Journal of Organometallic Chemistry 696 (2011) 802-806

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Synthesis of new imines and amines containing organosilicon groups

Kazem D. Safa*, J. Vahid Mardipour, Yones Mosaei Oskoei

Organosilicon Research Laboratory, Faculty of Chemistry, University of Tabriz, 5166616471 Tabriz, Iran

ARTICLE INFO

Article history: Received 23 August 2010 Received in revised form 26 September 2010 Accepted 30 September 2010 Available online 12 October 2010

Keywords: Vinylbis(silanes) Organosilicon Imine Amine

1. Introduction

Vinylsilanes are useful reagents in organic synthesis because the C (sp²)-Si bonds undergo numerous transformation [1]. Vinylbis (silanes), which show a number of similar properties, have received significant attention as potential synthons in organic and organosilicon synthesis [2]. The potential of the vinylbis(silanes) as precursors for the preparation of ketones and isoxazoline derivatives, as well as a variety of important organosilicon reagents, such as acylsilanes, epoxy silanes, silanols, has stimulated their development. In contrast to vinyl silanes however, vinylbis(silanes) are relatively unexplored [3]. We have recently reported [4] new derivatives of vinylbis(silanes) via Peterson-type olefination reaction. However, no vinylbis(silanes) containing imine and amine group have hitherto been reported.

Imine, also known as azomethine, is formed by the reversible condensation between amine and carbonyl group. This reaction was discovered by the German chemist Hugo Schiff in 1864 and since then imines are also called as Schiff base [5]. An imine is a chemical compound containing carbon—nitrogen double bond with a general structure R_1R_2C —NR₃ used as a key intermediate for the synthesis of nitrogen hetrocycles [6]. From the fundamental point of view, reduction of imines to the corresponding amines represent one of the most widely used and valuable functional group transformations in synthetic organic chemistry, since amines

0022-328X/\$ – see front matter @ 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2010.09.074

ABSTRACT

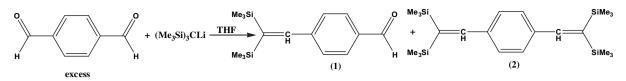
The Peterson olefination reaction of terephthalaldehyde with tris(trimethylsilyl)methyl lithium, $(Me_3Si)_3CLi$, in THF at 0 °C gives 4-[2,2-bis(trimethylsilyl)ethenyl]benzaldehyde (1) and 4,4-bis[2,2-bis (trimethylsilyl)ethenyl]benzene (2). The new aldehyde (1) reacts with variety of amines in ethanol to afford the corresponding imines (3) containing vinylbis(trimethylsilyl) group. The newly synthesized imines (3) can be completely converted into amines containing vinylbis(trimethylsilyl) group with an excess amount of NaBH₄. In the case of N-[4-(2,2-bis(trimethylsilyl)ethenyl)benzyl]-2,6-dimethylaniline LiAlH₄ was used as a reducing agent in THF.

© 2010 Elsevier B.V. All rights reserved.

constitute important precursors to compounds that are of such interest in pharmaceutical and agricultural industries [7,8].

In the present work, we describe the synthesis of some vinylbis (silane) derivatives containing imine and amine groups. The newly synthesized vinylbis(silanes) containing imine and amine group might be used for the preparation of hetrocycles and other organic compounds containing organosilicon group, which cannot be achieved via other methods.

2. Results and discussion

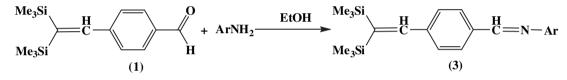

Tris(trimethylsilyl)methane, (Me₃Si)₃CH, has been conveniently prepared by the reaction of CHCl₃ and Li with Me₃SiCl in THF. The generation of (Me₃Si)₃CLi was easily accomplished via deprotonation of (Me₃Si)₃CH by MeLi in THF [9,10].

The precursor 4-[2,2-bis(trimethylsilyl)ethenyl]benzaldehyde (1) was prepared from the reaction of terephthalaldehyde with [(trimethylsilyl)methyl]lithium, (Me₃Si)₃CLi, (Scheme 1).

In order to optimize the conditions for the formation of **1**, we decided to investigate the reaction of $(Me_3Si)_3CLi$ (1 equiv.) with various amounts of terephthalaldehyde at different temperatures (Table 1). When 5 equivalent of terephthalaldehyde was used at 0 °C, **1** was the major product.

The newly synthesized 4-[2,2-bis(trimethylsilyl)ethenyl]benzaldehyde (1) was treated with an excess of various aromatic amines, the formation of the corresponding imines took place quite smoothly (Scheme 2). The reaction was performed in alcohol (methanol or ethanol) and was monitored via FTIR, actually, the infrared spectra of imines showed the expected absorptions in the

^{*} Corresponding author. Tel.: +98 411 3393124; fax: +98 411 3340191. *E-mail address:* dsafa@tabrizu.ac.ir (K.D. Safa).



Scheme 1. The preparation of 4-[2,2-bis(trimethylsilyl)ethenyl]benzaldehyde via Peterson protocol.

Table 1	
Summary of experimental conditions and yields obtained in the reaction of terephthalaldehyde with (Me ₃ Si) ₃ CLi.	

Entry	Terephthalaldehyde (equiv.)	(Me ₃ Si) ₃ CLi (equiv.)	Temperature	Condition	1 ^a (%)	2 ^a (%)
1	5	1	r.t	(Me ₃ Si) ₃ CLi was added dropwise over terephthalaldehyde and the reaction mixture was mixed for 15 h.	43	45
2	5	1	reflux	(Me ₃ Si) ₃ CLi was added quickly over terephthalaldehyde and the reaction mixture was mixed for 15 h.	33	55
3	5	1	r.t	(Me ₃ Si) ₃ CLi was added quickly over terephthalaldehyde and the reaction mixture was mixed for 15 h.	56	33
4	5	1	0 °C	(Me ₃ Si) ₃ CLi was added quickly over terephthalaldehyde and the reaction mixture was mixed for 30 min.	65	25

^a Isolated yields.

Scheme 2. The synthesis of imines containing vinylbis(trimethylsilyl) group.

range of 1550–1690 cm⁻¹usually attributed to C=N stretching. In addition, the ¹H NMR spectrum of the raw product of the imines showed a complete disappearance of –CHO at 9.99 ppm.

All the new synthesized imines (Table 2) were identified by GC-Mass method. In order to separate pure imines containing vinylbis (trimethylsilyl) group from the reaction mixture, preparative TLC was used. But in the presence of silica gel, the newly synthesized imines were converted to the precursor **1**.

So, we decided to apply direct reductive amination of imines which are attractive methods for the preparation of amine derivatives in organic synthesis [6].

Sodium borohydride, as a kind of common reducing agent, has been used widely in organic synthesis and there are several reports in the literature for reducing the imines by sodium borohydride [11–13].

We initially studied the reductive amination of the newly synthesized aldehyde (1) with aniline in ethanol, which afforded the corresponding imine (Scheme 3) that was then reduced with NaBH₄ to give the corresponding amine in 65%, isolated yield.

With the first successful result in hand, reduction of other imines with NaBH₄ was carried out under similar reduction conditions. The obtained results are presented in Table 3.

As shown in Table 3, high yield in the reduction of the imines was achieved in the presence of halogen (flourine) functional groups. In the case of 2,6-dimethylaniline, reaction was not completed in the presence of NaBH₄, so LiAlH₄ was used as the reducing agent in THF.

3. Conclusion

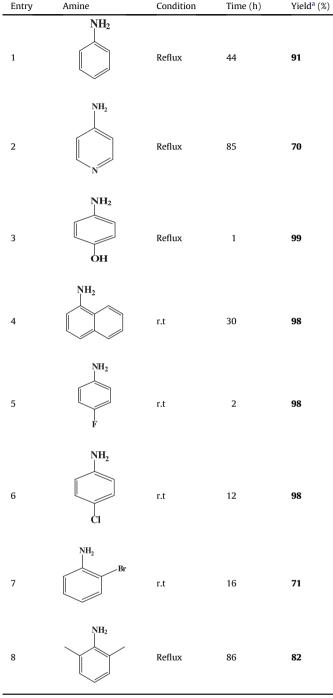
We demonstrated the convenient one-pot preparation of 4-[2,2-bis(trimethylsilyl)ethenyl]benzaldehyde (1) via Peterson protocol. When 5-fold the mol ratio of terephthaldehyde was used at 0 °C, 1 was the major product.

The newly synthesized imines containing vinylbis(trimethylsilyl) group were obtained from the reaction of **1** with variety of amines. These imines might be used as intermediate for the synthesis of attractive molecules containing organosilicon group. The reaction of imines containing organosilicon groups with NaBH₄ gives the corresponding secondary amines containing organosilicon groups, which cannot be achieved via other methods.

4. Experimental

4.1. Solvent and reagents

Reactions involving organolithium reagents were carried out under dry argon. Solvents were dried by standard methods. Substrates for preparation of (Me₃Si)₃CLi, viz., Me₃SiCl, Li, CHCl₃ and terephthaldehyde, and also all amines used in synthesis of imines, NaBH₄ and LiAlH₄ were purchased from Merck and Fluka and used without further purification.


4.2. Spectra

The ¹H NMR and ¹³C NMR spectra were recorded with a Bruker FT-400 MHz spectrometer at room temperature and with CDCl₃ as the solvent. The Mass spectra were obtained with a GC-Mass Agilent, quadrupole model 5973 N instrument, operating at 70 eV. The FTIR spectra were recorded on a Bruker-Tensor 270 spectrometer. Elemental analysis were carried out with an elemental Vario EL III instrument.

4.3. Preparation of tris(trimethylsilyl)methyllithium, (Me₃Si)₃CLi, in THF

The reagent was prepared as described by Grobel and co-workers [10].

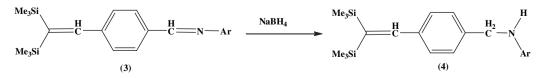
Fable 2	
Reaction of 4-[2,2-bis(trimethylsilyl)ethenyl]benzaldehyde with various amine	es.

^a Yields obtained by GC-Mass.

4.4. Preparation of 4-[2,2-bis(trimethylsilyl)ethenyl]benzaldehyde

Tris(trimethylsilyl)methyllithium (22.4 mmol) was poured quickly onto terephthaldehyde 18.7 g (139.4 mmol) in THF at 0 °C under argon and was mixed for 30 min, then the reaction mixture was poured into 200 ml of water and extracted into ether (3 × 100 ml). The organic layer was dried (Na₂SO₄) and the solvent was evaporated and the residue was purified by preparative column chromatography (n-hexane/ethyl acetate, 10:1, R_f = 0.7) to give highly viscose yellow oil (65%). FTIR (KBr, cm⁻¹): 840, 1251 (Si–CH₃), 1558, 1603 (Ph), 1703 (C=O); ¹H NMR (400 MHz, CDCl₃, ppm): δ –0.05 (s, 9H, SiMe₃), 0.2 (s, 9H, SiMe₃), 7.32–7.34 (d, 2H, J = 7.9 Hz, Ar), 7.7 (s, 1H, HC =), 7.8–7.82 (d, 2H, J = 8.7 Hz, Ar), 9.99 (s, 1H, HC=O); ¹³C NMR (100 MHz, CDCl₃, ppm): δ –0.6, 0.9 (SiMe₃), 127.4, 128.3, 133.9, 148.2, 148.6, 151.9, 190.9; m/z (EI): 276 (45%, [M]⁺), 261 (100%, [M – Me]⁺), 73 (73%, [SiMe₃]⁺); Anal. Calcd for C₁₅H₂₄OSi₂ (276.14): C, 65.15; H, 8.75. Found: C, 65.00; H, 8.61%.

4.5. General procedure for the synthesis of new imines and amines containing vinylbis(trimethylsilyl) groups


To a 50-ml round-bottom flask were added 0.72 mmol of 4-[2.2bis(trimethylsilyl)ethenyl]benzaldehyde, 0.86 mmol of amine and 5 ml of ethanol. The mixture was performed according to Table 2. The reaction progress was monitored by FTIR spectroscopy, GC-Mass and TLC. After all the aldehyde precursor was consumed, 2.17 mmol of NaBH₄ was added and the mixture was stirred (Table 3) at room temperature. Then the reaction mixture poured into water (50 ml) and extracted into ether (3 × 15 ml). The organic layer was dried (Na₂SO₄) and the solvent was evaporated and the residue was purified by preparative TLC (n-hexane/ethyl acetate; 10:1) to give the corresponding amines.

4.5.1. N-[4-(2,2,-bis(trimethylsilyl)ethenyl)benzyl]aniline

A white solid (silica gel, n-hexane/ethyl acetate, 10:1, $R_f = 0.43$), m.p. 70–72 °C; FTIR (KBr, cm⁻¹): 837.9, 1257.9, (Si–CH₃), 1559.8, 1603.4 (Ph), 3423.1 (N–H); ¹H NMR (400 MHz, CDCl₃, ppm): δ –0.04 (s, 9H, SiMe₃), 0.18 (s, 9H, SiMe₃), 4.02 (bs, 1H, N–H), 4.3 (s, 2H, CH₂), 6.62–6.64 (d, 2H, J = 7.6 Hz, Ar), 6.69–6.73 (t, 1H, J = 7.3 Hz, Ar), 7.14–7.19 (m, 4H, Ar), 7.28–7.3(d, 2H, J = 8.0 Hz, Ar), 7.7(s, 1H, HC=); ¹³C NMR (100 MHz, CDCl₃, ppm): δ –0.48, 1.0 (SiMe₃), 47.13 (CH₂), 111.8, 116.5, 125.1, 127.1, 128.2, 137.1, 140.7, 145.4, 147.1, 153.5; m/z (EI): 352 (100%, [M]⁺), 73 (38%, [SiMe₃]⁺); Anal. Calcd for C₂₁H₃₁NSi₂ (353.2): C, 71.32; H, 8.84; N, 3.96. Found: C, 71.51; H, 8.80; N, 3.75%.

4.5.2. N-[4-(2,2-bis(trimethylsilyl)ethenyl)]benzylpyridin-2-amine

A yellow solid (silica gel, n-hexane/ethyl acetate, 10:1, $R_f = 0.3$), m.p. 75–77 °C; FTIR (KBr, cm⁻¹): 836.8, 1248.8 (Si–CH₃), 1522.8, 1602.8 (Ph), 3420.8 (N–H); ¹H NMR (400 MHz, CDCl₃, ppm): δ –0.05 (s, 9H, SiMe₃), 0.18 (s, 9H, SiMe₃), 4.4 (s, 2H, CH₂), 4.84 (bs, 1H, N–H), 6.35–6.37 (d, 1H, J = 8.4 Hz, Ar), 6.57–6.6 (m, 1H, Ar), 7.13–7.15 (d, 2H, J = 7.8 Hz, Ar), 7.27–7.29 (d, 2H, J = 7.9 Hz, Ar), 7.37–7.42 (m, 1H, Ar), 7.71 (s, 1H, HC=), 8.0–8.1 (m, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃, ppm): δ –0.5, 0.99 (SiMe₃), 45.1 (CH₂), 105.6,

Scheme 3. The synthesis of secondary amine containing vinylbis(trimethylsilyl) group.

Table 3

Entry	Substrate	Product	Time (h)	Yield ^a (%)
1	$ \underbrace{\overset{Me_{3}Si}{}}_{Me_{3}Si} \underbrace{\overset{H}{}}_{C} - \underbrace{\overset{H}{}}_{C} = N - \underbrace{\overset{H}{}}_{N} $	$ \underbrace{\overset{Me_{3}Si}{\underset{Me_{3}Si}{\longmapsto}}}_{Me_{3}Si} \underbrace{\overset{H}{\underset{C}{\longrightarrow}}}_{C} \underbrace{\overset{H_{2}}{\underset{N}{\longrightarrow}}}_{C} \underbrace{\overset{H}{\underset{N}{\longrightarrow}}}_{N} \underbrace{\overset{H}{\underset{N}{\overset{H}{\underset{N}{\longrightarrow}}}_{N} \underbrace{\overset{H}{\underset{N}{\underset{N}{\longrightarrow}}}_{N} \underbrace{\overset{H}{\underset{N}{\underset{N}{\longrightarrow}}}_{N} \underbrace{\overset{H}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset$	15	65
2	$ \underset{Me_{3}Si}{\overset{Me_{3}Si}{\rightarrowtail}} \overset{H}{\underset{C}{\longrightarrow}} \overset{H}{\underset{Me_{3}}{\swarrow}} \overset{H}{\underset{C}{\longrightarrow}} \overset{H}{\underset{N}{\longrightarrow}} \overset{H}{\underset{N}{\overset{H}{\underset{N}{\longrightarrow}}} \overset{H}{\underset{N}{\longrightarrow}} \overset{H}{\underset{N}{\longrightarrow}} \overset{H}{\underset{N}{\longrightarrow}} \overset{H}{\underset{N}{\longrightarrow}} \overset{H}{\underset{N}{\overset{H}{\underset{N}{\longrightarrow}}} \overset{H}{\underset{N}{\overset{H}{\underset{N}{\longrightarrow}}} \overset{H}{\underset{N}{\overset{H}{\underset{N}{\longrightarrow}}} \overset{H}{\underset{N}{\overset{H}{\underset{N}{\longrightarrow}}} \overset{H}{\underset{N}{\overset{H}{\underset{N}{\longrightarrow}}} \overset{H}{\underset{N}{\overset{H}{\underset{N}{\longrightarrow}}} \overset{H}{\underset{N}{\overset{H}{\underset{N}{\longrightarrow}}} \overset{H}{\underset{N}{\overset{H}{\underset{N}{\overset{H}{\underset{N}{\longrightarrow}}}} \overset{H}{\underset{N}{\overset{H}{\underset{N}{\underset{N}{\overset{H}{\underset{N}{\longrightarrow}}}} \overset{H}{\underset{N}{\overset{H}{\underset{N}{\underset{N}{\overset{H}{\underset{N}{\underset{N}{\overset{H}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\underset$	$ \underbrace{\overset{Me_{3}Si}{\underset{Me_{3}Si}{\overset{H}{}}}}_{Me_{3}Si} \underbrace{\overset{H}{}}_{C} - \underbrace{\overset{H}{}}_{C} - \underbrace{\overset{H}{}}_{N} - \underbrace{\overset{H}{}_{N} - \underbrace{\overset{H}{}}_{N} - \underbrace{\overset{H}{}_{N} - \underbrace{\overset{H}{}}_{N} - \underbrace{\overset{H}{}_{N} - \overset{$	15	60
3	$ \underset{Me_{3}Si}{\overset{Me_{3}Si}{\longrightarrow}} \overset{H}{\overset{C}{\longrightarrow}} \overset{H}{\overset{C}{\longrightarrow}} \overset{H}{\overset{C}{\longrightarrow}} \overset{H}{\overset{C}{\longrightarrow}} OH $	$ \underset{Me_{3}Si}{\overset{Me_{3}Si}{\longrightarrow}} \overset{H}{\underset{C}{\longrightarrow}} \overset{H}{\underset{C}{\longrightarrow}} \overset{H}{\underset{C}{\longrightarrow}} \overset{H}{\underset{C}{\longrightarrow}} \overset{H}{\underset{C}{\longrightarrow}} \overset{H}{\underset{C}{\longrightarrow}} OH $	24	75
4	$ \underset{Me_{3}Si}{\overset{Me_{3}Si}{\rightarrowtail}} \underset{C}{\overset{H}{\longrightarrow}} \underset{C}{\overset{H}{\overset{H}{\longrightarrow}} \underset{C}{\overset{H}{\overset{H}{\longrightarrow}} \underset{C}{\overset{H}{\longrightarrow}} \underset{C}{\overset{H}{\overset{H}{\longrightarrow}} \underset{C}{\overset{H}{\overset{H}{\longrightarrow}} \underset{C}{\overset{H}{\overset{H}{\overset{H}{\longrightarrow}} \underset{C}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset$	$ \underbrace{\overset{Me_{3}Si}{\underset{Me_{3}Si}{\longleftarrow}}}_{Me_{3}Si} \underbrace{\overset{H}{\underset{C}{\longleftarrow}}}_{C} \underbrace{\overset{H_{2}}{\underset{N}{\longleftarrow}}}_{C} \underbrace{\overset{H}{\underset{N}{\longleftarrow}}}_{N} \underbrace{\overset{H}{\underset{N}{\longleftarrow}}}_{N} $	12	80
5	$ \underset{Me_{3}Si}{\overset{Me_{3}Si}{\longrightarrow}} \overset{H}{\overset{C}{\longrightarrow}} \overset{H}{\overset{C}{\longrightarrow}} \overset{H}{\overset{C}{\longrightarrow}} \overset{H}{\overset{C}{\longrightarrow}} \overset{H}{\overset{C}{\longrightarrow}} \overset{H}{\overset{K}{\longrightarrow}} \overset{H}{\overset{K}{\overset{K}{\longrightarrow}} \overset{H}{\overset{K}{\longrightarrow}} \overset{H}{\overset{K}{\overset{K}{\longrightarrow}} \overset{H}{\overset{K}{\longrightarrow}} \overset{H}{\overset{K}{\overset{K}{\longrightarrow}} \overset{H}{\overset{K}{\overset{K}{\longrightarrow}} \overset{H}{\overset{K}{\overset{K}{\longrightarrow}} \overset{H}{\overset{K}{\overset{K}{\longrightarrow}} \overset{H}{\overset{K}{\overset{K}{\longrightarrow}} \overset{H}{\overset{K}{\overset{K}{\overset{K}{\longrightarrow}} \overset{H}{\overset{K}{\overset{K}{\overset{K}{\overset{K}{\overset{K}{\overset{K}{\overset{K}{$	$ \underbrace{\overset{Me_{3}Si}{\underset{Me_{3}Si}{\longleftarrow}}} \overset{H}{\underset{C}{\longrightarrow}} \underbrace{\overset{H_{2}}{\underset{N}{\longleftarrow}}} \overset{H}{\underset{N}{\underset{N}{\longrightarrow}}} \underbrace{\overset{H}{\underset{N}{\longleftarrow}}} F$	18	95
6	$ \underset{Me_{3}Si}{\overset{Me_{3}Si}{\longrightarrow}} \overset{H}{\subset} \overset{H}{\swarrow} \overset{H}{\longrightarrow} \overset{H}{\subset} \overset{H}{\longrightarrow} \overset{H}{\longrightarrow} CI $	$ \underbrace{\overset{Me_{3}Si}{\underset{Me_{3}Si}{\longleftarrow}}}_{H} \underbrace{\overset{H}{\underset{C}{\longleftarrow}}}_{C} \underbrace{\overset{H_{2}}{\underset{N}{\longleftarrow}}}_{C} \underbrace{\overset{H}{\underset{N}{\longleftarrow}}}_{C} CI $	10	78
7	$ \underset{Me_{3}Si}{\overset{Me_{3}Si}{\rightarrowtail}} \overset{H}{\underset{C}{\longrightarrow}} \overset{H}{\underset{C}{\overset{H}{\underset{C}{\longrightarrow}}} \overset{H}{\underset{C}{\overset}} $	$ \underbrace{\overset{Me_{3}Si}{\underset{Me_{3}Si}{\overset{H}{}}}}_{He_{3}Si} \underbrace{\overset{H}{}}_{C} - \underbrace{\overset{H_{2}}{}}_{V} + \underbrace{\overset{H}{}}_{C} + \underbrace{\overset{H}{}}_{N} - \underbrace{\overset{H}{}}_{V} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}{}_{N} + \underbrace{\overset{H}{}}_{N} + \underbrace{\overset{H}$	18	67
8 ^b	$\xrightarrow{Me_{3}Si} \stackrel{H}{\longrightarrow} \stackrel{C}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{N}{\longrightarrow} \xrightarrow{K}$	$\xrightarrow{Me_3Si} \underset{Me_3Si}{\overset{H}{\longrightarrow}} \overset{H}{\longrightarrow} \overset{H}{\longrightarrow} \overset{H}{\longrightarrow} \overset{H}{\longrightarrow} \overset{H}{\longrightarrow}$	48	60

Reducing various imines containing vinylbis(trimethylsilyl) group to the corresponding secondary amine by NaBH4 at room temperature

^a Isolated yields.

^b LiAlH₄ was used as reducing agent in THF.

112.1, 125.7, 127.1, 136.4, 136.8, 140.8, 145.5, 147.2, 153.4, 157.6; m/z (EI): 354 (100%, [M]⁺), 73 (37%, [SiMe₃]⁺); Anal. for C₂₀H₃₀N₂Si₂ (354.19): C, 67.74; H, 8.53; N, 7.9. Found: C, 67.70; H, 8.31; N, 7.75%.

4.5.3. 4-[4-(2,2-bis(trimethylsilyl)ethenyl)benzylamino]phenol

A yellow solid (silica gel, n-hexane/ethyl acetate, 10:1, $R_f = 0.43$), m.p. 105–107 °C; FTIR (KBr, cm⁻¹): 835.9, 1251.0 (Si–CH₃), 1514.5, 1609.5 (Ph), 3297.9 (O–H), 3434.9 (N–H); ¹H NMR (400, MHz, CDCl₃): δ –0.05 (s, 9H, SiMe₃), 0.18 (s, 9H, SiMe₃), 3.8 (bs, 1H, N–H), 4.27 (s, 2H, CH₂), 5.3 (bs, 1H, OH), 6.53–6.56 (d, 2H, J = 8.7 Hz, Ar), 6.68–6.7 (d, 2H, J = 8.7 Hz, Ar), 7.13–7.15 (d, 2H, J = 8 Hz, Ar), 7.27–7.29 (d, 2H, J = 7.9 Hz, Ar), 7.72 (s, 1H, HC=); ¹³C NMR (100 MHz CDCl₃, ppm): δ –0.47, 1.0 (SiMe₃), 48.1 (CH₂), 113.3, 115.1, 125.8, 127.1, 138, 140.7, 141.4, 146, 145, 153.5; m/z (EI): 369 (100%, [M]⁺), 91 (39%, [PhCH₂]⁺), 73 (35%, [SiMe₃]⁺); Anal. Calcd For C₂₁H₃₁NOSi₂ (369.19): C, 68.23; H, 8.45; N, 3.79. Found: C, 68.49; H, 8.22; N, 3.81%.

4.5.4. N-[4-(2,2-bis(trimethylsilyl)ethenyl)benzyl]naphtalen-1-amine

A yellow viscose oil (silica gel, n-hexane/ethyl acetate, 10:1, $R_f = 0.7$); FTIR (KBr, cm⁻¹): 837.9, 1248.8 (Si–CH₃), 1525.6, 1580.9

(Ph), 3444.7 (N–H); ¹H NMR (400 MHz, CDCl₃, ppm): δ 0.01 (s, 9H, SiMe₃), 0.2(s, 9H, SiMe₃), 4.52 (s, 2H, CH₂), 4.73 (bs, 1H, N–H), 6.61–6.63 (d, 2H, *J* = 7.4 Hz, Ar), 7.21–7.23 (d, 2H, *J* = 7.9 Hz, Ar), 7.27–7.29 (d, 1H, *J* = 8.0 Hz, Ar), 7.32–7.36 (t, 1H, *J* = 7.4 Hz, Ar), 7.39–7.41 (d, 2H, *J* = 7.9 Hz, Ar), 7.44–7.51 (m, 2H, Ar), 7.79 (s, 1H, HC=), 7.82–7.86 (t, 1H, *J* = 7.7 Hz, Ar); ¹³C NMR (100 MHz, CDCl₃, ppm): δ –0.46, 1.03 (SiMe₃), 47 (CH₂), 103.8, 116.5, 118.8, 122.3, 123.7, 124.7, 125.5, 125.9, 127.2, 127.6, 133.2, 136.8, 140.9, 142.1, 145.5, 1534; *m*/*z* (EI): 403.4 (100%, [M]⁺), 73 (22%, [SiMe₃]⁺); Anal. Calcd for C₂₅H₃₃NSi₂ (403.22): C, 74.38; H, 8.24; N, 3.47. Found: C, 74.40; H, 8.5; N, 3.65%.

4.5.5. N-[4-(2,2-bis(trimethylsilyl)ethenyl)benzyl]-4-chloroaniline

A yellow viscose oil (silica gel, n-hexane/ethyl acetate, 10:1, $R_f = 0.56$); FTIR(KBr, cm⁻¹): 838.8, 1249.9 (Si–CH₃), 1501.9, 1601.7 (Ph), 3418.2 (N–H); ¹H NMR (400 MHz, CDCl₃, ppm): δ –0.04 (s, 9H, SiMe₃), 0.2 (s, 9H, SiMe₃), 4.06 (bs, 1H, N–H), 4.3 (s, 2H, CH₂), 6.53–6.55 (d, 2H, *J* = 8.7 Hz, Ar), 7.09–7.1 (d, 2H, *J* = 7.9 Hz, Ar), 7.15–7.17(d, 2H, *J* = 8.01 Hz, Ar), 7.26–7.28 (d, 2H, *J* = 7.9 Hz, Ar) 7.73 (s, 1H, CH=); ¹³C NMR (100 MHz, CDCl₃, ppm): δ –0.48, 1.0 (SiMe₃), 47.1 (CH₂), 112.9, 121.1, 125.7, 127.2, 128.0, 136.6, 140.9, 145.6, 145.7, 153.3; *m/z* (EI): 389.2 (44%, [M + 2]⁺), 388.2 (34%, [M + 1]⁺), 387.2

(100%, $[M]^+$), 73 (45%, $[SiMe_3]^+$); Anal. Calcd for $C_{21}H_{30}ClNSi_2$ (387.16): C, 64.99; H, 7.79; N, 3.61. Found: C, 64.97; H, 7.81; N, 3.60%.

4.5.6. N-[4-(2,2-bis(trimethylsilyl)ethenyl)benzyl]-2-bromoaniline

A colorless viscose oil (silica gel, n-hexane/ethyl acetate, 10:1, $R_f = 0.64$); FTIR (KBr, cm⁻¹): 838.6, 1248.3 (Si–CH₃), 1506.1, 1597.2 (Ph), 3422.4 (N–H); ¹H NMR (400 MHz, CDCl₃, ppm): δ 0.005 (s, 9H, SiMe₃), 0.24 (s, 9H, SiMe₃), 4.4 (s, 2H, CH₂), 4.8 (bs, 1H, N–H), 6.5–6.6 (m, 2H, Ar), 7.11–7.16 (m, 1H, Ar), 7.19–7.21 (d, 2H, *J* = 7.9 Hz, Ar), 7.31–7.33 (d, 2H, *J* = 8.0 Hz, Ar), 7.46–7.48 (q, 2H, Ar), 7.78 (s, 1H, HC=); ¹³C NMR (100 MHz, CDCl₃, ppm): δ –0.4, 1.0 (SiMe₃), 46.8 (CH₂), 108.6, 110.7, 116.9, 125.5, 127.2, 127.4, 131.3, 136.4, 140.8, 143.7, 145.6, 153.4; *m*/*z*(EI): 433.1 (100%, [M + 1]⁺), 431.1 (93%, [M – 1]⁺), 73 (52%, [SiMe₃]⁺); Anal. Calcd for C₂₁H₃₀BrNSi₂ (431.11): C, 58.31; H, 6.99; N, 3.24. Found: C, 58.30; H, 7.1; N, 3.50%.

4.5.7. N-[4-(2,2-bis(trimethylsilyl)ethenyl)benzyl]-4-fluoroaniline

A yellow viscose oil (silica gel, n-hexane/ethyl acetate, 10:1, $R_f = 0.59$); FTIR (KBr, cm¹⁻): 839.8, 1250.2 (Si–CH₃), 1512.8, 1611.4 (Ph), 3427.6 (N–H); ¹H NMR (400 MHz, CDCl₃, ppm): δ –0.01 (s, 9H, SiMe₃), 0.2 (s, 9H, SiMe₃), 3.9 (bs, 1H, N–H), 4.3 (s, 2H, CH₂), 6.55–6.58 (q, 2H, Ar), 6.87–6.91 (t, 2H, J = 8.6 Hz, Ar), 7.17–7.19 (d, 2H, J = 7.9 Hz, Ar), 7.29–7.31 (d, 2H, J = 8.0 Hz, Ar), 7.79 (s, 1H, HC=); ¹³C NMR (100 MHz, CDCl₃, ppm): δ –0.47, 1.0 (SiMe₃), 47.7 (CH₂), 112.7, 114.7, 125.7, 127.2, 136.9, 140.8, 143.4, 145.6, 153.7, 156; m/z (EI): 372.2 (32%, [M + 1]⁺), 371.2 (100%, [M]⁺), 73 (31%, [SiMe₃]⁺); Anal. Calcd for C₂₁H₃₀FNSi₂ (371.19): C, 67.87; H, 8.14; N, 3.77. Found: C, 67.98; H, 8.30; N, 3.56%.

4.5.8. N-[4-(2,2-bis(trimetylsilyl)ethenyl)benzyl]-2,6-dimetylaniline

A yellow viscose oil (silica gel, n-hexane/ethyl acetate, 10:1, $R_f = 0.58$); FTIR (KBr, cm⁻¹): 839.5, 1250.8 (Si–CH₃), 1552.6, 1596.9 (Ph), 3381.7 (N–H); ¹H NMR (400 MHz, CDCl₃, ppm): δ 0.03 (s, 9H,

SiMe₃), 0.25 (s, 9H, SiMe₃), 2.3 (s, 6H, Me), 3.2 (bs, 1H, N–H), 4.1 (s, 2H, CH₂), 6.87–6.91 (t, 1H, J = 7.45 Hz, Ar), 7.04–7.06 (d, 2H, J = 7.4 Hz, Ar), 7.19–7.21 (d, 2H, J = 7.8 Hz, Ar), 7.3–7.32 (d, 2H, J = 8 Hz, Ar), 7.79 (s, 1H, HC=); ¹³C NMR (100 MHz, CDCl₃, ppm): δ –0.45, 0.94 (SiMe₃), 17.5 (CH₃), 51.65 (CH₂), 121.0, 126.3, 127.0, 127.8, 128.6, 138.2, 140.7, 144.8, 145.4, 153.5; m/z (EI): 381.2 (100%, [M]⁺), 91 (72%, [PhCH₂]⁺), 73 (57%, [SiMe₃]⁺); Anal. Calcd for C₂₃H₃₅NSi₂ (381.23): C, 72.37; H, 9.24; N, 3.67. Found: C, 72.18; H, 9.14; N, 3.72%.

References

- (a) P. Pawluc, G. Hreczycho, B. Marciniec, J. Org. Chem. 71 (2006) 8676–8679;
 (b) T. Mise, Y. Takaguchi, Y. Wakatsuki, Y. Takaguchi, T. Umemiya, Sh. Shimizu, Y. Wakatsuki, Chem. Commun. 6 (1998) 699–700.
- [2] (a) A. Atsushi Inoue, J. Kondo, H. Shinokubo, K. Oshima, Chem. Lett. (2001) 956–961;
- (b) K.D. Safa, S. Paymard Samani, Sh. Tofangdarzadeh, A. Hassanpour, J. Organomet. Chem. 693 (2008) 2004–2008.
- [3] (a) D.M. Hodgson, P.J. Comina, M.G.B. Drew, J. Chem. Soc. Perkin Trans. 1 (1997) 2279–2290;
- (b) P. Pawluc, B. Marcinic, B. Dudziec, G. Hreczycho, M. Kubicki, Synthesis (2006) 3739–3745.
- [4] (a) K.D. Safa, Kh. Ghorbanpour, A. Hassanpour, Sh. Tofangdarzade, J. Organomet. Chem. 694 (2009) 1907–1911;
 (b) K.D. Safa, M. Namvari, A. Hassanpour, Sh. Tofangdarzade, J. Organomet. Chem. 694 (2009) 2448–2453;
 (c) K.D. Safa, M. Manuel Alexandro and Chem. 605 (2010) 26–21.
- (c) K.D. Safa, Y. Mosaei Oskoei, J. Organomet. Chem. 695 (2010) 26–31.
 [5] C.D. Meyer, C.S. Joiner, J.F. Stoddart, Chem. Soc. Rev. 36 (2007) 1705–1723.
- [6] S.F. Martin, Pure Appl. Chem. 81 (2009) 195–204.
- [7] R.O. Hutchins, M.K. Hutchins, Comprehensive Organic Synthesis, vol. 8, Pergamon Press, Oxford, 1991, pp. 25.
- [8] I. Shibata, T.M. Kawakami, D. Tanizawa, T. Suwa, E. Sugiyama, H. Matsuda, A. Baba, J. Org. Chem. 63 (1998) 383.
- [9] K.D. Safa, M. Babazadeh, Eur. Polym. J. 40 (2004) 1659.
- [10] B.T. Gröbel, D. Seebach, Chem. Ber. 110 (1977) 825.
- [11] R. Bolton, T.N. Danks, J.M. Paul, Tetrahedron Lett. 35 (1994) 3411.
- [12] B.T. Cho, S.K. Kang, Synlett (2004) 1484.
- [13] B.T. Cho, S.K. Kang, Tetrahedron 61 (2005) 5734.