yield 37%; white solid. ¹H NMR δ (CDCl₃): 8.65 (br s, 1H, N*H*), 7.99 (d, 1H, J = 1.8 Hz, Ar-*H*), 7.81–7.77 (m, 4H, phenyl-*H*), 7.71 (dd, 1H, $J^1 = 6.2$ Hz $J^2 = 2.2$ Hz, Ar-*H*), 7.56 (s, 1H, Ar-*H*), 7.51–7.48 (m, 6H, phenyl-*H*). ¹³C NMR δ

(CDCl₃): 167.7, 162.9, 155.3, 137.5, 136.5, 133.5, 132.8, 130.4, 129.8, 129.7, 129.3, 128.0, 126.7, 111.6.

4.1.6. General procedure for the synthesis of 2-amido-4,6disubstituted-pyrimidin-5-carbonitriles. To a solution of 2-amido-5-bromo-disubstituted-pyrimidine (0.9 mmol, 1.0 equiv) in pyridine (3 mL) was added CuCN (1.0 mmol, 1.1 equiv). This was heated at 250 °C under microwave conditions¹⁰ for 20 min, after which no starting material was visible according to TLC (a mixture of petroleum ether/tetrahydrofuran/dichloromethane, 4:1:1). The solvent was evaporated under reduced pressure, dissolved in dichloromethane (75 mL) and backwashed with a 5% NH₄OH solution in water (3× 20 mL) and water (1×20 mL). The organic layer was dried over MgSO₄ and the mixture was concentrated in vacuo. This crude product was purified by column chromatography, eluting with a mixture of petroleum ether/tetrahvdrofuran/dichloromethane (4:1:1)and recrystallized from methanol or *n*-heptane.

4.1.6.1. 2-Amino-4,6-diphenyl-pyrimidin-5-carbonitrile (23). Yield 32%; off-white solid. ¹H NMR δ (CDCl₃): 8.00–7.90 (m, 4H, phenyl-*H*), 7.55–7.48 (m, 6H, phenyl-*H*), 5.86 (br s, 2H, N*H*₂). ¹³C NMR δ (acetone-*d*₆): 206.1, 172.0, 164.1, 137.8, 131.6, 129.8, 129.1, 118.9, 93.1.

MS (ESI): 271.7. Anal. Calcd for $C_{17}H_{12}N_4$ ·1.2 H_2O : C, 69.33; H, 4.95; N, 19.02. Found: C, 69.32; H, 5.33; N, 19.18.

4.1.6.2. 2-Amino-4-benzo[1,3]dioxol-5yl-6-phenyl-pyrimidin-5-carbonitrile (24). Yield 64%; off-white solid. ¹H NMR δ (DMSO-*d*₆): 7.91–7.86 (m, 4H, phenyl-*H* + N*H*₂), 7.62–7.52 (m, 4H, phenyl-*H* + Ar-*H*), 7.47 (dd, 1H, *J*₁ = 2.6 Hz, *J*₂ = 1.8 Hz, Ar-*H*), 7.12 (d, 1H, *J* = 8.0 Hz, Ar-*H*), 6.17 (s, 2H, –OC*H*₂O–). ¹³C NMR δ (DMSO-*d*₆): 170.9, 169.6, 162.7, 149.7, 147.4, 136.6, 130.8, 130.4, 128.8, 128.3, 123.9, 118.8, 108.9, 108.2, 101.9, 90.7. Anal. Calcd for C₁₈H₁₂N₄O₂·0.2 H₂O: C, 67.61; H, 3.90; N, 17.52. Found: C, 67.58; H, 3.67; N, 17.54.

4.1.6.3. Cyclopentane carboxylic acid (4-benzo-[1,3]dioxol-5yl-5-carbonitrile-6-phenyl-pyrimidin-2-yl)-amide (25). Yield 66%; white solid. ¹H NMR δ (CDCl₃): 8.15 (br s, 1H, N*H*), 8.04–8.00 (m, 2H, phenyl-*H*), 7.72 (dd, 1H, $J_1 = 6.6$ Hz, $J_2 = 1.8$ Hz, Ar-*H*), 7.60–7.50 (m, 4H, phenyl-*H* + Ar-*H*), 6.98 (d, 1H, J = 8.0 Hz, Ar-*H*), 6.05 (s, 2H, –OCH₂O–), 3.50–3.35 (m, 1H, CH-cyclopentyl), 2.03–1.60 (m, 8H, CH₂-cyclopentyl). ¹³C NMR δ (CDCl₃): 175.8, 171.3, 169.9, 156.8, 150.7, 147.9, 135.3, 131.5, 129.0, 128.4, 124.6, 117.3, 109.1, 108.1, 101.7, 96.4, 45.8, 29.9, 25.8. Anal. Calcd for C₂₄H₂₀N₄O₃: C, 69.89; H, 4.89; N, 13.58. Found: C, 70.20; H, 4.95; N, 13.78.

4.1.6.4. *N*-(**4-Benzo**[**1**,**3**]dioxol-5yl-5-carbonitrile-6phenyl-pyrimidin-2-yl)-butyramide (26). Yield 59%; white solid. ¹H NMR δ (CDCl₃): 8.16 (br s, 1H, N*H*), 8.03– 7.99 (m, 2H, phenyl-*H*), 7.71 (dd, 1H, $J_1 = 6.2$ Hz, $J_2 = 1.8$ Hz, Ar-*H*), 7.61–7.50 (m, 4H, phenyl-*H* + Ar*H*), 6.97 (d, 1H, J = 8.4 Hz, Ar-*H*), 6.09 (s, 2H, –OC*H*₂O–), 2.91 (t, 2H, J = 7.3 Hz, –C*H*₂CH₂CH₃), 1.89–1.71 (m, 2H, –CH₂C*H*₂CH₃), 1.03 (t, 3H, J = 7.7 Hz, –CH₂CH₂C*H*₃). ¹³C NMR δ (DMSO-*d*₆): 172.1, 170.7, 169.2, 157.5, 150.4, 147.6, 135.9, 131.5, 129.5, 129.3, 128.6, 124.7, 117.7, 109.3, 108.4, 102.1, 96.8, 40.9, 17.9, 13.6. Anal. Calcd for C₂₂H₁₈N₄O₃: C, 68.38; H, 4.70; N, 14.50. Found: C, 68.28; H, 4.70; N, 14.45.

4.1.6.5. Cyclopentane carboxylic acid (5-carbonitrile-**4,6-diphenyl-pyrimidin-2-yl)-amide (27)** LUF6040. Yield 51%; white solid. ¹H NMR δ (CDCl₃): 8.22 (br s, 1H, NH), 8.11–8.00 (m, 4H, phenyl-H), 7.65–7.51 (m, 6H, phenyl-H), 3.50–3.36 (m, 1H, –CH-cyclopentyl), 2.03– 1.54 (m, 8H, CH₂-cyclopentyl). ¹³C NMR δ (CDCl₃): 177.7, 172.9, 158.8, 137.0, 133.4, 130.8, 130.3, 118.8, 98.9, 47.6, 31.7, 27.6. Anal. Calcd for C₂₃H₂₀N₄O: C, 74.98; H, 5.47; N, 15.21. Found: C, 74.61; H, 5.49; N, 15.19.

4.1.6.6. *N*-(5-Carbonitrile-4,6-diphenyl-pyrimidin-2yl)-butyramide (28). Yield 25%; white solid. ¹H NMR δ (CDCl₃): 8.24 (br s, 1H, N*H*), 8.06–8.02 (m, 4H, phenyl-*H*), 7.64–7.51 (m, 6H, phenyl-*H*), 2.92 (t, 1H, J = 7.3 Hz, $-CH_2CH_2CH_3$), 1.86–1.75 (m, 2H, $-CH_2CH_2CH_3$), 1.02 (t, 3H, J = 7.3 Hz, $-CH_2CH_2CH_3$). ¹³*C NMR* δ (CDCl₃): 173.2, 171.3, 156.9, 135.2, 131.6, 129.0, 128.5, 116.9, 39.4, 17.9, 13.5. MS (ESI): 342.0. Anal. Calcd for C₂₁H₁₈N₄O: C, 73.67; H, 5.30; N, 16.36. Found: C, 73.37; H, 5.16; N, 16.67.

4.1.6.7. *N*-(5-Carbonitrile-4,6-diphenyl-pyrimidin-2-yl)-2-ethyl-butyramide (29). Yield 42%; white solid. ¹H NMR δ (CDCl₃): 8.23 (br s, 1H, N*H*), 8.09–8.04 (m, 4H, phenyl-*H*), 7.64–7.51 (m, 6H, phenyl-*H*), 2.93–2.75 (m, 1H, –CH(CH₂CH₃)₂), 1.93–1.52 (m, 4H, –CH(CH₂CH₃)₂), 0.98 (t, 6H, *J* = 7.3 Hz, –CH(CH₂CH₃)₂). ¹³C NMR δ (CDCl₃): 175.2, 171.2, 156.9, 135.2, 131.6, 129.1, 128.5, 116.9, 97.4, 50.2, 24.7, 11,6. MS (ESI): 370.0. Anal. Calcd for C₂₃H₂₂N₄O: C, 74.57; H, 5.99; N, 15.12. Found: C, 74.47; H, 5.94; N, 15.46.

4.1.6.8. *N*-(5-Carbonitrile-4,6-diphenyl-pyrimidin-2yl)-isobutyramide (30). Yield 26%; white solid. ¹H NMR δ (CDCl₃): 8.22 (br s, 1H, N*H*), 8.09–8.00 (m, 4H, phenyl-*H*), 7.65–7.51 (m, 6H, phenyl-*H*), 3.33–3.19 (m, 1H, -C*H*(CH₃)₂), 1.32 (s, 3H, -CH(CH₃)₂), 1.29 (s, 3H, -CH(CH₃)₂). ¹³C NMR δ (CDCl₃): 176.5, 171.2, 157.0, 135.2, 131.6, 129.1, 128.5, 117.0, 97.3, 35.5, 24.7, 18.9. MS (ESI): 342.0 Anal. Calcd for C₂₁H₁₈N₄O: C, 73.67; H, 5.30; N, 16.36. Found: C, 73.34; H, 5.16; N, 16.69.

4.1.6.9. Cyclopropane carboxalic acid (5-carbonitrile-**4,6-diphenyl-pyrimidin-2-yl)-amide** (31). Yield 29%; white solid. ¹H NMR δ (CDCl₃): 8.33 (br s, 1H, N*H*), 8.07–8.02 (m, 4H, phenyl-*H*), 7.78–7.51 (m, 6H, phenyl-*H*), 2.71–2.58 (m, 1H, –C*H*CH₂CH₂–), 1.29–1.21 (m, 2H, –CHCH₂CH₂–), 1.06–0.96 (m, 2H, –CHCH₂CH₂–). ¹³C NMR δ (CDCl₃): 173.8, 171.2, 157.1, 135.2, 131.6, 129.0, 128.5, 116.9, 97.3, 15.0, 9.9. MS (ESI): 340.1. Anal. Calcd for $C_{21}H_{16}N_4O.0.7 H_2O$: C, 71.47; H, 4.97; N, 15.88. Found: C, 71.46; H, 4.92; N, 15.94.

4.1.6.10. *N*-(5-Carbonitrile-4,6-diphenyl-pyrimidin-2-yl)-4-chloro-benzamide (32). Yield 27%; white solid. ¹H NMR δ (CDCl₃): 8.75 (br s, 1H, N*H*), 8.12–8.07 (m, 4H, phenyl-*H*), 7.90 (d, 2H, J = 8.4 Hz, Ar-*H*), 7.65–7.54 (m, 6H, phenyl-*H*), 7.51 (d, 2H, J = 12.4 Hz, Ar-*H*). ¹³C NMR δ (CDCl₃): 171.2, 163.8, 157.3, 139.0, 135.0, 131.9, 131.7, 129.1, 128.9, 128.5, 116.8, 97.9. MS (ESI): 410.1. Anal. Calcd for C₂₄H₁₅ClN₄O·1.1 H₂O: C, 66.95; H, 4.02; N, 13.01. Found: C, 66.92; H, 4.04; N, 13.15.

4.1.6.11. Furan-2-carboxylic acid (5-carbonitrile-4,6diphenyl-pyrimidin-2-yl)-amide (33). Yield 35%; white solid. ¹H NMR δ (CDCl₃): 9.09 (br s, 1H, NH), 8.17–8.12 (m, 4H, phenyl-H), 7.62–7.54 (m, 7H, phenyl-H + furan-H), 7.39 (d, 1H, J = 3.3 Hz, furan-H), 6.62 (dd, 1H, $J^1 = 1.8$ Hz $J^2 = 1.5$ Hz, furan-H). ¹³C NMR δ (CDCl₃): 171.3, 156.9, 154.3, 146.7, 145.0, 135.2, 131.7, 129.2, 128.6, 117.1, 117.0, 112.9, 97.9. Anal. Calcd for C₂₂H₁₄N₄O₂·1.0 H₂O: C, 68.59; H, 3.76; N, 14.36. Found: C, 68.56; H, 3.88; N, 14.48.

4.1.6.12. *N*-(5-Carbonitrile-4,6-diphenyl-pyrimidin-2-yl)-4-methoxy-benzamide (34). Yield 21%; white solid. ¹H NMR δ (CDCl₃): 8.76 (br s, 1H, N*H*), 8.11–8.08 (m, 4H, phenyl-*H*), 7.94 (dd, 2H, $J^1 = 4.7$ Hz $J^2 = 1.8$ Hz, Ar-*H*), 7.62–7.52 (m, 6H, phenyl-*H*), 7.00 (dd, 2H, $J^1 = 4.8$ Hz $J^2 = 1.8$ Hz, Ar-*H*), 3.90 (s, 3H, –OC*H*₃). ¹³C NMR δ (CDCl₃): 171.1, 164.0, 163.1, 157.6, 135.2, 131.6, 129.6, 129.2, 128.5, 125.6, 117.0, 113.9, 97.5, 55.3. Anal. Calcd for C₂₅H₁₈N₄O₂·0.5 H₂O: C, 72.29; H, 4.61; N, 13.49. Found: C, 72.27; H, 4.27; N, 13.45.

4.1.6.13. *N*-(5-Carbonitrile-4,6-diphenyl-pyrimidin-2-yl)-4-methyl-benzamide (35). Yield 17%; white solid. ¹H NMR δ (CDCl₃): 8.81 (br s, 1H, N*H*), 8.13–8.09 (m, 4H, phenyl-*H*), 7.86 (d, 2H, J = 8.0 Hz, Ar-*H*), 7.62–7.54 (m, 6H, phenyl-*H*), 7.32 (d, 2H, J = 8.0 Hz, Ar-*H*), 2.45 (s, 3H, CH₃). ¹³C NMR δ (CDCl₃): 171.2, 164.5, 157.5, 143.5, 135.2, 131.6, 130.6, 129.4, 129.2, 128.5, 127.5, 116.9, 97.7, 21.4. Anal. Calcd for C₂₅H₁₈N₄O·0.7 H₂O: C, 74.60; H, 4.84; N, 13.92. Found: C, 74.67; H, 5.15; N, 13.67.

4.1.6.14. *N*-(5-Carbonitrile-4,6-diphenyl-pyrimidin-2-yl)-benzamide (36). Yield 60%; white solid. ¹H NMR δ (CDCl₃): 8.85 (br s, 1H, N*H*), 8.13–8.08 (m, 4H, phenyl-*H*), 7.95 (d, 2H, J = 6.6 Hz, phenyl-*H*), 7.66–7.48 (m, 9H, phenyl-*H*). ¹³C NMR δ (CDCl₃): 171.2, 164.7, 157.4, 135.2, 133.5, 132.6, 131.7, 129.2, 128.7, 128.6, 127.5, 116.9, 97.7. Anal. Calcd for C₂₄H₁₆N₄O·0.4 H₂O: C, 74.98; H, 4.43; N, 14.57. Found: C, 75.00; H, 4.47; N, 14.54.

4.1.6.15. *N*-(**5-Carbonitrile-4,6-diphenyl-pyrimidin-2**yl)-3,4-dichloro-benzamide (37). Yield 25%; white solid. ¹H NMR δ (CDCl₃): 8.77 (br s, 1H, N*H*), 8.10–8.03 (m, 5H, phenyl-*H* + Ar-*H*), 7.75 (dd, 1H, $J^1 = 6.2$ Hz $J^2 = 2.2$ Hz, Ar-*H*), 7.65–7.51 (m, 7H, phenyl-*H* + Ar-*H*). ¹³C NMR δ (CDCl₃): 171.3, 162.8, 157.1, 137.2, 134.9, 133.2, 131.8, 130.7, 129.6, 129.1, 128.6, 126.6, 116.7, 98.2. Anal. Calcd for C₂₄H₁₄Cl₂N₄O·0.6 H₂O: C, 63.20; H, 3.36; N, 12.28. Found: C, 63.21; H, 3.32; N, 12.23.

4.1.7. Benzo[1,3]dioxole-5-carbonitrile (39). Prepared as described in the literature.¹¹

4.1.8. 3-Amino-3-benzo[1,3]dioxol-5-yl-acrylonitrile (40). Prepared as described in the literature.¹²

4.1.9. 4-Benzo[1,3]dioxol-5-yl-6-chloro-2-phenyl-pyrimidine (41). Prepared as described in the literature.¹³

4.1.10. 2,6-Diphenyl-pyrimidin-4-ylamine (**42**).³ Yield 68%, white solid. ¹H NMR δ (CDCl₃): 8.52–8.47 (m, 2H, phenyl-*H*), 8.10–8,05 (m, 2H, phenyl-*H*), 7.52–7.42 (m, 6H, phenyl-*H*), 6.63 (s, 1H, pyrimidine-*H*), 5.08 (br s, 2H, NH₂). ¹³C NMR δ (CDCl₃): 163.9, 162.9, 138.0, 137.2, 130.1, 129.9, 128.3, 128.1, 127.9, 126.6, 98.2. MS (ESI): 248.4. Anal. Calcd for C₁₆H₁₃N₃: C, 77.71; H, 5.29; N, 16.99. Found: C, 77.39; H, 5.09; N, 17.33.

4.1.11. 6-Benzo[1,3]dioxol-5-yl-2-phenyl-pyrimidin-4-ylamine (43).³ Yield 64%; white solid. ¹H NMR δ (CDCl3): 8.50–8.44 (m, 2H, phenyl-*H*), 7.74 (s, 1H, Ar-*H*), 7.66 (d, 1H, J = 5.4 Hz, Ar-*H*), 7.53–7.43 (m, 3H, phenyl-*H*), 6.95 (dd, 1H, $J^1 = 8.8$ Hz $J^2 = 1.5$ Hz, Ar-*H*), 6.64 (s, 1H, pyrimidine-*H*), 6.04 (s, 2H, $-\text{OC}H_2\text{O}-$). ¹³C NMR δ (DMSO): 164.9, 162.9, 160.8, 149.0, 148.0, 138.4, 131.9, 130.1, 128.3, 127.7, 120.9, 108.5, 106.6, 101.5, 97.4. Anal. Calcd for C₁₇H₁₃N₃O₂: C, 70.09; H, 4.50; N, 14.42. Found: C, 69.86; H, 4.64; N, 14.39.

4.1.12. General procedure for the synthesis of 2,6-disubstituted-pyrimidin-4-yl-amides. Procedure identical to compounds 5–7, starting from **43**.

4.1.12.1. Cyclopentane carboxylic acid (6-benzo-[1,3]dioxol-5-yl-2-phenyl-pyrimidin-4-yl)-amide (44). Yield 48%; white solid. ¹H NMR δ (CDCl₃): 8.51–8.46 (m, 3H, phenyl-*H* + pyrimidinyl-*H*), 8.06 (br s, 1H, N*H*), 7.83–7.78 (m, 2H, Ar-*H*), 7.51–7.46 (m, 3H, phenyl-*H*), 6.92 (d, 1H, *J* = 8.8 Hz, Ar-*H*), 6.05 (s, 2H, –OC*H*₂O–), 2.83–2.71 (m, 1H, C*H*-cyclopentane), 1.98– 1.60 (m, 8H, C*H*₂-cyclopentane). ¹³C NMR δ (CDCl₃): 176.9, 163.8, 163.0, 159.3, 149.8, 148.2, 137.4, 131.0, 130.8, 128.6, 127.9, 121.7, 108.7, 106.8, 102.2, 101.8, 89.7, 88.7. Anal. Calcd for C₂₃H₂₁N₃O₃: C, 71.30; H, 5.46; N, 10.85. Found: C, 70.99; H, 5.70; N, 10.83.

4.1.12.2. *N*-(**6**-Benzo[1,3]dioxol-5-yl-2-phenyl-pyrimidin-4-yl)-butyramide (45). Yield 46%; white solid. Anal. ¹H NMR δ (CDCl₃): 8.50–8.45 (m, 3H, phenyl-*H* + pyrimidinyl-*H*), 8.05 (br s, 1H, N*H*), 7.84–7.79 (m, 2H, Ar-*H*), 7.51–7.48 (m, 3H, phenyl-*H*), 6.93 (d, 1H, *J* = 8.4 Hz, Ar-*H*), 6.06 (s, 2H, –OCH₂O–), 2.44 (t, 2H, *J* = 7.3 Hz, –CH₂CH₂CH₃), 1.85–1.74 (m, 2H, –CH₂CH₂CH₃), 1.04 (t, 3H, *J* = 7.7 Hz, –CH₂CH₂CH₂CH₃). ¹³C NMR δ (CDCl₃): 172.4, 164.9, 163.5, 158.0, 149.8,

148.1, 137.3, 131.3, 130.5, 128.3, 127.9, 121.9, 108.2, 107.4, 102.2, 101.3, 39.3, 18.2, 13.3. Anal. Calcd for $C_{21}H_{19}N_3O_3$: C, 69.79; H, 5.30; N, 11.63. Found: C, 69.72; H, 5.50; N, 11.65.

4.1.12.3. N-(6-Benzo[1,3]dioxol-5-yl-2-phenyl-pyrimidin-4-yl)-2-ethyl-butyramide (46). Yield 52%; white solid. ¹H NMR δ (CDCl₃): 8.55 (s, 1H, pyrimidinyl-H), 8.50– 8.45 (m, 2H, phenyl-H), 8.16 (br s, 1H, NH), 7.85-7.80 (m, 2H, Ar-H), 7.51-7.46 (m, 3H, phenyl-H), 6.92 (d, 1H, J = 8.8 Hz, Ar-H), 6.05 (s, 2H, $-OCH_2O_{-})$, 2.18-2.07 (m, 1H, -CH(CH₂CH₃)₂), 1.82-1.53 (m, 4H, $-CH(CH_2CH_3)_2),$ 0.95 6H. J = 7.3 Hz. (t, $-CH(CH_2CH_3)_2$). ¹³C NMR δ (CDCl₃): 175.8, 165.1, 163.6, 158.1, 149.9, 148.1, 137.3, 131.3, 130.6, 128.2, 127.9, 122.0, 108.2, 107.4, 102.3, 101.3, 51.9, 25.2, 11.6. Anal. Calcd for C₂₃H₂₃N₃O₃: C, 70.93; H, 5.95; N, 10.79. Found: C, 70.60; H, 5.83; N, 10.75.

4.1.12.4. Cyclopropane carboxylic acid (6benzo[1,3]dioxol-5-yl-2-phenyl-pyrimidin-4-yl)-amide (47). Yield 51%; white solid. ¹H NMR δ (CDCl₃): 8.51–8.47 (m, 2H, phenyl-H), 8.42 (s, 1H, pyrimidinyl-H), 8.32 (br s, 1H, NH), 7.82–7.77 (m, 2H, Ar-H), 7.51–7.47 (m, 3H, phenyl-H), 6.91 (d, 1H, J = 7.7 Hz, Ar-H), 6.05 (s, 2H, $-\text{OC}H_2\text{O}$ -), 1.67–1.55 (m, 1H, CH-cyclopropane), 1.19–1.12 (m, 2H, CH₂-cyclopropane), 0.98– 0.90 (m, 2H, CH₂-cyclopropane). ¹³C NMR δ (CDCl₃): 173.1, 164.9, 163.6, 158.0, 149.8, 148.1, 137.3, 131.3, 130.5, 128.2, 127.9, 121.9, 108.2, 107.4, 102.2, 101.3, 15.8, 8.6. Anal. Calcd for C₂₁H₁₇N₃O₃: C, 70.18; H, 4.77; N, 11.69. Found: C, 69.81; H, 4.50; N, 11.67.

4.1.13. 2-Benzylidene-malononitrile (49). Prepared as described in the literature.⁵

4.1.14. 2-Benzo[1,3]dioxol-5-ylmethylene-malononitrile (50). Yield 97%, yellow solid. ¹H NMR δ (CDCl₃): 7.61 (s, 1H, Ar-*H*), 7.60 (s, 1H, C*H*C(CN)₂), 7.32 (dd, 1H, $J^1 = 6.6$ Hz $J^2 = 1.5$ Hz, Ar-*H*), 6.93 (d, 1H, J = 8.4 Hz, Ar-*H*), 6.13 (s, 2H, OCH₂O).

4.1.15. General procedure for the synthesis of 4-amino-**2,6-disubstituted-pyrimidine-5-carbonitriles.**¹⁴ A mixture of the functionalized malononitrile (45 mmol, 1 equiv), benzamidin hydrochloride (45 mmol, 1 equiv) and K_2CO_3 (95 mmol, 2.05 equiv) was refluxed in methanol (35 mL) for 2 h. The methanol was removed in vacuo and the residue was slurried in hot acetone. KMnO₄ (2.5 g, 16 mmol) was portion wise added and monitored by TLC (dichloromethane). The reaction mixture was filtered over Celite, the excess of KMnO₄ in the filtrate was reduced with NaHSO₃ and followed by a second filtration over Celite. The filtrate was concentrated in vacuo. Recrystallization from ethyl acetate–petroleum ether or a methanol–acetone mixture gave white crystals.

4.1.15.1. 4-Amino-2,6-diphenyl-pyrimidine-5-carbonitrile (51). Yield 51%, off-white solid. ¹H NMR δ (CDCl₃): 8.51–8.48 (m, 2H, phenyl-*H*), 8.15–8.10 (m, 2H, phenyl-*H*), 7.60–7.44 (m, 6H, phenyl-*H*), 5.70 (br s, 2H, NH₂). ¹³C NMR δ (DMSO): 168.2, 164.7, 164.1, 136.7, 136.7, 131.6, 130.9, 128.6, 116.5, 84.5. MS (ESI): 272.0. Anal. Calcd for $C_{17}H_{12}N_4$ ·0.5 H₂O: C, 72.31; H, 4.68; N, 19.84. Found: C, 72.33; H, 4.49; N, 19.69.

4.1.15.2. 4-Amino-6-benzo[1,3]dioxol-5-yl-2-phenyl-pyrimidine-5-carbonitrile (52). Yield 39%, white solid. ¹H NMR δ (CDCl₃): 8.50–8.46 (m, 2H, phenyl-*H*), 7.76 (dd, 1H, $J^1 = 6.6$ Hz, $J^2 = 1.8$ Hz, Ar-*H*), 7.60 (d, 1H, J = 1.8 Hz, Ar-*H*), 7.54–7.45 (m, 3H, phenyl-*H*), 6.96 (d, 1H, J = 8.4 Hz, Ar-*H*), 6.08 (s, 1H, $-\text{OCH}_2\text{O}$), 5.68 (br s, 2H, NH₂). ¹³C NMR δ (DMSO): 167.1, 164.9, 163.9, 149.8, 147.6, 136.7, 131.5, 130.5, 128.5, 123.7, 116.7, 108.8, 108.2, 101.9, 83.7. Anal. Calcd for C₁₈H₁₂N₄O₂: C, 68.35; H, 3.82; N, 17.71. Found: C, 68.33; H, 3.88; N, 17.91.

4.1.16. General procedure for the synthesis of 4-amido-2,6-disubstituted-pyrimidine-5-carbonitriles.⁸ To a solution of the 4-amino-2,6-disubstituted-pyrimidine (1 mmol, 1 equiv) in anhydrous pyridine (4 mL) was added the appropriate acid chloride (5 mmol, 5 equiv) and heated at 100 °C in a sealed tube in the microwave for 20 min. After completion (TLC, dichloromethane), the solvent was evaporated under reduced pressure, the crude product was purified by column chromatography, eluting with dichloromethane and crystallized from methanol or acetone.

4.1.16.1. Cyclopentane carboxylic acid (6benzo[1,3]dioxol-5yl-5-carbonitrile-2-phenyl-pyrimidin-4vl)-amide (53) LUF6056. Yield 33%; white solid. ¹H NMR δ (CDCl₃): 8.53–8.48 (m, 2H, phenyl-H), 8.07 (br s, 1H, NH), 7.80 (dd, 1H, $J^1 = 5.8$ Hz, $J^2 = 1.8$ Hz, Ar-H), 7.68 (d, 1H, J = 1.8 Hz, Ar-H), 7.60–7.46 (m, 3H, phenyl-H), 6.98 (d, 1H, J = 8.0 Hz, Ar-H), 6.09 (s, 2H, -OCH₂O-), 3.45-3.29 (m, 1H, CH-cyclopentyl), 2.06–1.62 (m, 8H, CH₂-cyclopentyl). ¹³Č NMR δ (CDCl₃): 174.8, 167.7, 164.6, 159.7, 150.7, 148.0, 135.7, 132.0, 129.3, 128.8, 128.4, 124.5, 115.4, 109.0, 108.2, 101.7, 91.4, 46.1, 29.9, 25.7. Anal. Calcd for C₂₄H₂₀N₄O₃: C, 69.89; H, 4.89; N, 13.58. Found: C, 69.68; H, 4.87; N, 13.88.

N-(6-Benzo[1,3]dioxol-5-yl-5-cyano-2-phe-4.1.16.2. nyl-pyrimidin-4-yl)-butyramide (54). Yield 49%; white solid. ¹H NMR δ (CDCl₃): 8.50–8.47 (m, 2H, phenyl-*H*), 8.07 (br s, 1H, N*H*), 7.78 (dd, 1H, $J^1 = 6.2$ Hz, $J^2 = 2.2$ Hz, Ar-H), 7.66 (d, 1H, J = 1.8 Hz, Ar-H), 7.60–7.46 (m, 3H, phenyl-H), 6.97 (d, 1H, J = 8.0 Hz, Ar-*H*), 6.09 (s, 2H, –OC*H*₂O–), 2.95 (t, 2H. CH₂CH₂CH₃), 1.95–1.77 J = 6.9 Hz,(m, 2H. $CH_2CH_2CH_3$), 1.09 (t, 3H, J = 7.3 Hz, $CH_2CH_2CH_3$). ¹³C NMR δ (CDCl₃): 172.2, 167.7, 164.5, 159.6, 150.8, 148.0, 135.7, 132.1, 129.3, 128.9, 128.4, 124.4, 115.3, 109.0, 108.2, 101.7, 90.1, 39.6, 17.9, 13.5. Anal. Calcd for C₂₂H₁₈N₄O₃: C, 68.38; H, 4.70; N, 14.50. Found: C, 68.78; H, 4.74; N, 14.83.

4.1.16.3. *N*-(6-Benzo[1,3]dioxol-5-yl-5-cyano-2-phenyl-pyrimidin-4-yl)-2-ethyl-butyramide (55). Yield 65%; white solid. ¹H NMR δ (CDCl₃): 8.53–8.50 (m, 2H, phenyl-*H*), 8.05 (br s, 1H, N*H*), 7.81 (dd, 1H, J^1 = 6.2 Hz, $J^2 = 1.8$ Hz, Ar-*H*), 7.68 (d, 1H, J = 1.8 Hz, Ar-*H*), 7.60–7.46 (m, 3H, phenyl-*H*), 6.98 (d, 1H, J = 8.4 Hz, Ar-*H*), 6.09 (s, 2H, –OC*H*₂O–), 2.71 (m, 1H, C*H*(CH₂CH₃)₂), 1.83–1.59 (m, 4H, CH(CH₂CH₃)₂), 1.05 (t, 3H, J = 7.3 Hz, CH(CH₂CH₃)₂). ¹³C NMR δ (CDCl₃): 174.2, 164.8, 159.6, 150.8, 148.0, 135.7, 132.0, 129.4, 128.9, 128.4, 124.7, 115.4, 109.2, 108.2, 101.6, 92.0, 50.8, 24.9, 11.5. Anal. Calcd for C₂₄H₂₂N₄O₃: C, 69.55; H, 5.35; N, 13.52. Found: C, 69.46; H, 5.43; N, 13.31.

4.1.16.4. Cyclopentane carboxylic acid (5-carbonitrile-**2,6-diphenyl-pyrimidin-4-yl)-amide** (56). Yield 25%; white solid. ¹H NMR δ (CDCl₃): 8.60–8.50 (m, 2H, phenyl-*H*), 8.17–8.13 (m, 2H, phenyl-*H*), 8.08 (s, 1H, N*H*), 7.62–7.47 (m, 6H, phenyl-*H*), 3.47–3.32 (m, 1H, C*H*cyclopentyl), 2.20–1.95 (m, 4H, C*H*₂-cyclopentyl), 1.95–1.60 (m, 4H, C*H*₂-cyclopentyl).

MS (ESI): 369.2. Anal. Calcd for $C_{23}H_{20}N_4O$: C, 74.98; H, 5.47; N, 15.21. Found: C, 74.67; H, 5.42; N, 15.15.

4.1.16.5. Cyclopropane carboxylic acid (5-carbonitrile-**2,6-diphenyl-pyrimidin-4-yl)-amide** (57). Yield 18%; white solid. ¹H NMR δ (CDCl₃): 8.56–8.51 (m, 4H, phenyl-*H*), 8.24 (br s, 1H, N*H*), 7.17–8.13 (m, 6H, phenyl-*H*), 2.53–2.41 (m, 1H, C*H*-cyclopropyl), 1.37–1.29 (m, 2H, C*H*₂-cyclopropyl), 1.14–1.06 (m, 2H, C*H*₂-cyclopropyl). Anal. Calcd for C₂₁H₁₆N₄O·0.2 H₂O: C, 73.29; H, 4.81; N, 16.28. Found: C, 73.28; H, 4.74; N, 16.24.

4.1.16.6. *N*-(5-Carbonitrile-2,6-diphenyl-pyrimidin-4-yl)-butyramide (58). Yield 37%; white solid. ¹H NMR δ (CDCl₃): 8.60–8.45 (m, 2H, phenyl-*H*), 8.16–8.12 (m, 2H, phenyl-*H*), 8.10 (br s, 1H, N*H*), 7.64–7.48 (m, 6H, phenyl-*H*), 3.29 (t, 2H, J = 7.3 Hz, $CH_2CH_2CH_3$), 1.97–1.79 (m, 2H, $CH_2CH_2CH_3$), 1.10 (t, 3H, J = 7.3 Hz, $CH_2CH_2CH_2CH_3$), 1.10 (t, 3H, J = 7.3 Hz, $CH_2CH_2CH_2CH_3$). ¹³C NMR δ (DMSO): 172.5, 169.1, 165.1, 159.7, 135.9, 135.6, 132.4, 131.9, 129.2, 129.1, 128.8, 128.7, 115.2, 91.1, 39.9, 18.1, 13.7. MS (ESI): 343.0. Anal. Calcd for $C_{21}H_{18}N_4O$: C, 73.66; H, 5.29; N, 16.36. Found: C, 73.34; H, 5.16; N, 16.74.

4.2. Biology

4.2.1. Materials and methods. [³H]DPCPX and [¹²⁵I]AB-MECA were purchased from Amersham Biosciences (NL). [³H]ZM 241385 was obtained from Tocris Cookson, Ltd, UK. CHO cells expressing the human adenosine A_1 receptor were provided by Dr. Andrea Townsend-Nicholson, University College London, UK. HEK 293 cells stably expressing the human adenosine A_{2A} and A_3 receptor were gifts from Dr. J. Wang (Biogen, USA) and Dr. K.-N. Klotz (University of Würzburg, Germany), respectively.

4.2.1.1. Radioligand binding studies. All compounds were tested in radioligand binding assays to determine their affinities at the human adenosine A_1 , A_{2A} and the A_3 receptors as described previously³ with the exception of non-specific binding on the A_{2A} receptor, which

was determined in the presence of 10 μ M CGS21680 instead of 100 μ M CPA. The human A₁ receptors were expressed in CHO cells, and [³H]DPCPX was used as the radioligand. The A_{2A} and A₃ receptors were expressed in HEK 293 cells, and [³H]ZM 241385 and [¹²⁵I]AB-MECA were used as the respective radioligands.

4.2.1.2. cAMP determinations. A number of compounds specified in the text were tested in functional assays for their ability to influence the levels of cAMP in the test system under various experimental conditions, (i) in the presence of forskolin (10 μ M, Tables 1 and 2), and (ii) in the presence of both forskolin (10 μ M) and CPA (100 nM, Fig. 2).

A suspension in PBS buffer (supplemented with 5 mM Hepes and 0.1% BSA) of CHO cells expressing the human adenosine A_1 receptor was seeded into a 384-well plate (white Optiplates, Perkin Elmer, NL; approximately 2500 cells/well). To each well were added the compounds of interest, adenosine deaminase (0.8 IU/ mL), rolipram (50 μ M), cilostamide (50 μ M) in a total volume of 7.5 µl, after which the plate was centrifuged at 600g for 1 min. This mixture was then incubated for 15 min at room temperature followed by the addition (2.5 µl) of forskolin (10 µM final concentration). After a subsequent 45 min incubation at room temperature, cAMP antibody solution (5 µl) and detection mix (5 µl) were added, and the plate was centrifuged once more. After a further incubation of at least 2 h the amount of cAMP was determined in a TR-FRET assay on a Victor spectrometer (Perkin-Elmer, NL) according to the instructions of the supplier (Lance cAMP assay, Perkin-Elmer, NL). All data reflect at least three independent experiments performed in duplicate.

4.2.1.3. Data analysis. K_i values were calculated using a non-linear regression curve-fitting program (Graph-Pad Prism 4, GraphPad Software Inc., San Diego, CA, USA). K_D values of the radioligands were 1.6, 1.0 and 5.0 nM for [³H]DPCPX (A₁ receptor), [³H]ZM 241385 (A_{2A} receptor) and [¹²⁵I]AB-MECA (A₃ receptor), respectively. The data from the functional assays with compounds **27** and **53** were also analyzed with GraphPad Prism and Figure 2 was generated by evaluating the data to relate to the reference agonist CPA (set at 0%) and the compounds' maximum effects (set at 100%).

References and notes

- (a) Jacobson, K. A.; Gao, Z. G. Nat. Rev. Drug Disc. 2006, 5, 247; (b) Fredholm, B. B.; Chen, J. F.; Masino, S. A.; Vaugeois, J. M. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 385; (c) Fredholm, B. B.; IJzerman, A. P.; Jacobson, K. A.; Klotz, K. N.; Linden, J. Pharmacol. Rev. 2001, 53, 527.
- Chang, L. C. W.; Brussee, J.; IJzerman, A. P. Chem. Biodivers. 2004, 1, 1591.
- Chang, L. C. W.; Spanjersberg, R. F.; von Frijtag Drabbe Künzel, J. K.; Mulder-Krieger, T.; van den Hout, G.; Beukers, M. W.; Brussee, J.; IJzerman, A. P. J. Med. Chem. 2004, 47, 6529.

- 4. Bayer Aktiengesellschaft WO0125210, 2001; Bayer Aktiengesellschaft DE10115922A1, 2002.
- Chang, L. C. W.; von Frijtag Drabbe Künzel, J. K.; Mulder-Krieger, T.; Spanjersberg, R. F.; Roerink, S. F.; van den Hout, G.; Beukers, M. W.; Brussee, J.; IJzerman, A. P. J. Med. Chem. 2005, 48, 2045.
- Doherty, A. M.; Patt, W. C.; Edmunds, J. J.; Berryman, K. A.; Reisdorph, B. R.; Plummer, M. S.; Shahripour, A.; Lee, C.; Cheng, X.-M., et al. J. Med. Chem. 1995, 38, 1259.
- Al-Hajjar, F. H.; Sabri, S. S. J. Heterocycl. Chem. 1982, 19, 1087.
- Kondal, K.; Kamala, K.; Rao, P. J.; Reddy, K. K. Bull. Chem. Soc. Jpn. 1988, 61, 3791.
- 9. Nasielski, J.; Standaert, A.; Nasielski-Hinkens, R. Synth. Commun. 1991, 21, 901.

- Brown, D. J.; Paddon-Row, M. N. J. Chem. Soc. 1967, 903.
- Sampath Kumar, H. M.; Subba Reddy, B. V.; Tirupathi Reddy, P.; Yadav, J. S. Synthesis 1999, 4, 586.
- Yamaguchi, Y.; Katsuyama, I.; Funabiki, K.; Matui, M.; Shibata, K. J. Heterocycl. Chem. 1998, 35, 805.
- Harris, R. L. N.; Huppatz, J. L.; Teitei, T. Aust. J. Chem. 1979, 32, 669.
- Peters, J.-U.; Weber, S.; Kritter, S.; Weiss, P.; Wallier, A.; Boehringer, M.; Hennig, M.; Kuhn, B.; Loeffler, B. Bioorg. Med. Chem. Lett. 2004, 6, 1491.
- 15. Abd-Elfattah, A. M.; Hussain, S. M.; El-Reedy, A. M. *Tetrahedron* **1983**, *39*, 3197.
- 16. Topliss, J. G. J. Med. Chem. 1972, 15, 1006.