

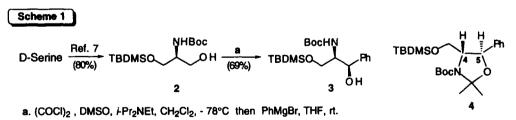
TETRAHEDRON LETTERS

Stereoselective synthesis of chloramphenicol from D-serine

G. Veeresa and Apurba Datta*

Organic III. Indian Institute of Chemical Technology, Hyderabad - 500 007, India.

Received 28 July 1998; accepted 1 September 1998

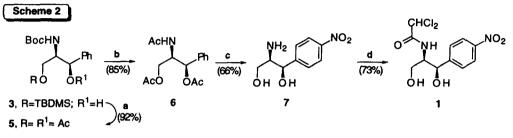

Abstract

An efficient synthesis of the widely used antibiotic chloramphenicol (1) is described. The key step in the synthesis involves chelation-controlled addition of phenylmagnesium bromide to a suitably protected D-serinal derivative, affording the pivotal D-threo 1,2-amino alcohol intermediate 3 in a highly stereoselective manner. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords : antibiotic; chelation-control; Grignard reaction; stereoselective.

The broad-spectrum antibiotic chloramphenicol (1) was isolated from Streptomyces venezuelae in 1974 [1-2]. This widely used antibiotic, containing a p-nitrophenyl substituted 2-amino-1,3-propanediol moiety, is active only in its D-threo configuration. Only three asymmetric syntheses of chloramphenicol have been reported till now [3-5], two of which involve Sharpless asymmetric epoxidation as the key step, while the third synthesis starts from *p*-nitrophenylalanine. Recent studies from our laboratory have demonstrated the utility of chelation-controlled addition of Grignard reagents to chiral α amino aldehydes for the stereoselective formation of structurally important 1,2-amino alcohol units with a high degree of syn-selectivity [6]. The method has been gainfully employed for the asymmetric syntheses of various biologically active compounds. In continuation, we describe herein an efficient application of the above strategy towards a stereoselective total synthesis of chloramphenicol.

The synthesis started from the easily available amino acid D-serine which was converted to the amino diol derivative 2 (scheme 1) following a reported procedure [7]. Swern oxidation of 2 and its *in-situ* reaction with phenylmagnesium bromide afforded the


corresponding syn- amino alcohol 3 in good yield and with high diastereoselection (>19:1). The syn- stereochemistry was further verified by converting 3 to its oxazolidine derivative

0040-4039/98/\$ - see front matter @ 1998 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(98)01848-6

[#] IICT Communication No. 4099

4, whereupon the observed coupling constant $(J_{4,5} = 7.2 \text{ Hz})$ between the two protons in the oxazolidine ring confirmed the *trans* relationship.

Attempted conversion of the aminodial derivative 3 to its triacetyl derivative 6 (scheme 2) by simultaneous removal of the O- and N-protecting groups and subsequent acetylation afforded 6 in poor yield. A stepwise deprotection - acetylation sequence could

a. i) Bu₄NF, THF, 0°C to rt. ii) Ac₂O, DMAP, pyridine. b. i) F_3CCO_2H , 0°C. ii) Ac₂O, DMAP, pyridine. c. i) Conc. HNO₃ - conc. H₂SO₄ (1:1), - 20°C to rt. ii) aqueous 5% HCl, 90°C. d. Cl₂CHCO₂Me, 90°C.

however circumvent this problem. Thus, initial deprotection of the silyl ether linkage of 3 and acetylation of the hydroxy groups yielded the diacetate 5 in high yield. Subsequent deprotection of the amino group and its acetylation then yielded the desired product 6 in good yield. Nitration of the aromatic ring under standard conditions followed by acid hydrolysis of the acetyl protecting groups and usual basic work-up generated the free amine, which on crystallization (*i*-PrOH/CH₂Cl₂) afforded the pure *p*-nitrophenyl substituted aminodiol 7 in good yield. Finally, conversion of the amine to the required dichloroacetamido derivative completed the intended synthesis of chloramphenicol (1)¹, which had identical spectral and physical properties to that reported in the literature [8], $\{[\alpha]_D = -24.8 \ (c=1.1, EtOAc), lit. [\alpha]_D = -25.5 \ (EtOAc) [3]\}.$

In conclusion, the above route provides an efficient pathway to enantiomerically pure chloramphenicol and can also be extended towards synthesizing the structurally related antibiotics thiamphenicol, florphenicol and other modified analogs.

Acknowledgments

We thank Dr. M. K. Gurjar for his support and encouragement. GV also thanks CSIR, New Delhi, for a research fellowship (SRF).

References

[1] Ehrlich J, Bartz QR, Smith RM, Joslyn DA, Burkholder PR. Science 1947; 106: 417.

[2] Long LM, Troutman HD. J. Am. Chem. Soc. 1949; 71: 2473-2475, and references therein.

[3] Rao AVR, Rao SP, Bhanu MN. J. Chem. Soc., Chem. Commun. 1992; 859-860.

- [5] Easton CJ, Hutton CA, Merrett MC, Tiekink ERT. Tetrahedron, 1996; 52: 7025-7036.
- [6] Veeresa G, Datta A. Tetrahedron Lett. 1998; 39: 3069-3070, and references therein.
- [7] Avenoza A, Cativiela C, Corzana F, Peregrina JM, Zurbano MM. Synthesis, 1997; 1146-1150.

[8] Al-Badr AA, El-Obeid HA. Chloramphenicol. In: Florey K. Ed. Analytical profiles of drug substances. Orlando: Academic Press, Inc. 1986; 15: 701-760.

^[4] Lou B-L, Zhang Y-Z, Dai L-X. Chem. and Ind. 1993; 7: 249-250.

¹ All the compounds synthesized were fully characterized by their IR, NMR and Mass spectral data.