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Introduction

Throughout history, there has been a continual battle 
between humans and the multitude of microorganisms 
that causes infections and diseases1. The high incidence 
of microbial disorders due to the difficulties in antimi-
crobial prophylaxis and treatment, the rapid emergence 
of new infections, the threat of multidrug-resistant 
microorganisms against current antibiotics, and many 
induced side effects due to widespread use of antimicro-
bial agents are major problems to overcome the com-
mon pathogens. Thus, there is a need to search for new 
and efficacious antimicrobial agents for the treatment of 
resistant infections2–7.

Among various heterocycles that have been explored 
for developing pharmaceutically important molecules, 
thiazoles, fused thiazoles and thiazoles linked to vari-
ous heterocylic rings through different linkages have 
recently attracted great attention8. Thiazoles and their 
derivatives have concerned continuing interest over the 
years because of their varied biological activities such 

as antiallergic, antihypertensive, antiinflammatory, 
antischizophrenic, antibacterial, anti-HIV, and FabH 
inhibitors9. It has also been reported in the literature that 
phenyl-thiazole analogues possess efficient antifungal 
activity10. Moreover, thiazolylhydrazines11 and (4-aryl-
thiazol-2-yl)hydrazines12 have been shown to exhibit sig-
nificant antimicrobial activity. These studies confirmed 
that thiazole ring is a good pharmacophore group for the 
design of bioactive molecules13 which is also act as a bio-
isoster of the imidazole ring14,15.

Hydrazone is a versatile moiety16,17 that has an 
obvious role especially in antimicrobial activity18. 
Additionally, the pyrrole containing heterocyclic com-
pounds have attracted attention particularly as antimi-
crobial agents19,20.

For these reasons, in this paper we report synthesis and 
biological evaluation of a new series of 2,4-disubstituted-
1,3-thiazoles bearing pyrrole ring on double bond C=N 
and a 4′-substituted phenyl in position C

4
 of thiazole 

nucleus, respectively.
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experimental

Chemistry
All chemicals were purchased from Sigma-Aldrich 
Chemical Co. All melting points (m.p.) were deter-
mined by Electrothermal 9100 digital melting point 
apparatus and were uncorrected. Spectroscopic data 
were recorded with the following instruments: 1H-
NMR, Bruker 400 MHz spectrometer; MS-FAB, VG 
Quattro Mass spectrometer and Elemental analyses 
were performed on a Perkin Elmer EAL 240 elemental 
analyser (Perkin-Elmer, Norwalk, CT, USA).

Preparation of 1-substituted pyrrol-2-carbaldehyde 
thiosemicarbazones (1a, 1b)
A mixture of thiosemicarbazide (0.27 g, 3 mmol) and 
2-formylpyrrole or N-methyl-2-formylpyrrole (3 mmol) 
in ethanol (20 mL) was refluxed for 2 h. The progress of 
the reaction was monitored by TLC. The resulting mix-
ture was cooled, poured into ice water, filtered and then 
recrystallized from ethanol to afford thiosemicarbazones 
(1a, 1b)21.

Preparation of 1-substituted pyrrole-2-
carboxaldehyde [4-(4-substituted phenyl)-1, 
3-thiazol-2-yl]) hydrazones (2a–2n)
An anhydrous ethanolic solution (10 mL) of 1a or 1b 
(0.80 mmol) and α-bromoacetophenone (0.16 g, 0.80 
mmol) was stirred at room temperature, until all the thi-
osemicarbazone disappeared in TLC. Then the deposit 
was filtered and recrystallized from ethanol to give target 
compounds (2a–2n).

Pyrrole-2-carboxaldehyde (4- phenyl-1, 
3-thiazol-2-yl) hydrazone (2a):
Yield: 90%. M.p. 125°C. IR (KBr) ν

max
(cm−1): 3380-

3122 (N-H), 3056 (aromatic C-H), 1619-1483 (C=C 
and C=N).1H NMR (DMSO-d

6
) δ ppm: 6.16 (brs, 1H, 

pyrrole-H), 6.50 (brs, 1H, pyrrole-H), 6.97 (brs, 1H, pyr-
role-H), 7.33 (s, 1H, C

5
-H thiazole), 7.35–7.47 (m, 3H, 

Ar-H), 7.81–7.83 (m, 2H, Ar-H), 8.07 (s, 1H, -CH=N-N), 
11.35 (s, 1H, pyrrole N-H), 11.80 (brs, 1H, C=N-NH, D

2
O 

exch.).For C
14

H
12

N
4
S calculated: 62.66 % C, 4.51 % H, 

20.88 % N; found: 62.67 % C, 4.53 % H, 20.86 % N. MS 
(FAB) [M+1]+: m/z 267.

Pyrrole-2-carboxaldehyde [4-(4-methylphenyl)-1, 
3-thiazol-2-yl] hydrazone (2b):
Yield: 82%. M.p. 156°C. IR (KBr) ν

max
(cm−1): 3385-3150 

(N-H), 3026 (aromatic C-H), 1610-1477 (C=C and 
C=N).1H NMR (DMSO-d

6
) δ ppm: 2.32 (s, 3H, C-CH

3
), 

6.12 (brs, 1H, pyrrole-H), 6.40 (brs, 1H, pyrrole-H), 6.89 
(brs, 1H, pyrrole-H), 7.17 (s, 1H, C

5
-H thiazole), 7.21 (d, 

2H, Ar-H, J = 8.4 Hz), 7.72 (d, 2H, Ar-H, J = 8 Hz), 7.91 
(s, 1H, -CH=N-N), 11.21 (s, 1H, pyrrole N-H), 11.79 (brs, 
1H, C=N-NH, D

2
O exch.). For C

15
H

14
N

4
S calculated: 

63.80 % C, 5.00 % H, 19.84 % N; found: 63.82 % C, 5.02 % 
H, 19.81 % N. MS (FAB) [M+1]+: m/z 283.

Pyrrole-2-carboxaldehyde [4-(4-methoxyphenyl)-1, 
3-thiazol-2-yl] hydrazone (2c):
Yield: 85%. M.p. 155 oC. IR (KBr) ν

max
(cm−1): 3369-3135 

(N-H), 3021 (aromatic C-H), 1598-1487 (C=C and 
C=N).1H NMR (DMSO-d

6
) δ ppm: 3.78 (s, 3H, -OCH

3
), 

6.13 (brs, 1H, pyrrole-H), 6.41 (brs, 1H, pyrrole-H), 6.90 
(brs, 1H, pyrrole-H), 6.97 (d, 2H, Ar-H, J = 8.5 Hz), 7.08 
(s, 1H, C

5
-H thiazole), 7.77 (d, 2H, Ar-H, J = 8 Hz), 7.93 (s, 

1H, -CH=N-N), 11.22 (s, 1H, pyrrole N-H), 11.75 (brs, 1H, 
C=N-NH, D

2
O exch.). For C

15
H

14
N

4
OS calculated: 60.38 % 

C, 4.73 % H, 18.78 % N; found: 60.34 % C, 4.70 % H, 18.75 
% N. MS (FAB) [M+1]+: m/z 299.

Pyrrole-2-carboxaldehyde [4-(4-bromophenyl)-1, 
3-thiazol-2-yl) hydrazone (2d):
Yield: 80%. M.p. 170°C. IR (KBr) ν

max
(cm−1): 3349-3126 

(N-H), 3016 (aromatic C-H), 1592-1479 (C=C and 
C=N).1H NMR (DMSO-d

6
) δ ppm: 6.14 (brs, 1H, pyrrole-

H), 6.46 (brs, 1H, pyrrole-H), 6.94 (brs, 1H, pyrrole-H), 
7.38 (s, 1H, C

5
-H thiazole), 7.62 (d, 2H, Ar-H, J = 8.8 Hz), 

7.78 (d, 2H, Ar-H, J = 8.8 Hz), 8.01 (s, 1H, -CH=N-N), 11.31 
(s, 1H, pyrrole N-H), 11.82 (brs, 1H, C=N-NH, D

2
O exch.). 

For C
14

H
11

BrN
4
S calculated: 48.43 % C, 3.19 % H, 16.14 

% N; found: 48.41 % C, 3.22 % H, 16.15 % N. MS (FAB) 
[M+1]+: m/z 348.

Pyrrole-2-carboxaldehyde [4-(4-chlorophenyl)-1, 
3-thiazol-2-yl] hydrazone (2e):
Yield: 81%. M.p. 200°C. IR (KBr) ν

max
(cm−1): 3386-3220 

(N-H), 3027 (aromatic C-H), 1609-1475 (C=C and 
C=N).1H NMR (DMSO-d

6
) δ ppm: 6.15 (brs, 1H, pyrrole-

H), 6.49 (brs, 1H, pyrrole-H), 6.97 (brs, 1H, pyrrole-H), 
7.38 (s, 1H, C

5
-H thiazole), 7.51 (d, 2H, Ar-H, J = 8.8 Hz), 

7.85 (d, 2H, Ar-H, J = 8.4 Hz), 8.08 (s, 1H, -CH=N-N), 11.36 
(s, 1H, pyrrole N-H), 11.72 (brs, 1H, C=N-NH, D

2
O exch.). 

For C
14

H
11

ClN
4
S calculated: 55.53 % C, 3.66 % H, 18.50 

% N; found: 55.52 % C, 3.65 % H, 18.52 % N. MS (FAB) 
[M+1]+: m/z 303.5.

Pyrrole-2-carboxaldehyde [4-(4-fluorophenyl)-1, 
3-thiazol-2-yl] hydrazone (2f):
Yield: 88%. M.p. 166°C. IR (KBr) ν

max
(cm−1): 3376-3145 

(N-H), 3015 (aromatic C-H), 1611-1483 (C=C and C=N).1H 
NMR (DMSO-d

6
) δ ppm: 6.12 (brs, 1H, pyrrole-H), 6.41 

(brs, 1H, pyrrole-H), 6.90 (brs, 1H, pyrrole-H), 7.21–7.25 
(m, 3H, Ar-H and C

5
-H thiazole), 7.87 (d, 2H, Ar-H, J = 

8.1 Hz), 7.92 (s, 1H, -CH=N-N), 11.21 (s, 1H, pyrrole N-H), 
11.79 (brs, 1H, C=N-NH, D

2
O exch.).For C

14
H

11
FN

4
S cal-

culated: 58.73 % C, 3.87 % H, 19.57 % N; found: 58.72 % C, 
3.85 % H, 19.55 % N. MS (FAB) [M+1]+: m/z 287.

Pyrrole-2-carboxaldehyde [4-(4-nitrophenyl)-1, 
3-thiazol-2-yl] hydrazone (2g):
Yield: 86%. M.p. 200°C. IR (KBr) ν

max
(cm−1): 3368-3190 

(N-H), 3023 (aromatic C-H), 1612-1449 (C=C and C=N).1H 
NMR (DMSO-d

6
) δ ppm: 6.15 (brs, 1H, pyrrole-H), 6.44 

(brs, 1H, pyrrole-H), 6.93 (brs, 1H, pyrrole-H), 7.67 (s, 1H, 
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C
5
-H thiazole), 7.98 (s, 1H, -CH=N-N), 8.30 (d, 2H, Ar-H, 

J = 8.4 Hz), 8.33 (d, 2H, Ar-H, J = 9.2 Hz), 11.28 (s, 1H, 
pyrrole N-H), 11.82 (brs, 1H, C=N-NH, D

2
O exch.). For 

C
14

H
11

N
5
O

2
S calculated: 53.66 % C, 3.54 % H, 22.35 % N; 

found: 53.62 % C, 3.55 % H, 22.37 % N. MS (FAB) [M+1]+: 
m/z 314.

1-Methylpyrrole-2-carboxaldehyde (4- phenyl-1, 
3-thiazol-2-yl) hydrazone (2h):
Yield: 76%. M.p. 224°C. IR (KBr) ν

max
(cm−1): 3368-3156 

(N-H), 3013 (aromatic C-H), 2969 (aliphatic C-H), 1589-
1457 (C=C and C=N).1H NMR (DMSO-d

6
) δ ppm: 3.87 

(s, 3H, N-CH
3
), 6.17 (brs, 1H, pyrrole-H), 6.51 (brs, 1H, 

pyrrole-H), 7.01 (brs, 1H, pyrrole-H), 7.33 (s, 1H, C
5
-H 

thiazole), 7.36–7.47 (m, 3H, Ar-H), 7.82 (d, 2H, Ar-H, J = 
8 Hz), 8.18 (s, 1H, -CH=N-N), 11.91 (brs, 1H, C=N-NH, 
D

2
O exch.).For C

15
H

14
N

4
S calculated: 63.80 % C, 5.00 % 

H, 19.84 % N; found: 63.82 % C, 5.04 % H, 19.83 % N. MS 
(FAB) [M+1]+: m/z 283.

1-Methylpyrrole-2-carboxaldehyde 
[4-(4-methylphenyl)-1,3-thiazol-2-yl] hydrazone (2i):
Yield: 81%. M.p. 182°C. IR (KBr) ν

max
(cm−1): 3389-3179 

(N-H), 3024 (aromatic C-H), 2987 (aliphatic C-H), 1585-
1446 (C=C and C=N).1H NMR (DMSO-d

6
) δ ppm: 2.33 (s, 

3H, C-CH
3
), 3.87 (s, 3H, N-CH

3
), 6.10 (brs, 1H, pyrrole-H), 

6.48 (brs, 1H, pyrrole-H), 6.98 (brs, 1H, pyrrole-H), 7.23 
(s, 1H, C

5
-H thiazole), 7.24 (d, 2H, Ar-H, J = 8 Hz), 7.71 (d, 

2H, Ar-H, J = 8 Hz), 8.12 (s, 1H, -CH=N-N), 11.92 (brs, 1H, 
C=N-NH, D

2
O exch.). For C

16
H

16
N

4
S calculated: 64.84 % 

C, 5.44 % H, 18.90 % N; found: 64.82 % C, 5.41 % H, 18.93 
% N. MS (FAB) [M+1]+: m/z 297.

1-Methylpyrrole-2-carboxaldehyde 
[4-(4-methoxyphenyl)-1,3-thiazol-2-yl] hydrazone (2j):
Yield: 82%. M.p. 209°C. IR (KBr) ν

max
(cm−1): 3388-3169 

(N-H), 3009 (aromatic C-H), 2974 (aliphatic C-H), 1579-
1477 (C=C and C=N).1H NMR (DMSO-d

6
) δ ppm: 3.80 (s, 

3H, O-CH
3
), 3.87 (s, 3H, N-CH

3
), 6.12 (brs, 1H, pyrrole-

H), 6.52 (brs, 1H, pyrrole-H), 7.00-7.02 (m, 3H, Ar-H and 
pyrrole-H), 7.16 (s, 1H, C

5
-H thiazole), 7.75 (d, 2H, Ar-H, 

J = 8 Hz), 8.18 (s, 1H, -CH=N-N), 11.89 (brs, 1H, C=N-NH, 
D

2
O exch.). For C

16
H

16
N

4
OS calculated: 61.52 % C, 5.16 % 

H, 17.93 % N; found: 61.53 % C, 5.18 % H, 17.96 % N. MS 
(FAB) [M+1]+: m/z 313.

1-Methylpyrrole-2-carboxaldehyde 
[4-(4-bromophenyl)-1,3-thiazol-2-yl] hydrazone (2k):
Yield: 76%. M.p. 214°C. IR (KBr) ν

max
(cm−1): 3392-3189 

(N-H), 3015 (aromatic C-H), 2986 (aliphatic C-H), 1579-
1454 (C=C and C=N).1H NMR (DMSO-d

6
) δ ppm: 3.87 

(s, 3H, N-CH
3
), 6.09 (brs, 1H, pyrrole-H), 6.45 (brs, 1H, 

pyrrole-H), 6.97 (brs, 1H, pyrrole-H), 7.36 (s, 1H, C
5
-H 

thiazole), 7.61 (d, 2H, Ar-H, J = 8.4 Hz), 7.78 (d, 2H, Ar-H, J 
= 8.8 Hz), 8.08 (s, 1H, -CH=N-N), 11.88 (brs, 1H, C=N-NH, 
D

2
O exch.). For C

15
H

13
BrN

4
S calculated: 49.87 % C, 3.63 % 

H, 15.51 % N; found: 49.86 % C, 3.65 % H, 15.53 % N. MS 
(FAB) [M+1]+: m/z 362.

1-Methylpyrrole-2-carboxaldehyde 
[4-(4-chlorophenyl)-1,3-thiazol-2-yl] hydrazone (2l):
Yield: 85%. M.p. 202°C. IR (KBr) ν

max
(cm−1): 3369-3156 

(N-H), 3033 (aromatic C-H), 2967 (aliphatic C-H), 1589-
1457 (C=C and C=N).1H NMR (DMSO-d

6
) δ ppm: 3.87 

(s, 3H, N-CH
3
), 6.09 (brs, 1H, pyrrole-H), 6.45 (brs, 1H, 

pyrrole-H), 6.96 (brs, 1H, pyrrole-H), 7.35 (s, 1H, C
5
-H 

thiazole), 7.47 (d, 2H, Ar-H, J = 8.4 Hz), 7.86 (d, 2H, Ar-H, 
J=8.8 Hz), 8.11 (s, 1H, -CH=N-N), 11.89 (brs, 1H, C=N-NH, 
D

2
O exch.). For C

15
H

13
ClN

4
S calculated: 56.87 % C, 4.14 % 

H, 17.68 % N; found: 56.89 % C, 4.15 % H, 17.69 % N. MS 
(FAB) [M+1]+: m/z 317.5.

1-Methylpyrrole-2-carboxaldehyde 
[4-(4-fluorophenyl)-1,3-thiazol-2-yl] hydrazone (2m):
Yield: 73%. M.p. 222°C. IR (KBr) ν

max
(cm−1): 3318-3196 

(N-H), 3024 (aromatic C-H), 2979 (aliphatic C-H), 1593-
1446 (C=C and C=N).1H NMR (DMSO-d

6
) δ ppm: 3.87 

(s, 3H, N-CH
3
), 6.11 (brs, 1H, pyrrole-H), 6.50 (brs, 1H, 

pyrrole-H), 7.00 (brs, 1H, pyrrole-H), 7.26-7.30 (m, 3H, 
Ar-H and C

5
-H thiazole), 7.88 (d, 2H, Ar-H, J = 8 Hz), 8.16 

(s, 1H, -CH=N-N), 11.82 (brs, 1H, C=N-NH, D
2
O exch.). 

For C
15

H
13

FN
4
S calculated: 59.98 % C, 4.36 % H, 18.65 %  

N; found: 59.97 % C, 4.38 % H, 18.69 % N. MS (FAB) 
[M+1]+: m/z 301.

1-Methylpyrrole-2-carboxaldehyde [4-(4-nitrophenyl)-
1,3-thiazol-2-yl] hydrazone (2n):
Yield: 72%. M.p. 199°C. IR (KBr) ν

max
(cm−1): 3368-3186 

(N-H), 3028 (aromatic C-H), 2989 (aliphatic C-H), 1610-
1446 (C=C and C=N).1H NMR (DMSO-d

6
) δ ppm: 3.87 

(s, 3H, N-CH
3
), 6.09 (brs, 1H, pyrrole-H), 6.43 (brs, 1H, 

pyrrole-H), 6.95 (brs, 1H, pyrrole-H), 7.64 (s, 1H, C
5
-H 

thiazole), 8.08 (s, 1H, -CH=N-N), 8.09 (d, 2H, Ar-H,  
J = 8.8 Hz), 8.26 (d, 2H, Ar-H, J = 8.8 Hz), 11.92 (brs, 1H, 
C=N-NH, D

2
O exch.). For C

15
H

13
N

5
O

2
S calculated: 55.03 % 

C, 4.00 % H, 21.39 % N; found: 55.02 % C, 3.95 % H, 21.35 
% N. MS (FAB) [M+1]+: m/z 328.

Microbiology
The study was designed to compare MICs obtained 
by the CLSI reference M7–A7 broth microdilution 
method22,23. MIC readings were performed twice for 
each chemical agent. Final products were tested for 
their in-vitro growth inhibitory activity against human 
pathogenic as Gram-positive bacteria; Staphylococcus 
aureus (ATCC 25923), Enterococcus faecalis (ATCC 
29212) and Listeria monocytogenes (obtained from 
Faculty of Pharmacy Anadolu University, Eskisehir, 
Turkey), as Gram-negative bacteria; Pseudomonas 
aeruginosa (ATCC 27853), Klebsiella pneumoniae 
(ATCC 13883), Escherichia coli (ATCC 35218), 
Salmonella typhimurium (NRRL B- 4420) and Yersinia 
entercolitica (ATCC 35669) and yeast as Candida 
albicans, Candida glabrata (ATCC 36583), Candida 
krusei (obtained from Faculty of Medicine Osmangazi 
University, Eskisehir, Turkey) and Candida parapsilosis 
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(ATCC 22019). Chloramphenicol and ketoconazole 
were used as control drugs.

In order to ensure that the solvent per se had no effect 
on bacteria or yeast growth, a control test was also per-
formed containing inoculated broth supplemented with 
only DMSO at the same dilutions used in our experi-
ments and found inactive in culture medium.

Antimicrobial assay
The cultures were obtained from Mueller–Hinton broth 
(Difco) for the bacterial strains after overnight incubation 
at 35 ± 1°C. The yeasts were maintained in Sabouroud 
dextrose broth (Difco) after overnight incubation 35 
± 1°C. The inocula of test microorganisms adjusted to 
match the turbidity of a Mac Farland 0.5 standard tube 
as determined with a spectrophotometer and the final 
inoculum size was 0.5–2.5 × 105 CFU/mL for antibacterial 
and antifungal assays. Testing was carried out in Mueller–
Hinton broth and Sabouroud dextrose broth (Difco) at 
pH 7 and the two-fold serial dilutions technique was 
applied. The last well on the microplates containing 
only inoculated broth was kept as controls and the last 
well with no growth of microorganism was recorded to 
represent the MIC expressed in μg/mL. For both the 
antibacterial and antifungal assays the compounds were 
dissolved in DMSO. Further dilutions of the compounds 
and standard drugs in test medium were prepared at the 
required quantities of 800, 400, 200, 100, 50, 25, 12.5, 6.25, 
3.125, 1.5625 μg/mL concentrations with Mueller–Hinton 
broth and Sabouroud dextrose broth. Each experiment in 
the antimicrobial assays was replicated twice in order to 
define the MIC values. Chloramphenicol and ketocon-
azole were used as control drugs.

Results and discussions

Chemistry
In this work, we synthesized fourteen different com-
pounds, which contain hydrazone bridged thiazole 
and pyrrole rings. Pyrrole-2-carboxaldehyde and 
N-methylpyrrole-2-carboxaldehyde were reacted 
directly with thiosemicarbazide in ethanol by refluxing 
and the obtained thiosemicarbazones (1a, 1b) subse-
quently were condensed with α-bromoacetophenone 
derivatives (Hantzsch reaction) to give 1-substituted 
pyrrole-2-carboxaldehyde [4-(4-substituted phenyl)-
1,3-thiazol-2-yl] hydrazones (2a-n) as shown in Scheme 
1. All synthesized compounds were fully characterized by 
analytical and spectral data.

The FT-IR spectra of the final products showed charac-
teristic absorption bands at 3120–3330 cm−1 for –NH– and 
at 1590–1670 cm−1 for azomethine group (–CH=N–). The 
1H-NMR spectra of compounds showed signals at δ 7.91–
8.18 and δ 11.72–11.92 corresponding to azomethine  
(–CH=N–) proton and hydrazide (NH) proton, respec-
tively. The broad singlet peak seen at δ 11.21–11.36 indi-
cated the pyrrole N-H proton for the compounds 2a-g. 
The C

5
-H proton of the thiazole was observed as a singlet 

at δ 7.08–7.67. The appearance of a pair of doublets and/
or multiplets at δ 6.97–8.33 was due to the aromatic pro-
tons of phenyl ring. The C-H protons of the pyrrole ring 
were resonated at δ 6.09–7.01 region as broad singlets as 
expected. M+1 peaks in FAB-MS spectra were in agree-
ment with the calculated molecular weight of the target 
compounds (2a–2n). Elemental analysis results for C, H, 
and N elements were satisfactory with calculated values 
of the compounds.

Antimicrobial activity
Antimicrobial activity was investigated by finding mini-
mum inhibitory concentration (MIC) of the synthesized 
compounds and reference agents against S. aureus, L. 
monocytogenes, E. coli, P. aeruginosa, Y. enterocolitica, 
E. faecalis, K. pneumoniae S. typhimurium, C. albicans, 
C. glabrata, C. krusei, C. parapsilosis. Resuts are summa-
rized in Table 1.

In general evaluating, it was observed that all of the 
compounds had higher antimicrobial activity against gram-
positive bacteria than gram negative bacteria and fungi.

Most of the tested compounds revealed higher selec-
tivity toward E. faecalis and S. aureus, whereas all of the 
compounds lacked antibacterial activity against L. mono-
cytogenes among gram positives. Comparing with chlor-
amphenicol, compounds 2d-l had similar MIC value of 

Scheme 1. Synthesis of the compounds (2a-n). Reagents: (i) 
thiosemicarbazide, ethanol, reflux; (ii) α-bromo-4-substituted 
acetophenone, ethanol, rt.
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12.5 µg/mL against S. aureus. Among all of the strains, 
E. faecalis was the most susceptible species. While com-
pounds 2a, 2d, 2e, 2i, 2k and 2m showed higher antimi-
crobial activity, compounds 2f, 2g, 2h, 2j and 2l showed 
equipotent activity to standard drug against E. faecalis.

With regard to the activity against K. pneumoniae, 
potential activity was displayed by compound 2m 
(MIC 50 µg/mL), which were twice as active as chlor-
amphenicol (MIC 100 µg /mL). The compounds 2b, 2c, 
2d, 2e, 2h, 2i, 2j, 2k and 2n (MIC 200 µg/mL) displayed 
half the potency of chloramphenicol, meanwhile com-
pound 2a (MIC 100 µg/mL) showed equal potency to 
chloramphenicole (MIC 100 µg/mL) against the same 
organism.

Compound 2m was determined as the most active 
compound against P. aeruginosa and E. coli. Among 
other gram negative bacterial strains, Y. enterocolitica 
and S. typhimurium exhibited resistance all of the tested 
compounds.

The antifungal activity of the compounds was studied 
against four Candida species, the most sensitive Candida 
was established as C. glabrata toward 2a and 2m com-
pounds, which had the same MIC value (50 µg/mL) 
with ketoconazole. However, there was not any obvious 
inhibitory effect against other Candida strains.

An insight into the structures of the active compounds 
revealed that the tested compounds belong two 
main structure series; pyrrole-2-carboxaldehyde 
[4-(4-substituted phenyl)-1,3-thiazol-2-yl] hydrazone 
(2a-g) and 1-methylpyrrole-2-carboxaldehyde [4-(4- 
substituted phenyl)-1,3-thiazol-2-yl] hydrazone  
(2h-n). These series differ from each other due to methyl 
substituent at N-H position of the pyrrole ring. It was 
observed that methyl substitution (N-CH

3
) on pyrrole 

ring influenced the activity essentially. It seemed that 
most of the compounds bearing methyl substituent 

on pyrrole moiety had higher activity according to the 
compounds, which do not contain methyl substitution.

On the other hand, it was determined that substitu-
tion of the phenyl moiety at para position also caused 
changes in activity. In antibacterial activity evaluat-
ing, the most active compound was 2e, which includes 
fluoro substituent on phenyl ring and non-substituted 
pyrrole. Among the N-methylpyrrole moiety contain-
ing compounds (2h-n), the compound 2m, which car-
ries fluoro substituent on phenyl ring displayed notable 
improvement in the spectrum of both antibacterial and 
antifungal activity. Furthermore, compound 2m seemed 
to be much more active than chloramphenicol against E. 
faecalis and K. pneumoniae bacterial strains.

In antifungal activity evaluating, it was observed that 
2a and 2m were the most active compounds. In com-
pounds 2g and 2n, nitro substitution on phenyl moiety 
at para position caused a reduction in both antibacte-
rial and antifungal activity. Thus, it can be claimed that 
substitution of phenyl moiety at para position with an 
electron withdrawing group reduces the antimicrobial 
activity. Among all of the compounds, there were not 
any clear inhibitory activity against L. monocytogenes, Y. 
enterocolitica, S. typhimurium and C. krusei.
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