Accepted Manuscript

Combining prolinamides with 2-pyrrolidinone: Novel organocatalysts for the asymmetric aldol reaction

Ismini Vlasserou, Maria Sfetsa, Dimitrios-Triantafyllos Gerokonstantis, Christoforos G. Kokotos, Panagiota Moutevelis-Minakakis

PII: S0040-4020(18)30327-2

DOI: 10.1016/j.tet.2018.03.054

Reference: TET 29394

To appear in: *Tetrahedron*

Received Date: 18 January 2018

Revised Date: 19 March 2018

Accepted Date: 25 March 2018

Please cite this article as: Vlasserou I, Sfetsa M, Gerokonstantis D-T, Kokotos CG, Moutevelis-Minakakis P, Combining prolinamides with 2-pyrrolidinone: Novel organocatalysts for the asymmetric aldol reaction, *Tetrahedron* (2018), doi: 10.1016/j.tet.2018.03.054.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Combining Prolinamides with 2-Pyrrolidinone: Novel Organocatalysts for the Asymmetric Aldol Reaction

Leave this area blank for abstract info.

Ismini Vlasserou, Maria Sfetsa, Dimitrios-Triantafyllos Gerokonstantis, Christoforos G. Kokotos,* Panagiota Moutevelis-Minakakis*

Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis 15771, Athens, Greece.

Tetrahedron journal homepage: www.elsevier.com

Tetrahedron

Combining Prolinamides with 2-Pyrrolidinone: Novel Organocatalysts for the Asymmetric Aldol Reaction

Ismini Vlasserou,^a Maria Sfetsa,^a Dimitrios-Triantafyllos Gerokonstantis,^a Christoforos G. Kokotos^{*a} and Panagiota Moutevelis-Minakakis^{*a}

^a Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece

ARTICLE INFO

Received in revised form

Article history: Received

Accepted Available online

Keywords:

Aldol reaction

Prolinamides Water Dipeptides

Organocatalysis

ABSTRACT

Peptides and especially prolinamides have been identified as excellent organocatalysts for the aldol reaction. The combination of prolinamides with derivatives bearing the 2-pyrrolidinone scaffold, deriving from pyroglutamic acid, led to the identification of novel organocatalysts for the intermolecular asymmetric aldol reaction. The new hybrids were tested both in organic and aqueous media. Among the compounds tested, **22** afforded the best results in petroleum ether, while **25** afforded the products in brine in high yields and selectivities. Then, various ketones and aldehydes were utilized and the products of the aldol reaction were obtained in high yields (up to 100%) with excellent diastereo- (up to 97:3 dr) and enantioselectivities (up to 99% ee).

2009 Elsevier Ltd. All rights reserved

1. Introduction

Since 2000, the year of its rebirth, asymmetric Organocatalysis, the use of small organic molecules as catalysts for the promotion of asymmetric organic transformations, has provided elegant solutions to previously under-developed reactions, complementary reactivities to transition-metal catalysis and biocatalysis and new ways of thinking and solving chemical problems.^{1,2} It is often acknowledged that the work of List, Lerner and Barbas on the use of proline as the catalyst for the intermolecular aldol reaction³ and the work by Macmillan on the use of imidazolidinones as catalysts for cycloadditions⁴ had set the first stones on building the field of Organocatalysis, that nowadays is considered a common practice. The enantioselective aldol reaction is among the most commonly employed C-C bond forming reactions in modern asymmetric catalysis, and today is considered a test reaction for novel organocatalysts.⁵ Since Organocatalysis' first days, it was evident that proline and proline derivatives have a prime role as catalysts in organocatalytic transformations.⁶ Even today, research on the identification of novel organocatalysts is vibrant and it is well accepted that prolinamides containing functionalities able to act as hydrogen bond donors are the most successful class of organocatalysts. Representative examples are shown in Figure 1 (compounds 1-7).⁷ It is well accepted that the catalytic power of

Figure 1. Known prolinamide organocatalysts.

these compounds derives from the secondary amine of the pyrrolidine ring, which can activate carbonyl compounds via

^{*} Corresponding author. Tel.: +30-210-7274484; fax: +30-210-7274761;

e-mail: pminakak@chem.uoa.gr

enamine formation, while the additional hydrogen bonding M interaction moieties on the molecules are responsible for the enhanced selectivities observed. For many years, peptides have been explored as potential organocatalysts,⁸ unfortunately, low or moderate selectivities have been observed in most cases.^{9,10} A very powerful step forward would be the use of water as the solvent, since it will coincide with the principles of Green Chemistry, since water is an abundant, safe and environmentally friendly medium to carry out reactions. Unfortunately, proline and most peptides fail to deliver high selectivities, until the pioneering work of Hayashi and Barbas on the aldol reaction.¹¹ Then, a number of amino acid derivatives¹² and proline derivatives^{7e,13} have been successfully developed for aldol reactions being performed in aqueous media.

Recently, we have demonstrated that tripeptides of Pro-Phe with a *tert*-butyl ester from an amino acid are excellent organocatalysts for the aldol reaction,¹⁴ while the use of dipeptides can also be succeesful.^{71,7j} We have also attempted to use carbon materials in combination with amines, in order to promote aldol reactions.¹⁵ Having in mind our previous endeavours in Organocatalysis,¹⁶ herein, we describe our efforts to combine the prolinamide efficiency with the 2-pyrrolidinone scaffold.

2. Results and Discussion

(S)-Benzyloxycarbonyl protected proline (8) was coupled with either (S)-methyl phenylalaninate (9) or (R)-methyl phenylalaninate (10) using dicyclohexylcarbodiimide (DCC) as the coupling reagent, in the presence of 1-hydroxybenzotriazole (HOBt).¹⁷ Saponification afforded the, *N*-protected diastereomeric dipeptides, 11 and 12, respectively. To the resulting dipeptides, a series of amines (13-16), derived from

Scheme 1. Synthesis of the organocatalysts 22-27.

i: MeSO₂Cl, Et₃N in CH₂Cl₂; ii: NaN₃, in dry DMF at 55 $^{\circ}$ C; iii: H₂, Pd/C, r.t., 2-4 h.

Scheme 2. Synthesis of 2-pyrrolidinone amines 13 and 14.

i: Moffatt oxidation: EDC.HCI, Pyridine, TFA drops in dry toluene, dry DMSO, under Ar. ii: PPh₃=CHCOOCH₃ in dry THF, 1 h reflux under Ar. iii: H₂, 10% Pd/C in MeOH, r.t. iv: LiBH₄ in dry THF, v: MeSO₂CI, Et₃N in CH₂CI₂. vi: NaN₃, in dry DMF at 55 °C.

i: Ag₂O, BnBr in CH₂Cl₂. ii: 4M HCl in dioxane. iii: MeSO₂Cl, Et₃N in CH₂Cl₂ iv: NaN₃, in dry DMF at 55 $^{\circ}$ C. v: PPh₃ in dry THF. vi: H₂O.

Scheme 4. Synthesis of 2-pyrrolidinone amine 16.

either (S)- or (R)- pyroglutamic acid, were added under conventional peptide coupling conditions, affording the protected amides **17-21**. We have previously shown that no epimerization is occurring at this step.¹⁴ Finally, deprotection via catalytic hydrogenation, afforded organocatalysts **22-27** (Scheme 1).

For the synthesis of 2-pyrrolidinone amines 13-16, 2pyroglutamic acid was employed (Schemes 2-4). Starting from alcohols 28-(S) and 29-(R),¹⁸ a convenient method that avoids epimerization¹⁹ was selected for the synthesis of the corresponding amines [13-(S) and 14-(R)]. This synthetic approach combines mesyl ester activation, substitution from an azide and Staundiger reaction (Scheme 2). In order to study the efficiency of the additional hydrogen bonding, deriving from the 2-pyrrolidinone moiety, 2-pyrrolidinone amine 15, having an extended alkyl chain between the 2-pyrrolidinone and the amine, was synthesized from 28 (Scheme 3). Wittig reaction was followed by hydrogenation and reduction in order to lead to alcohol 34. Following the same route as before, alcohol 15 was obtained (Scheme 3). Finally, starting from 36,²⁰ benzylation afforded compound 37. Deprotection under acidic conditions led to alcohol 38. As above, this was selectively transformed to amine 16.

The synthesized organocatalysts were then evaluated in the aldol

3

Table 1. Enantioselective aldol reaction of cyclohexanonewith 4-nitrobenzaldehyde using compounds 22-27 ascatalysts.^a

<u>,</u> н		catalyst (15 mol%) 4-NBA (20 mol%)		OH	٦
		$^{\circ}NO_2$ conditions, r.t.			
40a	41a			42a	
Entry	Catalyst	Conditions	Yield (%) ^b	dr ^c	$ee (\%)^d$
1	22	Pet. Ether, H ₂ O, 48 h	92	93:7	93
2	22	brine, 24 h	96	91:9	88
3	23	Pet. Ether, H ₂ O, 48 h	100	88:12	81
4	23	brine, 24 h	100	89:11	86
5	24	Pet. Ether, H_2O , 24 h	100	91:9	90
6	24	brine, 24 h	100	88:12	86
7	25	Pet. Ether, H_2O , 48 h	50	89:11	90
8	25	brine, 48 h	100	93:7	90
9	26	Pet. Ether, H ₂ O, 24 h	100	84:16	77
10	26	brine, 24 h	100	82:17	76
11	27	Pet. Ether, H_2O , 72 h	0	-	-
12	27	brine, 72 h	43	93:7	91

^a Catalyst (0.014 mmol) in solvent (1.0 mL) (Pet. Ether with 1 drop of water or brine), additive (0.018 mmol), aldehyde (0.09 mmol) and cyclohexanone (0.90 mmol). ^b Yield determined by ¹H NMR. ^c The diastereomeric ratio (*dr*) *anti:syn* was determined by ¹H NMR spectroscopy of the crude reaction mixture. ^d The enantiomeric excess (*ee*) for the *anti* diastereomer was determined by chiral HPLC. 4-NBA: 4-nitrobenzoic acid.

reaction between cyclohexanone and 4-nitrobenzaldehyde both in organic and aqueous medium (Table 1). Initially, peptide 22, based on Pro-Phe and 2-pyrrolidinone was tested, leading to high yields in both reaction conditions (organic solvent of aqueous conditions) with good diastereoselectivity and enantioselectivity (entries 1 and 2, Table 1). Comparing the catalytic activity of 22 with the corresponding dipeptide Pro-Phe or H-Pro-Phe-^tBu,⁷ⁱ there is a significant increase on the catalytic activity that can be attributed to the additional 2-pyrrolidinone ring. When the development of a chiral catalyst requires the presence of more than one chiral centers, matched and mis-matched effects might be present. A mis-matched effect between Pro-Phe and the chiral center of 2-pyrrolidinone was observed, when catalyst 23 was tested (entries 3 and 4, Table 1). This effect was observed in lesser extent, when the chiral center on the phenylalaline residue was altered in catalyst 24 (entries 5 and 6, Table 1). The distance on the linker between the Pro-Phe dipeptide backbone with 2pyrrolidinone, (catalyst 25) was then studied (entries 7 and 8, Table 1). In the latter case, high diastereoselectivity and enantioselectivity were observed. These results verify the hypothesis that if the catalyst has additional hydrogen bonding sites, it recognizes better the electrophile in the transition state leading to higher levels of stereocontrol. In an effort to study the substitution on the 2-pyrrolidinone moiety, catalysts 26 and 27 were tested (entries 9-12, Table 1). Unfortunately, in all cases lower yields and selectivities were obtained. As expected, catalyst **27** possessing multiple hydrogen bonding sites, worked in aqueous conditions, however, the conversion was low.

After identifying catalyst **25** as a potent catalyst in brine, we questioned whether we could find improved reaction conditions for catalyst **22** in organic medium, since it was the catalyst that provided the best enantioselectivity. Thus, a variety of solvents and reaction conditions were tested with catalyst **22** (Table 2). Initially, a number of organic solvents were utilized (entries 1-11, Table 2). It seems that a small quantity of water is beneficial for the catalysis, probably through facilitating the hydrolysis of the product from the catalyst. Petroleum ether proved to be the best solvent, along with diethyl ether and acetonitrile, leading to high yield and selectivities of the product. Lowering the reaction temperature, proved that petroleum ether afforded the best results

Table 2. Enantioselective aldol reaction of cyclohexanonewith 4-nitrobenzaldehyde using catalyst 22.^a

0 + 40a	$\begin{array}{c} 0 \\ \hline \\ 1 \\ \hline \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	(6), H_2O (1) (10) (10) (10) (10) (10) (10) (10) (NO ₂
	Y	Vield		66
Entry	Conditions	$(\%)^{b}$	dr ^c	$(\%)^{d}$
1 ^e	THF, 4-NBA	98	85:15	86
2	THF, 4-NBA	100	95:5	88
3	toluene, 4-NBA	93	90:10	92
4	AcOEt, 4-NBA	98	96:4	92
5	CH ₂ Cl ₂ , 4-NBA	84	82:18	91
6	Et_2O , 4-NBA	96	95:5	93
7^{t}	brine, 4-NBA	96	91:9	88
8	MeCN, 4-NBA	86	93:7	94
9	MeOH, 4-NBA	55	88:12	84
10	Pet. Eth., 4-NBA	92	93:7	93
11	CHCl ₃ , 4-NBA	89	89:11	91
12 ^g	brine, 4-NBA	95	84:16	85
13 ^g	Et_2O , 4-NBA	88	97:3	94
$14^{e,g}$	MeCN, 4-NBA	100	90:10	91
15 ^g	Pet. Eth., 4-NBA	100	95:5	>99
16 ^{h,g}	Pet. Eth., 4-NBA	0	-	-
$17^{i,g}$	Pet. Eth., 4-NBA	0	-	-
18 ^j	Pet. Eth., 4-NBA	62	88:12	89
19	Pet. Eth., AcOH	traces	-	-
20	Pet. Eth., PhCOOH	100	83:17	>99
21	Pet. Eth., TsOH	32	65:35	93
22	Pet. Eth., Z-Phe-OH	0	-	-
23	Pet. Eth., 4-FPO	51	70:30	96

^a Catalyst (0.014 mmol) in solvent (1.0 mL), additive (0.018 mmol), H_2O (0.1 mL), aldehyde (0.09 mmol) and cyclohexanone (0.90 mmol). ^b Yield determined by ¹H NMR. ^c The diastereomeric ratio (*dr*) *anti:syn* was determined by ¹H NMR spectroscopy of the crude reaction mixture. ^d The enantiomeric excess (*ee*) was determined by chiral HPLC. ^e No H_2O . ^f Reaction time 24 h. ^g 0 °C. ^h 10 mol% catalyst. ⁱ 10 mol% catalyst, 15 mol% 4-NBA. ^j 2 equiv. of cyclohexanone. 4-NBA: 4-nitrobenzoic acid. AcOH: acetic acid. TsOH: *p*-toluenesulfonic acid. 4-FPO: 4-fluorophenol.

Table 3. Enantioselective	aldol reaction betwe	en k	etones_D	M/reacti	on (entries	16-18,	Tabl	e 2). Tl
and aldehydes using catalyst	22 and $25.^{a}$			were	employed	since	it is	s know
0	22 (15 mol%)	~		reacti	ons are so	metime	s ser	isitive

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ŭ	o II	4-NBA (20 mo	1%), Pet. Eth./		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\left(\right)$	+ н Т	$H_2O, r.t$, 48 h	\sim	Ar
40 41 brine, r.t., 48 h 42 Entry Ketone Ar/ Conditions Yield (%) ^b dr ^c ee (%) ^d 1 4-NO ₂ C ₆ H ₄ /A 92(42a) 93:7 93 2 4-NO ₂ C ₆ H ₄ /A 100(42b) 93:7 93 3 3-NO ₂ C ₆ H ₄ /A 100(42c) 84:16 97 6 ^c 2-NO ₂ C ₆ H ₄ /A 100(42c) 84:16 97 6 ^c 2-NO ₂ C ₆ H ₄ /A 100(42c) 84:16 97 6 ^c 2-NO ₂ C ₆ H ₄ /A 100(42c) 83:17 92 9 ^f 4-CF ₅ C ₆ H ₄ /A 94(42c) 83:17 92 10 ^f 4-CF ₅ C ₆ H ₄ /A 90(42c) 88:12 92 13 ^c 4-CC ₄ H ₄ /B 89(42f) 88:12 90 13 ^c 4-CC ₆ H ₄ /A 90(42c) 95:5 70 15 ^c 2-CIC ₆ H ₄ /A 89(42f) 88:12 90 15 ^c 2-CIC ₆ H ₄ /A 89(42f) 97:3 83 10 ^f 4-Brc ₆ H ₄ /A 69(42j) 97:3 83 20 ^g <td< td=""><td>(</td><td>' لر</td><td>Ar or 25 (1</td><td>5 mol%) L</td><td></td><td></td></td<>	(' لر	Ar or 25 (1	5 mol%) L		
4041brine, r.t., 48 h42EntryKetoneAr/ ConditionsYield (%) ^b dr ^c $ee(%)d$ 14-NO ₂ C ₆ H ₄ /A92(42a)93:79324-NO ₂ C ₆ H ₄ /B100(42a)93:79033-NO ₂ C ₆ H ₄ /A100(42b)81:19894 ^c 3-NO ₂ C ₆ H ₄ /A100(42c)84:169752-NO ₂ C ₆ H ₄ /A93:7967 ^c 3-CNC ₆ H ₄ /A90(42c)83:179210 ^f 4-CF ₃ C ₆ H ₄ /A94(42d)83:17709 ^f 4-CF ₃ C ₆ H ₄ /A94(42c)83:179210 ^f 4-CF ₄ C ₆ H ₄ /A20(42f)83:179212 ^f 4-CC ₆ H ₄ /A90(42g)95:57014 ^g 4-CC ₆ H ₄ /A90(42g)88:129215 ^e 2-CIC ₆ H ₄ /A89(42f)88:129215 ^e 2-CIC ₆ H ₄ /A89(42f)82:187416 ^e 2-CIC ₆ H ₄ /A89(42f)82:187416 ^e 2-CIC ₆ H ₄ /A100(42h)77:238619 ^f C ₆ H ₅ /A69(42j)97:38319 ^f 4-NO ₂ C ₆ H ₄ /B100(42h)97:39523 ^f 4-NO ₂ C ₆ H ₄ /B100(42h)85:159025 ^g <t< td=""><td>· · n</td><td></td><td>• 4-NBA (2</td><td>20 mol%)</td><td>, 'n</td><td></td></t<>	· · n		• 4-NBA (2	20 mol%)	, 'n	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	41	brine, r	.t., 48 h	42	
Entry Ketone AF/Conditions $(96)^{b}$ dr $(96)^{d}$ 1 4-NO ₂ C ₆ H ₄ /A 92(42a) 93:7 93 2 4-NO ₂ C ₆ H ₄ /B 100(42a) 93:7 92 3 3-NO ₂ C ₆ H ₄ /A 100(42b) 81:19 89 4 ^e 3-NO ₂ C ₆ H ₄ /A 100(42c) 84:16 97 6 ^e 2-NO ₂ C ₆ H ₄ /A 100(42c) 84:16 97 6 ^e 3-CNC ₆ H ₄ /A 100(42c) 83:17 92 10 ^f 4-CF ₃ C ₆ H ₄ /A 94(42e) 83:17 70 9 ^f 4-CF ₃ C ₆ H ₄ /A 94(42e) 83:17 92 10 ^f 4-CF ₃ C ₆ H ₄ /B n.r 11 ^f 4+FC ₆ H ₄ /A 20(42f) 83:17 92 13 ^e 4-CC ₆ H ₄ /A 90(42g) 95:5 70 14 ^g 4-CC ₆ H ₄ /A 90(42g) 95:5 70 14 ^g 4-CC ₆ H ₄ /A 89(42h) 88:12 90 15 ^e 2-ClC ₆ H ₄ /A 89(42h) 88:12 90 15 ^e 2-ClC ₆ H ₄ /A 89(42h) 88:12 90 15 ^e 2-ClC ₆ H ₄ /A 89(42h) 88:12 90 15 ^e 2-ClC ₆ H ₄ /A 89(42h) 83:17 72:3 86 19 ^f C ₆ H ₅ /A 69(42j) 97:3 83 18 ^g 4-BrC ₆ H ₄ /A 85(42i) 97:3 83 20 ^g C ₆ H ₅ /A 69(42j) 97:3 83 20 ^g C ₆ H ₅ /A 69(42j) 97:3 83 20 ^g C ₆ H ₅ /A 69(42j) 97:3 83 20 ^g C ₆ H ₅ /A 69(42j) 88:15 90 23 ^f 4-NO ₂ C ₆ H ₄ /B 100(42h) 79:21 88 18 ^g 4-BrC ₆ H ₄ /B 100(42h) 79:23 95 23 ^f 4-NO ₂ C ₆ H ₄ /B 100(42h) 89:11 73 25 ^g 4-NO ₂ C ₆ H ₄ /B 100(42h) 85:15 90 27 ^e 4-NO ₂ C ₆ H ₄ /B 100(42h) 85:15 90 31 ^e 4-NO ₂ C ₆ H ₄ /B 100(42h) 85:15 90 31 ^e 4-NO ₂ C ₆ H ₄ /B 100(42h) 75:25 78 33 ^h 4-NO ₂ C ₆ H ₄ /B 100(42h) 75:25 93 31 ^a 4-NO ₂ C ₆ H ₄ /B 100(42h) 85:15 90 31 ^a 4-NO ₂ C ₆ H ₄ /B 100(42h) 85:15 90 31 ^a 4-NO ₂ C ₆ H ₄ /B 100(42h) 85:15 90 31 ^a 4-NO ₂ C ₆ H ₄ /B 100(42h) 85:15 90 31 ^a 4-NO ₂ C ₆ H ₄ /B 100(42h) 85:15 90 31 ^a 4-NO ₂ C ₆ H ₄ /B 100(42h) 75:22 90 31 ^a 4-NO ₂ C ₆ H ₄ /B 100(42h) 75:22 90 31 ^a 4-NO ₂ C ₆ H ₄ /B 100(42h) 75:22 90 31 ^a 4-NO ₂ C ₆ H ₄ /B 100(42h) 76:22 90 31 ^a 4-NO ₂ C ₆ H ₄ /B 100(42h) 76:22 90 31 ^a 4-NO ₂ C ₆ H ₄ /B 100(42h) 76:22 90 31 ^a 4-NO ₂ C ₆ H ₄ /B 100(42h) 76:22 90 31 ^a 4-NO ₂ C ₆ H ₄ /B 100(42h) 76:22 90 31 ^a 4-NO ₂ C ₆ H ₄ /B 100(42h) 76:22 90 31 ^a 4-NO ₂ C ₆ H ₄ /B 100(42h) 76:22 90 31 ^a 4-NO ₂ C ₆ H ₄ /B 100(42h) 76:22 90 31 ^a 4-NO ₂ C ₆ H ₄ /B 100(42h) 76:22 90 31 ^a 4-NO ₂ C ₆ H ₄ /B 100(42h) 76:22 70;22 90	Б /	IZ (Yield	1 0	ee
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Entry	Ketone	Ar/ Conditions	$(\%)^{b}$	dr	$(\%)^{d}$
$ \begin{array}{cccccc} 1 & 4-NO_{2}C_{6}H_{4}/A & 92(42a) & 93;7 & 93 \\ 2 & 4-NO_{2}C_{6}H_{4}/B & 100(42a) & 93;7 & 90 \\ 3 & 3-NO_{2}C_{6}H_{4}/A & 100(42b) & 81:19 & 89 \\ 4^{c} & 3-NO_{2}C_{6}H_{4}/A & 100(42c) & 84:16 & 97 \\ 5 & 2-NO_{2}C_{6}H_{4}/A & 100(42c) & 84:16 & 97 \\ 6^{c} & 2-NO_{2}C_{6}H_{4}/A & 100(42c) & 76:24 & 86 \\ 8^{f} & 3-CNC_{6}H_{4}/B & 94(42c) & 83:17 & 79 \\ 9^{f} & 4-CF_{5}C_{6}H_{4}/A & 20(42f) & 83:17 & 92 \\ 10^{f} & 4-CF_{5}C_{6}H_{4}/A & 20(42f) & 83:17 & 92 \\ 12^{f} & 4-FC_{6}H_{4}/A & 20(42f) & 83:17 & 92 \\ 12^{f} & 4-FC_{6}H_{4}/A & 90(42g) & 95:5 & 70 \\ 14^{g} & 4-CC_{6}H_{4}/A & 90(42g) & 95:5 & 70 \\ 14^{g} & 4-CC_{6}H_{4}/A & 90(42g) & 95:5 & 70 \\ 14^{g} & 4-CC_{6}H_{4}/A & 89(42f) & 88:12 & 90 \\ 15^{c} & 2-CIC_{6}H_{4}/A & 89(42f) & 88:12 & 90 \\ 15^{c} & 2-CIC_{6}H_{4}/A & 89(42f) & 82:18 & 74 \\ 16^{c} & 2-CIC_{6}H_{4}/A & 89(42f) & 97:33 & 88 \\ 18^{g} & 4-BrC_{6}H_{4}/B & 100(42h) & 79:21 & 88 \\ 17^{f} & 4-BrC_{6}H_{4}/B & 100(42h) & 79:21 & 88 \\ 18^{g} & 4-BrC_{6}H_{4}/B & 100(42h) & 77:23 & 86 \\ 19^{f} & C_{6}H_{5}/A & 69(42j) & 97:3 & 83 \\ 20^{g} & C_{6}H_{5}/B & 71(42j) & 86:14 & 99 \\ 21^{h} & 4-Pyridinyl/A & 100(42k) & 97:3 & 95 \\ 23^{f} & 4-NO_{2}C_{6}H_{4}/B & 100(42m) & 84:16 & 83 \\ 26^{g} & 4-NO_{2}C_{6}H_{4}/B & 100(42m) & 86:14 & 90 \\ 27^{c} & 4-NO_{2}C_{6}H_{4}/B & 100(42m) & 86:14 & 90 \\ 31^{c} & 4-NO_{2}C_{6}H_{4}/B & 100(42m) & 86:14 & 90 \\ 31^{c} & 4-NO_{2}C_{6}H_{4}/B & 100(42m) & 86:14 & 90 \\ 31^{c} & 4-NO_{2}C_{6}H_{4}/B & 100(42p) & 32:68 & 36 \\ 33^{h} & 4-NO_{2}C_{6}H_{4}/B & 100(42p) & 32:68 & 36 \\ 33^{h} & 4-NO_{2}C_{6}H_{4}/B & 100(42p) & 32:68 & 36 \\ 33^{h} & 4-NO_{2}C_{6}H_{4}/B & 100(42p) & 32:68 & 36 \\ 33^{h} & 4-NO_{2}C_{6}H_{4}/B & 100(42p) & 32:68 & 36 \\ 33^{h} & 4-NO_{2}C_{6}H_{4}/B & 100(42p) & 32:68 & 36 \\ 33^{h} & 4-NO_{2}C_{6}H_{4}/B & 100(42p) & - & 89 \\ 34^{c} & 4-NO_{2}C_{6}H_{4}/B & 0.0, C_{4}D_{4} & - & - \\ 100(42p) & 32:68 & 36 \\ 33^{h} & 4-NO_{2}C_{6}H_{4}/B & 100(42p) & - & 89 \\ 34^{c} & 4-NO_{2}C_{6}H_{4}/B & 0.0, C_{4}D_{4} & - & - \\ 100(42$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1		$4-NO_2C_6H_4/A$	92(42a)	93:7	93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2		$4-NO_2C_6H_4/B$	100(42a)	93:7	90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3		$3-NO_2C_6H_4/A$	100(42b)	81:19	89
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4^{\rm e}$		$3-NO_2C_6H_4/B$	97(42b)	93:7	92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5		$2-NO_2C_6H_4/A$	100(42c)	84:16	97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 ^e		$2-NO_2C_6H_4/B$	95(42c)	93:7	96
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 ^e		3-CNC ₆ H ₄ /A	100(42d)	76:24	86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 ¹		3-CNC ₆ H ₄ /B	94(42d)	83:17	70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 ^r		$4-CF_3C_6H_4/A$	94(42e)	83:17	92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 ^r	0	$4-CF_3C_6H_4/B$	n.r.	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 ^r	Ĭ	$4-FC_6H_4/A$	20(42f)	83:17	92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ^r	\frown	$4-FC_6H_4/B$	89(42f)	88:12	92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 ^e	$\langle \rangle$	$4-ClC_6H_4/A$	90(42g)	95:5	70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 ^g	~	$4-ClC_6H_4/B$	92(42g)	88:12	90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15^{\rm e}$		$2-ClC_6H_4/A$	89(42h)	82:18	74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$16^{\rm e}$		$2-ClC_6H_4/B$	100(42h)	79:21	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$17^{\rm f}$		$4-BrC_6H_4/A$	85(42i)	97:3	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18^{g}		$4-BrC_6H_4/B$	100(42i)	77:23	86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$19^{\rm f}$		C ₆ H ₅ /A	69(42j)	97:3	83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20^{g}		C_6H_5/B	71(42j)	86:14	99
22 4-pyridinyl /B 100(42k) 97:3 95 23 ^f 4-NO ₂ C ₆ H ₄ /A 97(42l) 75:25 78 24 ^g 4 -NO ₂ C ₆ H ₄ /B 84(42l) 89:11 73 25 ^g 4 -NO ₂ C ₆ H ₄ /A 100(42m) 84:16 83 26 ^g 4 -NO ₂ C ₆ H ₄ /B 100(42m) 85:15 90 27 ^e 4 -NO ₂ C ₆ H ₄ /B 100(42m) 85:15 90 27 ^e 4 -NO ₂ C ₆ H ₄ /B 100(42m) 86:14 90 28 ^e 4 -NO ₂ C ₆ H ₄ /B 100(42m) 86:14 90 100(42m) 85:15 90 27 ^e 4 -NO ₂ C ₆ H ₄ /B 100(42m) 86:14 90 100(42m) 71:29 37 100(42o) 78:22 90 31 ^e 4 -NO ₂ C ₆ H ₄ /B 100(42p) 40:60 76 32 ^e 4 -NO ₂ C ₆ H ₄ /B 100(42p) 32:68 36 33 ^h 4 -NO ₂ C ₆ H ₄ /B 100(42p) 32:68 36 33 ^h 4 -NO ₂ C ₆ H ₄ /B 100(42p) - 89 34 ^e 4 -NO ₂ C ₆ H ₄ /B n.r	21 ^h		4-pyridinyl/A	100(42k)	94:6	76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22		4-pyridinyl /B	100(42k)	97:3	95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	aaf	Ŭ		07(40)	75.05	70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23°	\frown	$4-NO_2C_6H_4/A$	97(421)	/5:25	/8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24°		$4-NO_2C_6H_4/B$	84(421)	89:11	/3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		õ				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25^{g}		$4-NO_2C_6H_4/A$	100(42m)	84:16	83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26^{g}		$4-NO_2C_6H_4/B$	100(42m)	85:15	90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		s_				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0 II				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 ^e	\sim	$4 - NO_{1}C_{1}H_{1}/A$	100(42n)	86.14	90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27^{2}	\smile	$4-NO_2C_6\Pi_4/R$	n r		90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	0,00	4-100 ₂ C ₆ 11 ₄ /D	пл.	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		O II				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$29^{\rm f}$	\sim	$4-NO_2C_6H_4/A$	92(42o)	71:29	37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$30^{\rm e}$	\bigcup	$4-NO_2C_6H_4/B$	100(42o)	78:22	90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ſ				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 ^e	0 II	A NO C H /A	100(42m)	10.60	76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 32 ^e	\nearrow	$4 - NO_2 C_6 \Pi_4 / A$	100(42p) 100(42p)	40:00	/0 26
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52	\square	+-INO ₂ C ₆ Π ₄ /Β	100(42p)	52.08	30
$34^{\rm e}$ / $4-{\rm NO}_2{\rm C}_6{\rm H}_4/{\rm B}$ n.r	33 ^h	O II	$4-NO_2C_6H_4/A$	58(42q)	-	89
	34 ^e	<u> </u>	$4-NO_2C_6H_4/B$	n.r.	-	-

^a Conditions A: **22** in Pet. Eth./H₂O Conditions **B**: **25** in brine. ^b Isolated yield. ^c The diastereomeric ratio (dr) *anti:syn* was determined by ¹H NMR spectroscopy of the crude reaction mixture. ^d The enantiomeric excess (*ee*) for the major isomer was determined by chiral HPLC. ^e Reaction time 72 h. ^f Reaction time 96 h. ^g Reaction time 120 h. ^h Reaction time 24 h.

(entries 12-15, Table 2). Among other reaction conditions, none proved better (entries 16-18, Table 2). Lowering the equivalents of ketone or the catalyst loading had a dentrimental effect on the

reaction (entries 16-18, Table 2). Then, a variety of acid additives were employed, since it is known that these organocatalytic reactions are sometimes sensitive to acid counterparts and fine tuning is required (entries 19-23, Table 2). Only carboxylic acids that have similar pKa with 4-nitrobenzoic acid led to similar levels of reactivity (PhCOOH, entry 20, Table 2).

We then turned our attention in exploring the substrate scope of the enantioselective aldol reaction by employing either catalyst 22 in petroleum ether or catalyst 25 in aqueous environment (Table 3). A variety of substituted aromatic aldehydes can be employed with cyclohexanone leading to products from good to excellent yields and selectivities (entries 1-22, Table 3). Electronwithdrawing groups at any position of the aryl moiety led to good to excellent results, while the use of aromatic aldehydes substituted with halogens led from moderate to high yields and high to excellent selectivities. Benzaldehyde and heteroaromaticsubstituted aldehydes proved more problematic (entries 19-22, Table 3). Tetrahydropyran-4-one and tetrahydrothiopyran-4-one required longer reaction time (entries 23-26, Table 3). Disubstituted cyclohexanone at the 4-position required prolonged reaction time, and only catalyst 22 delivered the product in good yield and high enantioselectivity (entries 27 and 28, Table 3). The desymmetrization of ketones is also possible,^{6g,6i} since 4methyl cyclohexanone delivered the product in high yield and with excellent selectivities in the case where catalyst 25 was employed (entries 29 vs 30, Table 3). Cyclopentanone was also utilized with some success, since very low diastereoselectivities were observed (entries 31 and 32, Table 3). Moreover, in order to broaden the scope of this methodology, we investigated the reaction of acetone with 4-nitrobenzaldehyde (entries 33 and 34, Table 3).

In an effort to further expand the possibilities of the catalytic acitivity, a very difficult aldol reaction between acetone and trifluoroacetophenone was tested (Scheme 5).²¹ The desired

Scheme 5. Expanding the catalytic activity of 23.

Scheme 6. Study of the catalytic activity of 22 with aliphatic aldehydes.

product 44 was isolated in moderate yield with good enantioselectivity. In an effort to further expand the reaction, isobutyraldehyde (45) was employed. When 45 reacted with acetone, 46 was obtained in very low yield and enantioselectivity, while when reacted with cyclohexanone, 47 was obtained in low yield, but excellent diastereoselectivity and enantioselectivity (Scheme 6).

We then turned our attention in revocery and reuse of catalyst **22** for the reaction between cyclohexanone and 4nitrobenzaldehyde. The catalyst was recovered succesfully (73%), and then its activity was studied in an additional catalytic cycle. The expected yield of the product remained high, unfortunately, the enantioselectivity dropped (yield 82%, *dr* 81:19, *ee* 72%).

A plausible transition-state model is proposed in Figure 2. The secondary amine of the pyrrolidine ring activates the ketone through the formation of an enamine intermediate. The electrophile is activated through a double hydrogen bonding network consisting of the two amide protons of the catalyst, while the bulkiness of the moiety of 2-pyrrolidinone ensures the single orientation of the aldehyde.

Figure 2. Proposed transition-state model for the aldol reaction.

In conclusion, the synthesis of peptides based on Pro-Phe and 2-pyrrolidinone moiety was carried out. Previously, we had shown that dipeptides tripeptides based on proline having at their C-terminus tert-butyl esters of amino acids provided excellent organocatalysts for the aldol reaction. In this study, we have shown that the addition of the 2-pyrrolidinone moiety affords catalysts that have a better catalytic behavior. Matched and mismatched effects were observed. When catalyst 22 was utilized, the aldol products were obtained in good to excellent yields and selectivities in wet petroleum ether. When catalyst 25 was employed, the aldol product was obtained in similar high yields and selectivities but in brine. It is worth mentioning that both catalysts work at room temperature and both have distinct advantages compared to proline, since proline's low solubility in organic solvents and low selectivity obtained in aqueous media, can be bypassed with these two catalysts. The catalytic activity of these catalysts was demonstrated not only to aldol reaction between ketones and aromatic aldehydes, but also in aldol reactions of ketone with ketones.

3. Experimental section

3.1. General Information

Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator. Chromatographic purification of products was accomplished using column chromatography on Merck Kieselgel 60 F_{254} 230-400 mesh. Thin-layer chromatography (TLC) was performed on aluminum backed silica plates (0.2 mm, 60 F_{254}). Visualization of the developed

chromatogram was performed by fluorescence quenching using ninhydrin stain. Melting points were determined on a Büchi 530 hot stage apparatus. ¹H, ¹⁹F and ¹³C NMR spectra were recorded on Varian Mercury 200 MHz and are internally referenced to residual solvent signals (CDCl₃, CD₃OD and DMSO-d₆). Data for ¹H NMR spectroscopy are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quadruplet, m = multiplet, br s = broad signal), integration, coupling constant and assignment. Wherever rotamers exist, are presented in brankets. Diastereomeric ratios were determined by ¹H NMR spectroscopy (200 MHz). Data for ¹³C NMR are reported in terms of chemical shift (δ ppm). Wherever rotamers exist, are cited in parenthesis. ¹⁹F spectra were recorded on Varian Mercury (188 MHz) and are internally referenced to trifluoroacetic acid. Mass spectra were recorded on a Finnigan Surveyor MSQ Plus, with only molecular ions and major peaks being reported with intensities quoted as percentages of the base peak. HRMS spectra were recorded on Thermo[®] Orbitrap Velos spectrometer. High Performance Liquid Chromatography (HPLC) was used to determine enantiomeric excesses and was performed on an Agilent 1100 Series apparatus using Chiralpak® AD-H, OD-H and AS-H columns. Optical rotations were measured on a Perkin Elmer 343 polarimeter. The syn:anti ratio of the crude reaction mixture was assigned by comparison to literature data.^{7h} The configuration of the products has been assigned by comparison to literature data.^{7h} Data for known compounds match literature data. All new compounds were assigned by analogy.

3.2. General procedure for the synthesis of the catalysts

Synthesis of amines 13-16

3.2.1. (S)-5-(Aminomethyl)-1-benzylpyrrolidin-2one (13)

To a stirred solution of alcohol $\mathbf{28}^{18}$ (0.66 g, 3.22 mmol) in CH_2Cl_2 (3 mL) at 0 °C, Et_3N (0.67 mL, 4.83 mmol) and MeSO₂Cl (0.38 mL, 4.83 mmol) were added. The reaction mixture was left stirring at 0 °C for 30 min, at room temperature for 30 min, and then, the solvent was evaporated under reduced pressure. The crude mixture was dissolved in AcOEt (10 mL) and washed with aq. H₂SO₄ (5%, 10 mL), H₂O (10 mL), aq. NaHCO₃ (5%, 10 mL) and brine (10 mL). After evaporation of the solvent, the crude methanosulfonic ester was dissolved in dry DMF (6 mL) and $\ensuremath{NaN_3}$ (0.63 g, 9.66 mmol) was added. The reaction mixture was left stirring at 55 °C overnight. After evaporation of the solvent, the residue was dissolved in H₂O (10 mL) and extracted with Et₂O (3 x 5 mL). The combined organic layers were washed with H₂O (3 x 10 mL) and the solvent was evaporated. Purification of the crude azide 30 was achieved using column chromatography eluting with pet.ether/EtOAc (40:60). Colorless oil, 645 mg, 87% yield; R_f (AcOEt/pet. ether 6:4) 0.40; $[\alpha]_{D}$ + 36.2 (c = 1.0, MeOH); ¹H NMR (200 MHz, CDCl₃) δ 7.34-7.18 (5H, m, ArH), 4.88 (1H, d, J = 15.2 Hz, NCHHPh), 4.07 (1H, d, J = 15.2 Hz, NCHHPh), 3.59-3.49 (1H, m, NCH), $3.41(1H, dd, J = 12.8 and 4.4 Hz, CHHN_3)$, 3.27 (1H, dd, J = 12.8 Hz)12.8 and 3.6Hz, CHHN₃), 2.63-2.26 (2H, m, COCH₂), 2.12-1.97 (1H, m, CHH), 1.88-1.72 (1H, m, CHH); ¹³C NMR (50 MHz, CDCl₃) δ 175.2, 136.3, 128.7, 127.8, 127.6, 56.1, 52.9, 44.5, 29.7, 22.0. **MS (ESI)** *m*/*z* (%) 231 (100) ([M+H]⁺).

To a stirred solution of azide 30 (0.41 g, 1.78 mmol) in MeOH (10 mL), 10% Pd/C (10 mol%) was added and the reaction mixture was left stirring at room temperature for 2.5 h under hydrogen atmosphere. After filtration through Celite, the solvent was evaporated to afford the crude product. Purification of the

desired amine **13** was achieved using column chromatography eluting with CHCl₃/MeOH (80:20). Colorless oil; 244 mg; 67% yield; R_f (CHCl₃/MeOH 8:2) 0.42; $[\alpha]_D + 25.7$ (c = 1.0, MeOH); ¹H NMR (200 MHz, CDCl₃) δ 7.29-7.26 (5H, m, ArH), 4.86 (1H, d, J = 15.0 Hz, CHHPh), 4.12 (1H, d, J = 15.0 Hz, CHHPh), 3.53-3.47 (1H, m, NCH), 2.87 (1H, dd, J = 12.4 and 5.4 Hz, CHHNH₂), 2.74 (1H, dd, J = 12.4 and 1.8 Hz, CHHNH₂), 2.61-2.32 (2H, m, COCH₂), 2.17-1.83 (2H, m, CH₂), 1.54 (2H, br s, NH₂); ¹³C NMR (50 MHz, CDCl₃) δ 175.6, 136.6, 128.5, 127.7, 127.3, 58.8, 44.4, 42.9, 30.1, 21.3; **MS** (**ESI**) m/z (%) 205 (100) ([M+H]⁺); HRMS exact mass calculated for [M+H]⁺ (C₁₂H₁₇N₂O) requires m/z 205.1335, found m/z 205.1344.

3.2.2. (R)-1-benzyl-5-(hydroxymethyl)pyrrolidin-2one (29)

Methyl (R)-pyroglutamate (4.50 g, 31.44 mmol) was dissolved in dry THF (30 mL), followed by the addition of benzylbromide (4.1 mL, 34.43 mmol). The reaction mixture was cooled at 0 $^{\circ}$ C and NaH (60% in paraffin oil, 1.89 g, 47.16 mmol) was added in portions. The stirring was continued for 30 min at 0 °C and 4 h at room temperature. The reaction was quenched by the addition of saturated solution of NH₄Cl (10 mL), the organic solvent was evaporated and the residue was dissolved in ethyl acetate (30 mL). The organic layer was washed with brine (30 mL) and the solvent was evaporated to afford the crude ester. Purification was achieved using column chromatography eluting with pet. ether/EtOAc (40:60). Colorless oil; 4.99 g; 68% yield; R_f (AcOEt/pet. ether 1:1) 0.30; $[\alpha]_D$ -2.2 (*c* = 0.9, MeOH); ΉH NMR (200 MHz, CDCl₃) δ 7.38-7.16 (5H, m, ArH), 4.99 (1H, d, J = 15.2 Hz, CHHPh), 4.02-3.94 (2H, m, CHHPh & NCH), 3.64 (3H, s, OCH₃), 2.60-1.96 (4H, m, 2 x CH₂); ¹³C NMR (50 MHz, CDCl₃) & 175.0, 172.2, 135.7, 128.7, 128.4, 127.7, 58.6, 52.3, 45.5, 29.5, 22.7.

In a two necked flask, LiBH₄ (0.26 g, 11.68 mmol) was suspended in dry THF (6 mL) under argon at room temperature. A solution of the above mentioned (R)-methyl 1-benzyl-5oxopyrrolidine-2-carboxylate (2.72 g, 11.68 mmol) in dry THF (5 mL) was added dropwise. The reaction was completed within 1 h and it was quenched by the addition of a 20% solution of AcOH at 0 °C, until the production of the gas was ceased. The excess of acetic acid was neutralized by the addition of a small quantity of Na₂CO₃. The organic solvent was evaporated under reduced pressure and the residue was dissolved in EtOAc (30 mL). The organic phase was washed with brine (30 mL) and the solvent was evaporated to afford the desired alcohol 29 as a white solid; 1.75 g; 73% yield; mp 78-80 °C; R_f (CHCl₃/MeOH 9:1) 0.43; $[\alpha]_{D}$ -106.1 (c = 1.0, MeOH); ¹H NMR (200 MHz, CDCl₃) δ 7.36-7.26 (5H, m, ArH), 5.00 (1H, d, J = 16.0 Hz, NCHHPh), 4.11 (1H, d, J = 16.0 Hz, NCHHPh), 3.83-3.78 (1H, m, NCH), 3.52-3.49 (2H, m, CH₂OH), 2.65-2.28 (2H, m, COCH₂), 2.07-1.96 (2H, m, CH₂); ¹³C NMR (50 MHz, CDCl₃) δ 176.3, 136.5, 128.7, 127.9, 127.5, 61.9, 58.6, 44.3, 30.6, 21.0. MS (ESI) m/z (%) 206 (100) ([M+H]⁺).

3.2.3. (R)-5-(Aminomethyl)-1-benzylpyrrolidin-2one (14)

Same procedure as above for the synthesis of the azide **30**, but utilizing alcohol **29** (0.66 g 3.22 mmol). The azide **31** was obtained as a colorless oil; 556 mg, 75% yield; R_f (AcOEt/pet. ether 6:4) 0.38; $[\alpha]_D$ -35.8 (c = 1.0, MeOH); ¹H NMR (200 MHz, CDCl₃) δ 7.32.-7.18 (5H, m, ArH), 4.87 (1H, d, J = 16.0 Hz, CHHPh), 4.09 (1H, d, J = 16.0 Hz, CHHPh), 3.57-3.48 (1H, m, NCH), 3.40 (1H, dd, J = 12.4 and 4.1 Hz, CHHN₃), 3.26 (1H, dd, J = 12.4 and 3.4 Hz, CHHN₃), 2.62-2.26 (m, 2H, COCH₂), 2.06-2.01 (m, 1H, CHH), 1.87-1.71 (m, 1H, CHH); ¹³C NMR (50

MHz, CDCl₃) δ 175.1, 136.2, 128.6, 127.6, 127.5, 56.0, 52.8, 44.4, 29.6, 21.9; MS (ESI) *m/z* (%) 231 (100) ([M+H]⁺).

The desired amine **14**, enantiomer of amine **13**, was obtained following the same procedure as above, but starting from azide **31** (0.41 g, 1.78 mmol) Colorless oil; 225 mg, 62% yield; R_f (CHCl₃/MeOH 8:2) 0.39; $[\alpha]_D$ -25.0 (c = 1.0, MeOH); ¹H NMR (200 MHz, CDCl₃) δ 7.30-7.18 (5H, m, ArH), 4.80 (1H, d, J = 16.0 Hz, CHHPh), 4.07 (1H, d, J = 16.0 Hz, CHHPh), 3.47-3.43 (1H, m, NCH), 2.87 (1H, dd, J = 12.1 and 5.5Hz, CHHNH₂), 2.74 (1H, dd, J = 12.1 and 1.6 Hz, CHHNH₂), 2.51-2.35 (2H, m, COCH₂), 2.12-1.80 (2H, m, CH₂), 1.52 (2H, br s, NH₂); ¹³C NMR (50 MHz, CDCl₃) δ 175.4, 136.3, 128.3, 127.4, 127.1, 58.3, 44.1, 42.5, 29.9, 21.0; **MS** (**ESI**) m/z (%) 205 (100) ([M+H]⁺); HRMS exact mass calculated for [M+H]⁺ (C₁₂H₁₇N₂O) requires m/z 205.1335, found m/z 205.1342.

3.2.4. Methyl (S, E)-3-(1-benzyl-5-oxopyrrolodin-2-yl)acrylate (32)

To a stirred solution of alcohol 28 (0.60 g, 2.92 mmol) in a mixture of dry toluene and dry DMSO 2:1 (3.5 mL), EDC.HCl (1.46 g, 7.62 mmol) was added followed by the dropwise addition of dry pyridine (0.66 mL, 8.18 mmol) and TFA (90 µL, 1.17 mmol) under argon. After stirring at room temperature for 2 h the reaction was quenched by the addition of CHCl₃ (20 mL) and the solution was washed with brine (10 mL) and H₂O (10 mL). The solvent was evaporated and the resulting crude aldehyde was subjected to Wittig reaction without further purification. More specifically, it was dissolved in dry THF (5 mL), methyl (triphenylphosphoranylidene)acetate (0.97 g, 2.92 mmol) was added and the mixture was refluxed under argon for 1 h. The reaction was quenched by the addition of saturated solution of NH₄Cl (1 mL) and the solvent was evaporated. The residue, dissolved in Et₂O (30 mL), was successively washed with saturated solution of NH₄Cl (5 mL), brine (10 mL) and H₂O (10 mL). After evaporation of the solvent the crude alkene was purified using column chromatography eluting with AcOEt. Yellowish oil; 0.44 g, 58% yield; R_f (AcOEt) 0.50; $[\alpha]_D$ +25.4 (c = 1.0, CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ 7.29-7.13 (5H, m, ArH), 6.69 (1H, dd, J = 15.6 and 8.2 Hz, =CH), 5.83 (1H, d, J = 15.6 Hz, =CHCO), 5.02 (1H, d, J = 14.8 Hz, CHHPh), 4.04-3.94 (1H, m, NCH), 3.79-3.74 (4H, m, CHHPh & OCH₃), 2.52-2.35 (2H, m, COCH₂), 2.24-2.13 (1H, m, CHH), 1.87-1.73 (1H, m, CHH); ¹³C NMR (50 MHZ, CDCl₃) δ 174.9, 166.1, 146.3, 136.2, 128.8, 128.4, 127.8, 123.2, 58.0, 52.0, 44.7, 29.7, 24.7; MS (ESI) m/z (%) 260 (100) ([M+H]⁺).

3.2.5. (R)-1-Benzyl-5-(3hydroxypropyl)pyrrolidin-2-one (34)

To a stirred solution of alkene **32** (0.44 g, 1.70 mmol) in MeOH (5 mL), 10% Pd/C (10 mol%) was added and the reaction mixture was left stirring at room temperature, overnight. After filtration through Celite, the solvent was evaporated to afford the desired product as colorless oil.

To a two necked flask, LiBH₄ (56 mg, 2.57 mmol) was suspended in dry THF (8 mL) under argon at room temperature. A solution of compound **33** (0.40 g, 1.53 mmol) in dry THF (2 mL) was added dropwise and the reaction mixture was stirred for 10 h. The reaction was quenched by the addition of a 20% aq. solution of AcOH at 0 °C until gas production was ceased. The excess of acetic acid was neutralized by the addition of a small quantity of Na₂CO₃. The solvent was evaporated and the residue was dissolved in AcOEt (15 mL). The organic phase was washed with brine (8 mL) and H₂O (8 mL) and the solvent was M evaporated. The residue was purified with column chromatography eluting with AcOEt and the product was obtained as a yellowish oil, 268 mg, 75% yield; R_f (AcOEt) 0.22; $[\alpha]_D$ +38.6 (c = 1.0, CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ 7.34-7.19 (5H, m, ArH), 4.95 (1H, d, J = 15.2 Hz, NCHHPh), 3.95 (1H, d, J = 15.2 Hz, NCHHPh), 3.71-3.36 (3H, m, CH₂OH & NCH), 2.54-1.99 (4H, m, 2 x CH₂), 1.76-1.36 (4H, m, 2 x CH₂); ¹³C NMR (50 MHz, CDCl₃) δ 175.4, 136.7, 128.7, 128.0, 127.6, 62.3, 56.9, 44.2, 30.3, 29.1, 27.6, 23.9; **MS (ESI)** m/z (%) 234 (100) ([M+H]⁺).

3.2.6. (R)-5-(3-Aminopropyl)-1-benzylpyrrolidin-2-one (15)

Same procedure as above utilizing alcohol **34**. Colorless oil; 130 mg, 90% yield; ¹H NMR (200 MHz, CDCl₃) δ 7.29-7.16 (5H, m, ArH), 4.91 (1H, d, *J* = 15.2 Hz, NCHHPh), 3.93 (1H, d, *J* = 15.2 Hz, NCHHPh), 3.93 (1H, d, *J* = 15.2 Hz, NCHHPh), 3.50-3.39 (1H, m, NCH), 2.71 (2H, br s, NH₂), 2.48-2.41 (2H, m, CH₂NH₂) , 2.37-2.14 (2H, m, COCH₂), 2.10-1.96 (1H, m, CHH), 1.72-1.55 (2H, m, 2 x CHH), 1.41-1.21 (3H, m, 3 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 175.2, 136.7, 128.7, 127.9, 127.5, 56.8, 49.5, 44.2, 30.5, 30.3, 24.6, 23.8; **MS (ESI)** *m*/*z* (%) 233.22 (35) ([M+H]⁺); HRMS exact mass calculated for [M+H]⁺ (C₁₄H₂₁N₂O) requires m/z 233.1648, found m/z 233.1654.

3.2.7. tert-Butyl (2R,3R,4R)-3,4-bis(benzyloxy)-2-(((tert-butyldimethylsilyl)oxy)methyl)-5oxopyrrolidine-1-carboxylate (37)

To a stirred solution of alcohol 36^{20} (160 mg, 0.44 mmol) in CH_2Cl_2 (3 mL) freshly prepared Ag_2O^{22} (0.27 g, 1.19 mmol) was added under argon, followed by the addition of benzylbromide (157 µL, 1.32 mmol) at 0 °C. The reaction mixture was left stirring at room temperature overnight. After filtration through Celite, the solvent was evaporated and the crude residue was purified using column chromatography eluting with pet.ether/AcOEt (70:30). Colorless oil, 179 mg, 75% yield; R_f (AcOEt/pet. ether 2:8) 0.40; $[\alpha]_D + 16.2$ (c = 1.0, CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ 7.41-7.26 (10H, m, ArH), 5.01 (1H, d, *J* = 12.4 Hz, OCHHPh), 4.83 (1H, d, *J* = 12.4 Hz, OCHHPh), 4.78 (1H, d, J = 12.0 Hz, OCHHPh), 4.65 (1H, d, J = 12.0 Hz, OCHHPh), 4.41 (1H, d, J = 5.4 Hz, OCH), 4.10 (1H, m, OCH), 4.05 (1H, d, J = 5.4 Hz, NCH), 3.82 (1H, dd, J = 11.0 and 3.6 Hz, CHHOSi), 3.66 (1H, dd, J = 11.0 and 2.2 Hz, CHHOSi), 1.52 [9H, s, OC(CH₃)₃], 0.75 [9H, s, SiC(CH₃)₃], -0.09 (6H, s, 2 x CH₃); ¹³C NMR (50 MHz, CDCl₃) δ 171.4, 150.1, 137.7, 137.5, 128.4, 127.7, 76.7, 75.0, 72.6, 62.4, 61.7, 28.0, 25.7, 18.1, -5.7; **MS (ESI)** m/z (%) 542 (100%) ([M+H]⁺).

3.2.8. (3R, 4R, 5R)-3,4-Bis(benzyloxy)-5-(hydroxymethyl)-pyrrolidin-2-one (38)

To a stirred solution of compound **37** (520 mg, 0.96 mmol) in AcOEt (10 mL), a 4N solution of HCl in dioxane (2.5 mL, 10.0 mmol) was added at 0 °C and the reaction mixture was left stirring at room temperature for 2 h. After evaporation of the solvent, the product was precipitated by the addition of Et₂O/pet. ether. White gummy solid; 250 mg, 80% yield; R_f (AcOEt) 0.17; mp 53-56 °C; $[\alpha]_D$ + 114.0 (c = 1.0, CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ 7.37-7.26 (10H, m, ArH), 6.73 (1H, br s, NH), 4.86 (1H, d, J = 12.0 Hz, OCHHPh), 4.71 (1H, d, J = 12.0 Hz, OCHHPh), 4.60 (1H, d, J = 11.4 Hz, OCHHPh), 4.49 (1H, d, J = 11.4 Hz, OCHHPh), 4.60 (1H, d, J = 4.6 Hz, OCH), 3.95-3.92 (1H, m, OCH), 3.73-3.66 (2H, m, NCH & OCH), 3.51-3.44 (1H, m, OCHH), 2.37 (1H, br s, OH); ¹³C NMR (50 MHz, CDCl₃) δ 174.6, 137.2, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9,

7

3.2.9. (3R, 4R, 5R)-5-(Aminomethyl)-3,4bis(benzyloxy)pyrrolidin-2-one (16)

Same procedure as above utilizing alcohol **38**. Colorless oil, 81 mg, 73% yield; R_f (CHCl₃/MeOH 80:20) 0.35; $[\alpha]_D + 21.8$ (c = 0.9, MeOH); ¹H NMR (200 MHz, CDCl₃) δ 7.43-7.26 (10H, m, ArH), 6.36 (1H, br s, NH), 4.92 (1H, d, J = 11.8 Hz, OCHHPh), 4.74 (1H, d, J = 11.8 Hz, OCHHPh), 4.63 (1H, d, J = 11.6 Hz, OCHHPh), 4.46 (1H, d, J = 11.6 Hz, OCHHPh), 4.04 (1H, d, J = 5.4 Hz, OCH), 3.81 (1H, t, J = 5.0 Hz, OCH), 3.74-3.67 (1H, m, NCH), 2.98 (1H, dd, J = 13.6 and 3.8 Hz, CHHNH₂), 2.59 (1H, dd, J = 13.2 and 7.2 Hz, CHHNH₂), 1.88 (2H, br s, NH₂); ¹³C NMR (50 MHz, CDCl₃) δ 173.9, 137.9, 137.2, 128.5, 128.2, 128.0, 127.8, 127.5, 127.3, 77.8, 74.7, 73.9, 72.5, 54.8, 42.9; **MS** (**ESI**) m/z (%) 327 (100%) ([M+H]⁺); HRMS exact mass calculated for [M+H]⁺ (C₂₆H₂₉N₂O₃) requires m/z 417.2173, found m/z 417.2180.

Synthesis of catalysts 22-27

- 3.2.10. (S)-2-[(S)-1-(Benzyloxycarbonyl)pyrrolidine-2carboxamido]-3-phenylpropanoic acid (11)^{7h}
- 3.2.11. (R)-2-[(S)-1-(Benzyloxycarbonyl)pyrrolidine-2carboxamido]-3-phenylpropanoic acid (12)

To a stirred solution of Cbz-proline (8) (1.25 g, 5.00 mmol) in dry CH₂Cl₂ (20 mL) at 0 °C, 1-hydroxybenzotriazole (HOBt) (676 mg, 5.00 mmol), (R)-methylphenylalaninate hydrochloride (10) (1.08 g, 5.00 mmol), Et₃N (0.700 mL, 5.00 mmol) and dicyclohexylcarbodiimide (DCC) (1.03 g, 5.00 mmol) were added consecutively. The reaction mixture was left stirring at 0 ^oC for 1 h and then warmed to room temperature and left stirring for 18 h. The solvents were evaporated under reduced pressure and the crude product was dissolved in EtOAc (30 mL). After filtration, the organic layer was washed with aq. H_2SO_4 (5%, 20) mL), H₂O (20 mL), aq. NaHCO₃ (5%, 20 mL) and brine (20 mL). After evaporation of the solvent, the crude ester was purified using column chromatography eluting with pet. ether/EtOAc (50:50). White solid; 1.95 g, 95% yield; R_f (pet. ether/EtOAc 1:1) 0.20; mp 69-72 °C; $[\alpha]_{\rm D}$ -11.3 (c = 1.0, MeOH); ¹H NMR (200 MHz, CDCl₃) & 7.38-7.02 (10H, m, ArH), 6.35 (1H, br s, NH), 5.21 (2H, s, OCH2), 4.87-4.81 (1H, m, NCH), 4.41-4.35 (1H, m, NCH), 3.73 (3H, s, OCH₃), 3.50-3.41 (2H, m, NCH₂), 3.14-3.00 (2H, m, CH₂Ph), 2.24-2.06 (2H, m, CH₂), 1.93-1.77 (2H, m, CH₂); 13 C NMR (50 MHz, CDCl₃) δ 171.6, 171.3, 155.8, 136.3, 135.7, 129.2, 129.0, 128.0, 127.8, 127.0, 67.2, 60.6, 52.2, 46.9, 37.6, 31.0, 28.8, 24.3.

To a stirred solution of the protected dipeptide (0.20 g, 0.48 mmol) in dioxane (1 mL), an aq. solution of NaOH (2N, 3 mL) was added. The reaction mixture was left stirring for 1 h at room temperature. The crude mixture was extracted with Et₂O (2 x 20 mL). The aqueous layer was acidified with aq. HCl (2N) until pH 2 and the crude product was extracted with EtOAc (2 x 15 mL). The combined organic layers were washed with H₂O (30 mL), dried and the solvent was removed under reduced pressure. **12** was isolated as a white solid; 0.14 g, 76% yield; $R_{\rm f}$ (pet. ether/EtOAc 30:70) 0.05; mp 53-56 °C; $[\alpha]_{\rm D}$ -76.7 (*c* = 2.5, CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ 9.40 (1H, br s, COOH), 7.26-7.01 (10H, m, ArH), 6.79 (1H, br s, NH), 5.08 (2H, s, OCH₂), 4.87-4.81 (1H, m, NCH), 4.33-4.31 (1H, m, NCH), 3.46-

3.36 (2H, m, NCH₂), 3.12-2.87 (m, 2H, CH₂Ph), 2.03-1.89 (2H, M 472.4, 371.7, 155.3, 137.1, 136.5, 136.2, 129.1, 128.7, 128.5, m, CH₂), 1.89-1.75 (2H, m, CH₂); ¹³C NMR (50 MHz, CDCl₃) δ 173.7, 172.2, 155.8, 136.1, 135.9, 129.5, 128.6, 128.5, 128.2, 127.9, 127.0, 67.6, 60.4, 52.8, 47.0, 37.6, 29.8, 24.3; MS (ESI) m/z (%) 397 (100) ([M+H]⁺).

3.2.12. Benzyl (S)-2-(((S)-1-(((S)-1-benzyl-5oxopyrrolidin-2-yl)methyl)amino)-1-oxo-3phenylpropan-2-yl)carbamoyl)pyrrolidine-1carboxylate (17)

To a stirred solution of dipeptide 11 (1.29 g, 3.26 mmol) in dry CH₂Cl₂ (20 mL) at 0 °C, 1-hydroxybenzotriazole (HOBt) (0.44 g 3.26 mmol), compound 13 (0.67 g, 3.26 mmol) and dicyclohexyl carbodiimide (DCC) (0.72 g, 3.26 mmol) were added consecutively. The reaction mixture was left stirring at 0 °C for 1 h and then warmed to room temperature and left stirring for 18 h. The solvents were evaporated under reduced pressure and the crude product was dissolved in EtOAc (30 mL). After filtration, the organic layer was washed with aqueous aq. H₂SO₄ (5%, 20 mL), H₂O (20 mL), aq. NaHCO₃ (5%, 20 mL) and brine (20 mL). After evaporation of the solvent, the crude product was purified using column chromatography eluting with CHCl₃/MeOH (90:10). Colorless oil; 1.46 g, 77% yield; R_f (CHCl₃/MeOH 9:1) 0.50; $[\alpha]_{D}$ -48.7 (c = 0.9, MeOH); ¹H NMR (200 MHz, CDCl₃) δ 7.34-7.07 (15H, m, ArH), 6.67 (1H, br s, NH), 6.45 (1H, br s, NH), 5.08-4.88 (3H, m, CH₂O & NCH), 4.63-4.54 (1H, m, NCH), 4.25-4.18 (1H, m, NCH), 4.06 (1H, d, J = 15.4 Hz, NCHHPh), 3.52-3.04 (7H, m, NCHHPh, 2 x NCH₂ & CH₂), 2.46-2.25 (2H, m, CH₂), 2.07-1.67 (6H, m, 3 x CH₂); ¹³C NMR (50 MHz, CDCl₃) δ 175.4, 171.5, 171.3, 156.0, 136.6, 136.0, 129.0, 128.7, 128.5, 128.5, 128.2, 127.9, 127.6, 127.5, 126.9, 67.4, 61.1, 56.2, 53.8, 47.1, 44.2, 40.5, 36.9, 29.9, 29.2, 24.3, 21.7; MS (ESI): $m/z = 583 (100) (M+H^+)$.

3.2.13. Benzyl (S)-2-(((S)-1-((((R)-1-benzyl-5oxopyrrolidin-2-yl)methyl)amino)-1-oxo-3phenylpropan-2-yl)carbamoyl)pyrrolidine-1carboxylate (18)

Same procedure as above, utilizing dipeptide 11 and amine 14 (1 mmol). Eluent AcOEt/MeOH 90:10; Colorless oil; 0.41 g, 70% yield; $R_{\rm f}$ (AcOEt/MeOH 9:1) 0.45; $[\alpha]_{\rm D}$ -65.8 (c = 1, MeOH); ¹H NMR (200 MHz, CDCl₃) δ 7.32-7.00 (15H, m, ArH), 6.77 (1H, br s, NH), 6.73 (1H, br s, NH), 5.09-4.91 (3H, m, CH₂O & NCH), 4.66, 4.56 (1H, m, NCH), 4.22-4.16 (1H, m, NCH), 4.04 (1H, d, *J* = 14.2 Hz, NC*H*HPh), 3.48-3.06 (7H, m, NCHHPh, 2 x NCH₂ & CH₂), 2.47-2.22 (2H, m, CH₂), 2.10-1.67 (6H, m, 3 x CH₂); ¹³C NMR (50 MHz, CDCl₃) δ 175.4, 171.5, 171.3, 156.0, 136.6, 136.0, 129.0, 128.7, 128.5, 128.5, 128.2, 127.9, 127.6, 127.5, 126.9, 67.4, 61.1, 56.2, 53.8, 47.1, 44.2, 40.5, 36.9, 29.9, 29.2, 24.3, 21.7; MS (ESI) *m/z* (%) 583 (100) ([M+H]⁺).

3.2.14. Benzyl (S)-2-(((R)-1-((((S)-1-benzyl-5oxopyrrolidin-2-yl)methyl)amino)-1-oxo-3phenylpropan-2-yl)carbamoyl)pyrrolidine-1carboxylate (19)

Same procedure as above, utilizing dipeptide 12 and amine 13 (1.5 mmol). Eluent AcOEt; White solid; 0.63 g, 72% yield; R_f (EtOAc) 0.30; mp 161-163 °C; $[\alpha]_D$ -2.6 (c = 1.0, MeOH); ¹H NMR (200 MHz, CDCl₃) δ 7.33-7.20 (15H, m, ArH), 6.77-6.73 (2H, m, 2 x NH), 5.04-4.95 (3H, m, CH₂O & NCH), 4.74-4.63 (1H, m, NCH), 4.09-3.97 (2H, m, NCH & NCHHPh), 3.94-3.05 (7H, m, NCHHPh, 2 x NCH₂ & CH₂), 2.42-2.23 (2H, m, CH₂), 1.99-1.74 (6H, m, 3 x CH₂); 13 C NMR (50 MHz, CDCl₃) δ 175.6,

128.5, 128.1, 127.7, 127.5, 127.4, 126.8, 67.0, 60.8, 56.5, 54.2, 46.9, 44.0, 40.1, 36.9, 30.1, 29.5, 24.6, 21.5; MS (ESI) m/z (%) 1165 (100) ($[2M+H]^+$).

3.2.15. Benzyl (S)-2-(((S)-1-((3-((R)-1-benzyl-5oxopyrrolidin-2-yl)propyl)amino)-1-oxo-3phenylpropan-2-yl)carbamoyl)pyrrolidine-1carboxylate (20)

Same procedure as above, utilizing dipeptide 11 and amine 15 (1.8 mmol). Eluent EtOAc/pet. ether 90:10; Colorless oil; 0.78 g, 65% yield; R_f (EtOAc/pet. ether 9:1) 0.55; $[\alpha]_D$ -42.0 (c = 1, MeOH); ¹H NMR (200 MHz, CDCl₃) δ 7.96-7.08 (15H, m, ArH), 6.55-6.43 (2H, m, 2 x NH), 5.08-4.83 (3H, m, OCH₂ & NCH), 4.65-4.54 (1H, m, NCH), 4.22-4.16 (1H, m, NCH), 4.06 (1H, d, J = 15.0 Hz, NCHHPh), 3.94 (1H, d, J = 15.0 Hz, NCHHPh), 3.53-2.98 (6H, m, 2 x NCH2 & CH2), 2.46-2.34 (2H, m, CH2), 2.29-1.24 (10H, m, 5 x CH₂); ¹³C NMR (50 MHz, CDCl₃) δ 175.3, 171.5, 170.6, 156.1, 136.8, 136.1, 129.2, 129.0, 128.7, 128.4, 128.1, 128.0, 127.8, 127.5, 127.1, 67.6, 61.3, 56.7, 53.8, 47.2, 44.2, 39.5, 37.2, 30.3, 30.1, 28.7, 24.4, 23.8, 12.9; MS (ESI) m/z (%) 611 (100) ([M+H]⁺).

Same procedure as above, utilizing dipeptide 11 and amine 16 (0.60 mmol). Eluent EtOAc/MeOH 90:10; Colorless oil; 0.33 g, 78% yield; R_f (EtOAc/MeOH 9:1) 0.32; $[\alpha]_D$ -5.9 (c = 1, CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ 7.35-7.08 (20H, m, ArH) , 6.89 (1H, br s, NH), 6.67-6.48 (2H, m, 2 x NH), 5.08 (1H, d, J = 12.2 Hz, OCHHPh), 4.93 (1H, d, J = 12.2 Hz, OCHHPh), 4.80 (1H, d, J = 11.4 Hz, OCHHPh), 4.69 (1H, d, J = 11.4 Hz, OCHHPh), 4.61-4.51 (3H, m, OCH₂ & OCH), 4.18 (1H, dd, J = 8.2 and 4.0 Hz, OCH), 3.93-3.91 (1H, m, NCH), 3.74-3.72 (2H, m, 2 x NCH), 3.50-3.08 (6H, m, 2 x NCH₂ & CH₂), 2.04-1.57 (4H, m, 2 x CH₂); ¹³C NMR (50 MHz, CDCl₃) δ 172.8, 171.4, 171.3, 156.4, 137.6, 137.5, 136.5, 135.8, 129.1, 128.8, 128.8, 128.6, 128.5, 128.4, 128.2, 128.1, 127.9, 127.8, 127.3, 127.2, 74.2, 72.1, 68.0, 61.5, 57.7, 53.8, 47.4, 41.3, 36.7, 34.1, 29.7, 25.7, 25.1; MS (ESI) m/z (%) 705 (100%) ([M+H]⁺)

3.2.17. (S)-N-((S)-1-((((S)-1-benzyl-5oxopyrrolidin-2-yl)methyl)amino)-1-oxo-3phenylpropan-2-yl)pyrrolidine-2carboxamide (22)

To a stirred solution of compound 17 (0.87 g, 1.50 mmol) in dry methanol (30 mL), 10% Pd/C (10 mol%) was added and the reaction mixture was left stirring at room temperature for 2.5 h under hydrogen atmosphere. After filtration through Celite, the solvent was evaporated to afford the desired product. Colorless oil; 0.55 g, 82% yield; R_f (CHCl₃/MeOH 7:3) 0.53; $[\alpha]_D$ -8.9 (c = 1, MeOH); ¹H NMR (200 MHz, DMSO) δ 8.91 (1H, br s, NH), 8.87 (1H, br s, NH), 8.37-7.23 (10H, m, ArH), 4.77 (1H, d, J = 15.4 Hz, NCHHPh), 4.59-4.48 (1H, m, NCH), 4.14-4.12 (1H, m, NCH), 4.04 (1H, d, J = 15.4 Hz, NCHHPh), 3.35-3.15 (3H, m, NCH & NCH₂), 2.99-2.76 (2H, m, NCH₂), 2.33-2.15 (2H, m, CH₂), 1.94-1.00 (8H, m, 4 x CH₂); ¹³C NMR (50 MHz, DMSO) δ 174.3, 172.7, 171.3, 137.4, 137.2, 129.2, 128.6, 128.0, 127.6, 127.2, 126.4, 59.7, 55.7, 53.3, 46.4, 43.3, 30.1, 29.4, 29.2, 25.2, 21.4, 16.9; MS 449 (M+H⁺ 100); HRMS exact mass calculated for $[M-H]^-$ (C₂₆H₃₁N₄O₃) requires m/z 447.2402, found m/z 447.2398.

3.2.18. (S)-N-((S)-1-((((R)-1-benzyl-5oxopyrrolidin-2-yl)methyl)amino)-1-oxo-3phenylpropan-2-yl)pyrrolidine-2carboxamide (23)

Same procedure as above but utilizing **18** (0.84 mmol). Reaction time 2 h; white solid; 0.37 g, 99% yield; mp 118-120 °C; R*f* (CHCl₃/MeOH 7:3) 0.61; $[\alpha]_D$ -47.2 (*c* = 1.0, CHCl₃); ¹H NMR (200 MHz, CDCl₃) δ 8.24 (1H, br s, NH), 8.20 (1H, br s, NH), 7.77-7.14 (10H, m, ArH), 4.92-4.84 (1H, d, *J* = 15.2 Hz, NCHHPh), 4.60-4.49 (1H, m, NCH), 4.03-3.95 (1H, d, *J* = 15.2 Hz, NCHHPh), 3.80-3.73 (1H, m, NCH), 3.51-3.40 (1H, m, NCH), 3.23-2.71 (6H, m, 2 x NCH₂ & CH₂), 2.46-2.19 (2H, m, CH₂), 1.99-1.24 (6H, m, 3 x CH₂); ¹³C NMR (50 MHz, CDCl₃) δ 175.8, 175.3, 172.1, 137.0, 136.5, 129.3, 128.9, 128.6, 128.0, 127.7, 126.9, 60.2, 56.8, 54.3, 47.1, 44.5, 40.1, 37.3, 30.6, 30.2, 25.7, 21.7; MS 449 (M+H⁺ 100); HRMS exact mass calculated for [M-H]⁻ (C₂₆H₃₁N₄O₃) requires *m*/*z* 447.2402, found *m*/*z* 447.2402.

3.2.19. (S)-N-((R)-1-((((S)-1-benzyl-5oxopyrrolidin-2-yl)methyl)amino)-1-oxo-3phenylpropan-2-yl)pyrrolidine-2carboxamide (24)

Same procedure as above but utilizing **19** (0.78 mmol). Reaction time 1.5 h; white solid; 0.31 g, 90% yield; mp 116-119 °C; R*f* (CHCl₃/MeOH 7:3) 0.53; $[\alpha]_D$ -5.4 (*c* = 1.0, MeOH); ¹H NMR (200 MHz, CDCl₃) δ 8.28-8.24 (2H, br m, 2 x NH), 7.36-7.10 (10H, m, ArH), 4.90-4.83 (1H, d, *J* = 15.0 Hz NCHHPh), 4.59-4.48 (1H, m, NCH), 4.19-4.15 (1H, m, NCH), 4.04-3.96 (1H, d, *J* = 15.0 Hz, NCHHPh, 3.84-3.77 (1H, m, NCH), 3.52-3.44 (2H, m, NCH₂), 3.38-2.86 (4H, m, NCH₂ & CH₂), 2.46-2.31 (2H, m, CH₂), 2.10-1.65 (6H, m, 3 x CH₂); ¹³C NMR (50 MHz, CDCl₃) δ 175.6, 174.8, 171.9, 136.9, 136.4, 129.2, 128.8, 128.4, 127.9, 127.6, 126.8, 60.2, 56.5, 54.6, 47.0, 44.2, 40.1, 37.8, 30.6, 30.1, 25.8, 21.7; MS 449 (M+H⁺ 100); HRMS exact mass calculated for [M-H]⁻ (C₂₆H₃₁N₄O₃) requires *m*/*z* 447.2402, found *m*/*z* 447.2401.

3.2.20. (S)-N-((S)-1-((3-((R)-1-benzyl-5oxopyrrolidin-2-yl)propyl)amino)-1-oxo-3phenylpropan-2-yl)pyrrolidine-2carboxamide (25)

Same procedure but utilizing compound **20** (0.25 mmol). Reaction time 3 h; colorless oil; 0.12 g, 100% yield; R*f* (CHCl₃/MeOH 7:3) 0.28; $[\alpha]_D$ -1.6 (c = 1.0, MeOH); ¹H NMR (200 MHz, CDCl₃) δ 8.52 (2H, br s, 2 x NH), 7.35-7.14 (10H, m, ArH), 4.97 (1H, m, NCH), 4.86 (1H, d, J = 15.4 Hz, NCHHPh), 4.63 (1H, m, NCH), 4.05 (1H, d, J = 15.4 Hz, NCHHPh), 3.94 (1H, d, J = 15.0 Hz, NCH), 3.90-2.95 (7H, m, 2 x NCH₂, CH₂ & NH), 2.52-2.21 (4H, m, COCH₂ & CH₂), 2.12-1.98 (2H, m, CH₂), 1.80-1.23 (6H, m, 3 x CH₂); ¹³C NMR (50 MHz, CDCl₃) δ 175.3, 170.2, 167.9, 136.7, 135.9, 129.9, 128.9, 128.7, 128.3, 127.9, 127.5, 56.7, 56.0, 44.7, 44.1, 39.7, 30.3, 29.9, 28.6, 24.4, 24.2, 23.8, 23.4, 12.8; MS 477 (M+H⁺ 100); HRMS exact mass calculated for [M+Na]⁺ (C₂₈H₃₆N₄O₃Na) requires *m*/*z* 499.2680, found *m*/*z* 499.2696.

3.2.21. (S)-N-((S)-1-((((2R,3R,4R)-3,4bis(benzyloxy)-5-oxopyrrolidin-2yl)methyl)amino)-1-oxo-3-phenylpropan-2yl)pyrrolidine-2-carboxamide (**26**) Same procedure but utilizing compound **21** (0.18 mmol). Reaction time 2 h; gummy solid; 59.6 mg, 58% yield; R*f* (CHCl₃/MeOH 8:2) 0.20; $[\alpha]_D$ +9.4 (c = 1.0, MeOH); ¹H NMR (200 MHz, CDCl₃) δ 8.19-8.15 (2H, m, 2 x NH), 7.90-7.82 (1H, m, NH), 7.31-7.13 (15H, m, ArH), 4.80 (1H, d, J = 11.6 Hz, OCHHPh), 4.64 (1H, d, J = 11.6 Hz, OCHHPh), 4.51 (1H, d, J = 11.4 Hz, OCHHPh), 4.41 (1H, d, J = 11.4 Hz, OCHHPh), 3.88 (1H, d, J = 5.0 Hz, OCH), 3.73-3.43 (4H, m, OCH & 3 x NCH), 3.09-2.77 (4H, m, 2 x NCH₂), 2.67- 2.44 (3H, m, NH & CH₂), 1.50-1.18 (4H, m, 2 x CH₂); ¹³C NMR (50 MHz, CDCl₃) δ 176.1, 173.1, 172.2, 137.5, 137.4, 136.8, 129.3, 128.6, 128.6, 128.5, 128.4, 128.2, 128.2, 128.1, 127.0, 74.5, 72.1, 60.3, 57.6, 54.4, 47.1, 40.8, 37.5, 30.6, 25.9, 21.2, 14.3; MS 571 (M+H⁺ 100); HRMS exact mass calculated for [M-H]⁻ (C₃₃H₃₇N₄O₅) requires m/z 569.2769, found m/z 569.2754.

3.2.22. (S)-N-((S)-1-((((2R, 3R, 4R)-3, 4-dihydroxy-5oxopyrrolidin-2-yl)methyl)amino)-1-oxo-3phenylpropan-2-yl)pyrrolidine-2carboxamide (27)

Same procedure but utilizing compound 21 (0.22 mmol). Reaction time 5.5 h; gummy solid; 84.2 mg, 98% yield; Rf (EtOAc/MeOH 9:1) 0.45; $[\alpha]_D$ +22.2 (c = 0.9, MeOH); ¹H NMR (200 MHz, DMSO-d₆ & CD₃OD) δ 8.13-8.09 (2H, m, 2 x NH), 7.64-6.91 (5H, m, ArH), 6.32 (1H, br s, NH), 5.27-4.99 (2H, m, 2 x OCH), 4.35-4.27 (1H, m, NCH), 4.07-3.76 (2H, m, 2 x NCH, 3.21-2.77 (6H, m, 2 x NCH₂ & CH₂), 2.66-1.38 (6H, 2 x OH & 2 x CH₂), 0.94 (1H, br s, NH); ¹³C NMR (50 MHz, DMSO-d₆ & CD₃OD) δ 168.4, 164.4, 160.2, 128.6, 120.7, 120.1, 118.5, 62.1, 61.6, 51.7, 51.5, 47.7, 37.9, 32.4, 28.9, 21.4, 15.6; MS 391 (M+H⁺ 100); HRMS exact mass calculated for [M-H]⁻ (C₁₉H₂₅N₄O₅) requires *m*/z 389.1830, found *m*/z 389.1948.

4. General procedure for the aldol reaction

Conditions A: To a round-bottom flask, 22 (10 mg, 0.021 mmol), 4-NBA (4.7 mg, 0.028 mmol) and aldehyde (0.14 mmol) were added. After the addition of Petroleum ether (1 mL) and H₂O (0.1 mL), ketone (1.40 mmol) was added and the reaction mixture was stirred for 24-120 h at room temperature. The solvent was evaporated and the crude product was purified using flash column chromatography eluting with the appropriate mixture of petroleum ether (40-60 °C)/ethyl acetate to afford the desired product. Conditions B: To a round-bottom flask, 25 (10 mg, 0.021 mmol), 4-NBA (4.7 mg, 0.028 mmol) and aldehyde (0.14 mmol) were added. After the addition of brine (1 mL), ketone (1.40 mmol) was added and the reaction mixture was stirred for 24-120 h at room temperature. The solvent was evaporated and the crude product was purified using flash column chromatography eluting with the appropriate mixture of petroleum ether (40-60 °C)/ethyl acetate to afford the desired product.

4.1. (S)-2-[(R)-Hydroxy-(4-nitrophenyl)methyl]cyclohexanone (42a, Table 3, entry 1)¹⁴

Colorless oil, 32 mg, 92% yield; R_f (AcOEt:Pet. Ether 3:7) 0.56; ¹H NMR (200 MHz, CDCl₃) *anti* δ 8.20 (2H, d, J = 8.8 Hz, ArH), 7.51 (2H, d, J = 8.8 Hz, ArH), 4.87 (1H, d, J = 8.4 Hz, OCH), 4.09 (1H, br s, OH), 2.64-2.26 (3H, m, COCH & 2 x CHH), 2.17-1.29 (6H, m, 6 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 214.6, 148.4, 127.9, 127.8, 123.4, 73.8, 57.0, 42.5, 30.6, 27.5, 24.5; HPLC analysis: Diacel Chiralpak AD-H, hexane:¹PrOH 90:10, flow rate 1.0 mL/min, retention time: 33.07 (minor) and 44.02 (major), 93% *ee*.

4.2 (S)-2-[(R)-Hydroxy-(3-nitrophenyl)methyl]cyclohexanone (**42b**, Table 3, entry 4)¹⁴

Colourless oil, 34 mg, 97% yield; R_f (AcOEt:Pet. Ether 3:7) 0.48; ¹H NMR (200 MHz, CDCl₃) *anti* δ 8.23-8.14 (2H, m, ArH), 7.67 (1H, d, J = 7.3 Hz, ArH), 7.55 (1H, d, J = 7.6 Hz, ArH), 4.90 (1H, d, J = 8.4 Hz, OCH), 4.11 (1H, br s, OH), 2.68-2.31 (3H, m, COCH & 2 x CHH), 2.17-1.32 (6H, m, 6 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 214.6, 148.2, 143.1, 133.1, 129.2, 122.7, 121.9, 74.0, 57.0, 42.6, 30.6, 27.6, 24.6; HPLC analysis: Diacel Chiralpak AD-H, hexane: PrOH 95:5, flow rate 1.0 mL/min, retention time: 53.41 (major) and 69.16 (minor), 92% *ee*.

4.3. (S)-2-[(R)-Hydroxy-(2-nitrophenyl)methyl]cyclohexanone (42c, Table 3, entry 5)¹⁴

Yellow solid, 35 mg, 100% yield; R_f (AcOEt:Pet. Ether 3:7) 0.46; ¹H NMR (200 MHz, CDCl₃) *anti* δ 7.91-7.72 (2H, m, ArH), 7.63 (1H, t, *J* = 6.5 Hz, ArH), 7.42 (1H, t, *J* = 6.6 Hz, ArH), 5.43 (1H, d, *J* = 7.1 Hz, OCH), 4.16 (1H, br s, OH), 2.85-2.61 (1H, m, COCH), 2.55-2.08 (2H, m, 2 x CHH), 1.90-1.52 (6H, m, 6 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 214.9, 136.5, 133.0, 128.9, 128.3, 124.0, 69.7, 57.2, 42.8, 31.1, 27.7, 24.9; HPLC analysis: Diacel Chiralpak AD-H, hexane: ¹PrOH 95:5, flow rate 0.8 mL/min, retention time: 60.85 (major) and 65.23 (minor), 97% *ee*.

4.4. (R)-3-[Hydroxy-(2-(S)oxocyclohexyl)methyl]-benzonitrile (**42d**, Table 3, entry 7)¹⁴

White solid, 32 mg, 100% yield; mp 66-68 °C; R_f (AcOEt:Pet. Ether 3:7) 0.42; ¹H NMR (200 MHz, CDCl₃) anti δ 7.68-7.38 (4H, m, ArH), 4.81 (1H, d, J = 8.5 Hz, OCH), 4.01 (1H, br s, OH), 2.65-2.03 (4H, m, COCH & 3 x CHH), 1.87-1.22 (5H, m, 5 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 214.6, 142.6, 131.5, 130.6, 129.1, 118.7, 112.4, 73.9, 57.1, 42.6, 30.6, 27.6, 24.6; HPLC analysis: Diacel Chiralpak AD-H, hexane: ¹PrOH 95:5, flow rate 1.0 mL/min, retention time: 46.07 (minor) and 68.80 (major), 87% ee.

4.5. (S)-2-[(R)-Hydroxy-(4-(trifluoromethyl)phenyl)methyl]cyclohexanone (42e, Table 3, entry 9)¹⁴

White solid, 36 mg, 94% yield; mp 73-75 °C; R_f (AcOEt:Pet. Ether 3:7) 0.48; ¹H NMR (200 MHz, CDCl₃) *anti* δ 7.61 (2H, d, *J* = 8.2 Hz, ArH), 7.44 (2H, d, *J* = 8.2 Hz, ArH), 4.84 (1H, d, *J* = 8.6 Hz, OCH), 4.03 (1H, br s, OH), 2.69-2.02 (4H, m, COCH & 3 x *CH*H), 1.90-1.39 (5H, m, 5 x *CH*H); ¹³C NMR (50 MHz, CDCl₃) δ 215.1, 144.9, 129.6 (q, *J* = 31.2 Hz), 127.3, 125.3 (q, *J* = 8.1 Hz), 123.9 (q, *J* = 271.4 Hz), 74.2, 57.2, 42.6, 30.7, 27.6, 24.7; ¹⁹F NMR (188 MHz, CDCl₃) δ -7.50 (s); HPLC analysis: Diacel Chiralpak AD-H, hexane: PrOH 90:10, flow rate 0.5 mL/min, retention time: 27.39 (minor) and 33.61 (major), 92% *ee*.

4.6.
$$(S)-2-[(R)-Hydroxy-(4-(fluorophenyl)methyl]-cyclohexanone (42f, Table 3, entry 12)^{14}$$

White solid, 28 mg, 89% yield; mp 66-68 °C; R_f (AcOEt:Pet. Ether 3:7) 0.52; ¹H NMR (200 MHz, CDCl₃) *anti* δ 7.33-7.27 (2H, m, ArH), 7.03 (2H, t, *J* = 8.7 Hz, ArH), 4.77 (1H, d, *J* = 8.4 Hz, OCH), 4.03 (1H, br s, OH), 2.65-2.31 (3H, m, COCH & 2 x CHH), 2.08-1.22 (6H, m, 6 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 215.4, 162.3 (d, *J* = 246.2 Hz), 136.6, 128.5 (d, *J* = 5.1 Hz), 115.2 (d, *J* = 20.0 Hz), 74.1, 57.4, 42.6, 30.7, 27.7, 24.6; ¹⁹F NMR (188 MHz, CDCl₃) δ -59.49 (m); HPLC analysis: Diacel Chiralpak AD-H, hexane: ⁱPrOH 90:10, flow rate 0.5 mL/min, retention time: 36.72 (minor) and 40.35 (major), 92% *ee*.

$\begin{array}{c} \hline CCEPTED M 4.7.US((s)-2-I(R)-Hydroxy-(4-nethyl]- (chlorophenyl)methyl]-cyclohexanone (42g, Table 3, entry 14)^{7i} \end{array}$

White solid, 31 mg, 92% yield; mp 96-98 °C; R_f (AcOEt:Pet. Ether 3:7) 0.38; ¹H NMR (200 MHz, CDCl₃) *anti* δ 7.32 (2H, d, *J* = 8.5 Hz, ArH), 7.24 (2H, d, *J* = 8.5 Hz, ArH), 4.76 (1H, d, *J* = 8.7 Hz, OCH), 3.98 (1H, br s, OH), 2.63-2.28 (3H, m, COCH & 2 x CHH), 2.19-2.01 (1H, m, CHH), 1.88-1.42 (5H, m, 5 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 215.3, 139.5, 133.6, 128.5, 128.4, 74.2, 57.4, 42.7, 30.7, 27.7, 24.7; HPLC analysis: Diacel Chiralpak OD-H, hexane: PrOH 95:5, flow rate 1.0 mL/min, retention time: 19.34 (major) and 31.10 (minor), 90% *ee*.

4.8. (S)-2-[(R)-Hydroxy-(2-(chlorophenyl)methyl]-cyclohexanone (**42h**, Table 3, entry 16)⁷ⁱ

Pale yellow solid, 33 mg, 100% yield; mp 60-62 °C; R_f (AcOEt:Pet. Ether 3:7) 0.42; ¹H NMR (200 MHz, CDCl₃) anti δ 7.54 (1H, dd, J = 7.8 and 1.9 Hz, ArH), 7.36-7.16 (3H, m, ArH), 5.34 (1H, d, J = 8.2 Hz, OCH), 3.86 (1H, br s, OH), 2.77-2.61 (1H, m, COCH), 2.54-2.22 (2H, m, COCHH), 2.17-2.02 (1H, m, CHH), 1.86-1.42 (5H, m, 5 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 215.3, 139.1, 132.9, 129.2, 128.7, 128.3, 127.3, 70.5, 57.6, 42.7, 30.4, 27.8, 24.9; HPLC analysis: Diacel Chiralpak OD-H, hexane:ⁱPrOH 95:5, flow rate 1.0 mL/min, retention time: 14.29 (major) and 18.86 (minor), 88% *ee*.

4.9. (S)-2-[(R)-Hydroxy-(4-(bromophenyl)methyl]-cyclohexanone (42i, Table 3, entry 17)⁷ⁱ

White solid, 34 mg, 85% yield; mp 89-91 °C; R_f (AcOEt:Pet. Ether 3:7) 0.42; ¹H NMR (200 MHz, CDCl₃) *anti* δ 7.47 (2H, d, *J* = 8.5 Hz, ArH), 7.20 (2H, d, *J* = 8.5 Hz, ArH), 4.75 (1H, d, *J* = 8.6 Hz, OCH), 3.94 (1H, br s, OH), 2.61-2.13 (3H, m, COCH & 2 x CHH), 2.11-2.01 (1H, m, CHH), 1.88-1.24 (5H, m, 5 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 215.2, 140.0, 131.5, 128.7, 121.7, 74.2, 57.3, 42.6, 30.7, 27.7, 24.7; HPLC analysis: Diacel Chiralpak AD-H, hexane:ⁱPrOH 90:10, flow rate 0.5 mL/min, retention time: 41.79 (minor) and 49.33 (major), 88% *ee*.

4.10. (S)-2-[(R)-Hydroxy-(phenyl)methyl]cyclohexanone (**42***j*, Table 3, entry 20)¹⁴

Colourless oil, 58 mg, 71% yield; R_f (AcOEt:Pet. Ether 7:3) 0.42; ¹H NMR (200 MHz, CDCl₃) *anti* δ 7.51-7.21 (5H, m, ArH), 4.78 (1H, d, *J* = 8.8 Hz, OCH), 3.84 (1H, br s, OH), 2.70-2.31 (3H, m, COCH & CHH), 2.15-1.24 (6H, m, 6 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 215.5, 140.8, 128.3, 127.8, 125.7, 74.7, 57.4, 42.6, 30.8, 27.8, 24.7; HPLC analysis: Diacel Chiralpak OD-H, hexane:ⁱPrOH 90:10, flow rate 0.5 mL/min, retention time: 22.91 (major) and 32.08 (minor), 99% *ee*.

4.11. (S)-2-[(R)-Hydroxy-(pyridine-4-yl)methyl] $cyclohexanone (42k, Table 3, entry 22)^{7i}$

White solid, 29 mg, 100% yield; mp 107-109 °C; R_f (AcOEt:Pet. Ether 4:6) 0.23; ¹H NMR (200 MHz, CDCl₃) anti δ 8.58-8.52 (2H, m, ArH), 7.27-7.21 (2H, m, ArH), 4.78 (1H, d, J = 8.1 Hz, OCH), 3.19 (1H, br s, OH), 2.67-2.25 (3H, m, COCH & CHH), 2.18-2.01 (1H, m, CHH), 1.87-1.35 (5H, m, 5 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 214.5, 150.1, 149.7, 122.1, 73.3, 57.0, 42.6, 30.8, 27.7, 24.7; HPLC analysis: Diacel Chiralpak AD-H, hexane:ⁱPrOH 92:8, flow rate 1.0 mL/min, retention time: 35.88 (minor) and 47.63 (major), 95% *ee*.

4.12. (S)-3-[(R)-Hydroxy-[4-(nitrophenyl)methyl]dihydro-2H-pyran-4(3H)-one (421, Table 3, entry 23)¹⁴

CDCl₃) δ 209.2, 147.7, 147.4, 127.4, 123.8, 71.2, 69.7, 68.2, 57.5, 42.7; HPLC analysis: Diacel Chiralpak AD-H, hexane: PrOH 80:20, flow rate 1.0 mL/min, retention time: 23.53 (minor) and 33.52 (major), 78% *ee*.

4.13. (S)-3-[(R)-Hydroxy-[4-(nitrophenyl)methyl]dihydro-2H-thiopyran-4(3H)-one (42m, Table 3, entry 26)¹⁴

Yellow solid, 37 mg, 100% yield; mp 137-139 °C; R_f (AcOEt:Pet. Ether 3:7) 0.39; ¹H NMR (200 MHz, CDCl₃) anti δ 8.23 (2H, d, J = 8.3 Hz, ArH), 7.53 (2H, d, J = 8.3 Hz, ArH), 5.04 (1H, d, J = 7.9 Hz, OCH), 3.63 (1H, br s, OH), 3.07-2.91 (3H, m, COCH & CHH), 2.87-2.70 (2H, m, 2 x CHH), 2.68-2.42 (2H, m, 2 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 211.2, 147.7, 147.6, 127.7, 123.8, 73.1, 59.4, 44.7, 32.8, 30.7; HPLC analysis: Diacel Chiralpak AD-H, hexane: PrOH 90:10, flow rate 1.0 mL/min, retention time: 89.93 (minor) and 108.34 (major), 90% *ee*.

4.14. (S)-7-[(R)-Hydroxy-4-(nitrophenyl)methyl]-1,4-dioxospiro[4.5]decan-8-one (42n, Table 3, entry 27)¹⁴

White solid, 43 mg, 100% yield; mp 89-91 °C; R_f (AcOEt:Pet. Ether 3:7) 0.20; ¹H NMR (200 MHz, CDCl₃) *anti* δ 8.21 (2H, d, *J* = 8.8 Hz, ArH), 7.49 (2H, d, *J* = 8.8 Hz, ArH), 4.92 (1H, d, *J* = 7.5 Hz, OCH), 4.04 (1H, br s, OH), 3.98-3.68 (4H, m, 4 x OCHH), 2.91-2.74 (1H, m, COCH), 2.66-2.54 (1H, m, CHH), 2.51-2.42 (1H, m, CHH), 2.07-1.55 (3H, m, 3 x CHH), 1.54-1.44 (1H, m, CHH); ¹³C NMR (50 MHz, CDCl₃) δ 213.1, 147.9, 127.8, 126.5, 123.6, 106.6, 73.8, 64.8, 64.5, 52.9, 38.8, 37.8, 34.3; HPLC analysis: Diacel Chiralpak AS-H, hexane:¹PrOH 70:30, flow rate 1.0 mL/min, retention time: 17.08 (minor) and 26.70 (major), 90% *ee*.

4.15. $(2S,4R)-2-[(R)-Hydroxy-(4-(nitrophenyl)methyl]-4-methylcyclohexanone (420, Table 3, entry 30)^{14}$

Pale yellow solid, 37 mg, 100% yield; mp 99-101 °C; R_f (AcOEt:Pet. Ether 4:6) 0.22; ¹H NMR (200 MHz, CDCl₃) anti δ 8.22 (2H, d, J = 8.8 Hz, ArH), 7.51 (2H, d, J = 8.8 Hz, ArH), 4.92 (1H, d, J = 8.6 Hz, OCH), 3.99-3.87 (1H, br s, OH), 2.81-2.29 (3H, m, COCH & CHH), 2.15-1.29 (5H, m, 4 x CHH & CH); 1.07 (3H, d, J = 7.1 Hz, CH₃); ¹³C NMR (50 MHz, CDCl₃) δ 214.8, 148.4, 147.5, 127.8, 123.7, 73.9, 52.9, 38.3, 36.1, 33.0, 26.5, 18.2; HPLC analysis: Diacel Chiralpak OD-H, hexane:¹PrOH 95:5, flow rate 1.0 mL/min, retention time: 46.34 (minor) and 54.23 (major), 90% *ee*.

4.16. (S)-2-[(R)-Hydroxy-(4-(nitrophenyl)methyl] $cyclopentanone (42p, Table 3, entry 31)^{14}$

Colourless oil, 33 mg, 100% yield; R_f (AcOEt:Pet. Ether 4:6) 0.23; ¹H NMR (200 MHz, CDCl₃) δ 8.21 (2H, d, J = 8.8 Hz, ArH), 7.52 (2H, d, J = 8.8 Hz, ArH), 5.42 (1H, s, OCH *syn*), 4.84 (1H, d, J = 9.2 Hz, OCH *anti*), 4.76 (1H, br s, OH *anti*), 2.69 (1H, br s, OH *syn*), 2.52-2.18 (3H, m, COCH & CHH), 2.15-1.83 (2H, m, 2 x CHH), 1.78-1.55 (2H, m, 2 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ 214.6, 213.4, 149.2, 147.9, 147.4, 147.3, 127.2, 126.5, 123.0, 122.9, 73.5, 69.8, 57.0, 56.3, 42.5, 30.2, 27.7, 25.5, 24.6, 24.3; HPLC analysis: Diacel Chiralpak AD-H, hexane:¹PrOH 95:5, flow rate 1.0 mL/min, retention time: 40.32 (*syn* major) and 57.11 (*syn* minor), 72.75 (*anti* minor) and 76.19 (*anti* major), 90% *ee*.

$anti \delta$ 4.17.(S)-4-Hydroxy-4-(4-nitrophenyl)-butan-2-ArH),one (42q, Table 3, entry 33)¹⁴

Colourless oil, 17 mg, 58 % yield; R_f (AcOEt:Pet. Ether 4:6) 0.14; ¹H NMR (200 MHz, CDCl₃) δ 8.20 (2H, d, J = 7.0 Hz, ArH), 7.52 (2H, d, J = 7.0 Hz, ArH), 5.25 (1H, m, OCH), 3.56 (1H, br s, OH), 3.01-2.71 (2H, m, CHHCO), 2.21 (3H, s, CH₃CO); ¹³C NMR (50 MHz, CDCl₃) δ 208.6, 149.9, 147.4, 126.4, 123.8, 68.9, 51.5, 30.7; HPLC analysis: Diacel Chiralpak AS-H, hexane: ⁱPrOH 85:15, flow rate 1.0 mL/min, retention time: 28.59 (minor) and 35.28 (major), 89% *ee*.

5.0. General procedure for the aldol reaction for the synthesis of 44

(R)-5,5,5-trifluoro-4-hydroxy-4-phenylpentan-2-one $(44)^{21}$

To a round-bottom flask, 23 (10 mg, 0.021 mmol), 4-NBA (4.7 mg, 0.028 mmol) and 2,2,2-trifluoroacetophenone (24 mg, 0.14 mmol) were added. After the addition of Petroleum ether (1 mL) and H₂O (0.1 mL), acetone (1 mL) was added and the reaction mixture was stirred for 96 h at room temperature. The solvent was evaporated and the crude product was purified using flash column chromatography eluting with the appropriate mixture of petroleum ether (40-60 °C)/ethyl acetate to afford the desired product.²¹ Colorless oil, 21 mg, 63% yield; R_f (AcOEt:Pet. Ether 3:7) 0.56; ¹H NMR (200 MHz, CDCl₃) δ 7.62-7.52 (2H, m), 7.46-7.34 (3H, m), 5.46 (1H, br s), 3.39 (1H, d, J = 17.2 Hz), 3.21 (1H, d, J = 17.2 Hz), 2.22 (3H, s); ¹³C NMR (50 MHz, CDCl₃) δ 209.1, 137.3, 128.7, 128.4, 126.0, 124.4 (q, J = 284.9 Hz), 75.9 (q, J = 29.1 Hz), 44.8, 31.8; ¹⁹F NMR (188 MHz, CDCl₃) δ -13.97 (s); HPLC analysis: Diacel Chiralpak AS-H, hexane:iPrOH 95:5, flow rate 0.7 mL/min, retention time: 12.34 (minor) and 17.06 (major), 70% ee.

5.1 (S)-4-Hydroxy-5-methylhexan-2-one $(46)^{23}$

To a round-bottom flask, **22** (13.4 mg, 0.03 mmol), 4-NBA (6.9 mg, 0.04 mmol) and isobutyraldehyde (15 mg, 0.21 mmol) were added. After the addition of Petroleum ether (3 mL) and H₂O (0.1 mL), acetone (1 mL) was added and the reaction mixture was stirred for 120 h at room temperature. The solvent was evaporated and the crude product was purified using flash column chromatography eluting with petroleum ether (40-60 °C)/ethyl acetate (70:30). Colourless oil, 1.1 mg, 4%, yield; R_f (AcOEt:Pet. Ether 3:7) 0.66; ¹H NMR (200 MHz, CDCl₃) δ 3.87-3.77 (1H, m, OCH), 2.93 (1H, br s, OH), 2.57–2.53 (2H, m, COCH₂), 2.21 (3H, s, CH₃), 1.77–1.60 (1H, m, CH), 1.00–0.80 (6H, m, 2 x CH₃); ¹³C NMR (50 MHz, CDCl₃) δ 210.4, 72.2, 46.9, 33.0, 30.9, 18.4; HPLC analysis: Diacel Chiralpak AD-H, hexane:ⁱPrOH 98:2, flow rate 0.5 mL/min, retention time: 26.06 (minor) and 31.64 (major), 44% *ee*.

5.2 (S)-2-((R)-1-Hydroxy-2-methylpropyl)cyclohexanone $(47)^{24}$

To a round-bottom flask, **22** (13.4 mg, 0.03 mmol), 4-NBA (6.9 mg, 0.04 mmol) and isobutyraldehyde (15 mg, 0.21 mmol) were added. After the addition of Petroleum ether (3 mL) and H₂O (0.1 mL), cyclohexanone (206 mg, 2.10 mmol) was added and the reaction mixture was stirred for 120 h at room temperature. The solvent was evaporated and the crude product was purified using flash column chromatography eluting with petroleum ether (40-60 °C)/ethyl acetate (50:50) Oil, 3.6 mg, 10%, yield, R_f (AcOEt:Pet. Ether 1:1) 0.70; ¹H NMR (200 MHz, CDCl₃) δ 3.52 (1H, m, OCH), 3.27 (1H, d, *J* = 4.8 Hz, COC*H*H), 2.42-2.34 (3H, m, 3 x COC*H*H), 2.35-2.25 (2H, m, 2 x C*H*H), 2.04-1.62 (5H, m, 5 x C*H*H), 0.98 (3H, d, *J* = 6.8 Hz, CH₃), 0.88 (3H, d, *J* = 6.8 Hz, CH₃); ¹³C NMR (50 MHz, CDCl₃) δ 216.1, 75.6, 53.7, 42.9, 30.6,

29.2, 27.8, 25.0, 20.1, 15.2; HPLC analysis: Diacel Chiralpak MANUS AD-H, hexane: PrOH 97:3, flow rate 0.5 mL/min, retention time: 25.08 (minor) and 37.71 (major), 97% *ee*.

For the recovery of catalyst **22**, after completion of the reaction, the petroleum ether was evapotated and the residue, dissolved in CHCl₃ and acidified with 2N HCl (1 mL). The aqueous layer was evaporated in high vacuum and the evaporation was repeated twice, after the addition of toluene (2 x 1 mL). After drying, catalyst **22** was isolated as the hydrochloride salt and identified by ¹H , ¹³C NMR , measurement of optical activity and MS; yield 73% (7.4 mg). The recovered catalyst, was further subjected in an identical second catalytic reaction after the addition of the appropriate Et₃N (2 μ L, 0.015 mmol). The desired compound **42a** was finally isolated in 82 % yield; *dr* 81:19 and *ee* 72%.

6 Acknowledgments

C. G. K. gratefully acknowledges the Operational Program "Education and Lifelong Learning" for financial support through the NSRF program "ENI Σ XY Σ H META Δ I Δ AKTOP Ω N EPEYNHT Ω N" (PE 2431)" co-financed by ESF and the Greek State. P. M. M. acknowledges Dr K. Georgikopoulou for the synthesis of compound **34** and G. Michas (MSc.) for the synthesis of compounds **37** and **38**. Dr M. Kokotou is acknowledged for acquiring HRMS data.

7 References and notes

- For books, see: a) Berkessel, A.; Groger, H. Asymmetric Organocatalysis - From Biomimetic Concepts to Powerful Methods for Asymmetric Synthesis, Wiley-VCH: Weinheim, 2005;
 b) Dalko, P. I. Enantioselective Organocatalysis Reactions and Experimental Procedure, Wiley-VCH: Weinheim, 2007; c) Dalko,
 P. I. Comprehensive Enantioselective Organocatalysis, Wiley-VCH: Weinheim, 2013; d) Rios Torres, R. Stereoselective Organocatalysis, Wiley: Weinheim, 2013.
- For selected reviews, see: a) Gruttadauria, M.; Giacalone, F.; Noto, R Adv. Synth. Catal. 2009, 351, 33-57; b) Raj, M.; Singh, V. K. Chem. Commun. 2009, 6687-6703; c) Pihko, P. M.; Majander, I.; Erkkila, A. Top. Curr. Chem. 2010, 291, 29-75; d) Moyano, A.; Rios, R. Chem. Rev. 2011, 111, 4703-4832; e) Giacalone, F.; Gruttadauria, M.; Agrigento, P.; Noto, R. Chem. Soc. Rev. 2012, 41, 2406-2447; f) Aleman, J.; Cabrera, S. Chem. Soc. Rev. 2013, 42, 774-793; g) Scheffler, U.; Mahrwald, R. Chem. Eur. J. 2013, 19, 14346-14396; h) Tsakos, M.; Kokotos, C. G. Tetrahedron 2013, 69, 10199-10222; i) Volla, C. M. R.; Atodiresei, I.; Rueping, M. Chem. Rev. 2014, 114, 2390-2431; j) Bhowmick, S.; Mondal, A.; Ghosh, A.; Bhowmick, K. C. Tetrahedron:Asymmetry 2015, 26, 1215-1244; k) Jimeno, C. Org. Biomol. Chem. 2016, 14, 6147-6164; l) Liu, J.; Wang, L. Synthesis 2017, 49, 960-972.
- List, B.; Lerner, R. A.; Barbas III, C. F. J. Am. Chem. Soc. 2000, 122, 2395-2396.
- 4. Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243-4244.
- For recent reviews on the aldol reaction, see: a) Trost, B. M.; Brindle, C. S. Chem. Soc. Rev. 2010, 39, 1600-1632; b) Heravi, M. M.; Asadi, S. Tetrahedron: Asymmetry 2012, 23, 1431-1465; c) Mlynarski, J.; Bas, S. Chem. Soc. Rev. 2014, 43, 577-587.
- For selected papers, see: a) Sakthivel, K.; Notz, W.; Bui, T.; Barbas III, C. F. J. Am. Chem. Soc. 2001, 123, 5260–5267; b) Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.; Yamamoto, H. Angew. Chem. Int. Ed. 2004, 43, 1983-1986; c) Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley, S. V. Org. Biomol. Chem. 2005, 3, 84-96; d) Berkessel, A.; Koch, B.; Lex, J. Adv. Synth. Catal. 2004, 346, 1141-1146; e) Bellis, E.; Vasilatou, K.; Kokotos, G. Synthesis 2005, 2407-2413; f) Bellis, E.; Kokotos, G. Tetrahedron 2005, 61, 8669-8676; g) Companyo, X.; Valero, G.; Crovetto, L.; Moyano, A.; Rios, R. Chem. Eur. J. 2009, 15,

- S 6564-6568; h) Tsandi, E.; Kokotos, C. G.; Kousidou, S.; Ragoussis, V.; Kokotos, G. *Tetrahedron* **2009**, *65*, 1444-1449; i) El-Hamdouni, N.; Companyo, X.; Rios, R.; Moyano, A. *Chem. Eur. J.* **2010**, *16*, 1142-1148.
- 7 For selected examples, see: a) Tang, Z.; Jiang, F.; Yu, L. T.; Cui, X.; Gong, L. Z.; Mi, A. Q.; Jiang, Y. Z. J. Am. Chem. Soc. 2003, 125, 5262-5263; b) Tang, Z.; Jiang, F.; Cui, X.; Gong, L. Z.; Mi, A. Q.; Jiang, Y. Z.; Wu, Y. D. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5755-5760; c) Tang, Z.; Yang, Z. H.; Chen, X. H.; Cun, L. F.; Mi, A. Q.; Jiang, Y. Z.; Gong, L. Z. J. Am. Chem. Soc. 2005, 127, 9285-9289; d) Gandgi, S.; Singh, V. K. J. Org. Chem. 2008, 73, 9411-9416; e) Wang, B.; Chen, G.-H.; Liu, L.-Y.; Chang, W.-X.; Li, J. Adv. Synth. Cat. 2009, 351, 2441-2448; f) Fotaras, S.; Kokotos, C. G.; Tsandi, E.; Kokotos, G. Eur. J. Org. Chem., 2011, 1310-1317; g) Fotaras, S.; Kokotos, C. G.; Kokotos, G. Org. Biomol. Chem. 2012, 10, 5613-5619; h) Revelou, P.; Kokotos, C. G.; Moutevelis-Minakakis, P. Tetrahedron 2012, 68, 8732-8738; i) Triandafillidi, I.; Bisticha, A.; Voutyritsa, E.; Galiatsatou, G.; Kokotos, C. G. Tetrahedron 2015, 71, 932-940; j) Bisticha, A.; Triandafillidi, I.; Kokotos, C. G. Tetrahedron: Asymmetry 2015, 26, 102-108.
- For reviews, see: a) Colby Davie, E. A.; Mennen, S. M.; Xu, Y.; Miller, S. J. *Chem. Rev.* 2007, 107, 5759-5812; b) Wennemers, H. *Chem. Commun.* 2011, 47, 12036-12041.
- For selected examples of organocatalytic transformations utilizing peptides not containing proline, see: a) Tsogoeva, S. B.; Wei, S. *Tetrahedron: Asymmetry* 2005, 16, 1947-1951; b) Zou, W.; Ibrahem, I.; Dziedzic, P.; Sunden, H.; Cordova, A. Chem. Commun. 2005, 4946-4948; c) Dziedzic, P.; Zou, W.; Hafren, J.; Cordova, A. Chem. Commun. 2006, 4, 38-40; d) Cordova, A.; Zou, W.; Dziedzic, P.; Ibrahem, I.; Reyes, E.; Xu, Y. Chem. Eur. J. 2006, 12, 5383-5397
- For selected examples of organocatalytic transformations utilizing proline-based peptides, see: a) Martin, H. J.; List, B. Synlett 2003, 1901-1902; b) Kofoed, J.; Nielsen, J.; Reymond, J.-L. Bioorg. Med. Chem. Lett. 2003, 13, 2445-2447.; c) Tang, Z.; Tang, Z.-H.; Cun, L.-F.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z. Org. Lett. 2004, 6, 2285-2287; d) Shi, L.-X.; Sun, Q.; Ge, Z. M.; Zhu, Y.-Q.; Cheng, T.-M.; Li, R.-T. Synlett 2004, 2215-2217; e) Krattiger, P.; Kovasy, R.; Revell, J. D.; Ivan, S.; Wennemers, H. Org. Lett. 2005, 7, 1101-1103; f) Lei, M.; Shi, L.; Li, G.; Chen, S.; Fang, W.; Ge, Z.; Cheng, T.; Li, R. Tetrahedron 2007, 63, 7892-7898; g) Revell, J. D.; Wennemers, H. Adv. Synth. Catal. 2008, 350, 1046-1052; h) Chen, Y.-H.; Sung, P.-H.; Sung, K. Amino Acids 2010, 38, 839-845
- a) Hayashi, Y.; Sumiya, T.; Takahashi, J.; Gotoh, H.; Urushima, T.; Shoji, M. *Angew. Chem. Int. Ed.* **2006**, *45*, 958-961; b) Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.; Tanaka, F.; Barbas III, C. F. *J. Am. Chem. Soc.* **2006**, *128*, 734-735.
- 12. For tryptophane-catalyzed aldol reaction, see: a) Jiang, Z.; Liang, Z.; Wu, X.; Lu, Y. Chem. Commun. 2006, 2801-203; b) Amedjkouh, M. Tetrahedron: Asymmetry 2007, 18, 390-395; for threonine-catalyzed aldol reaction, see: c) Wu, X.; Jiang, Z.; Shen, H.-M.; Lu, Y. Adv. Synth. Cat. 2007, 349, 812-816; for serinecatalyzed aldol reaction, see: d) Teo, Y.-C. Tetrahedron: Asymmetry 2007, 18, 1155-1158; e) Wu, C.; Fu, X.; Li, S. Tetrahedron 2011, 67, 4283-4290; for chitosan-catalyzed aldol reaction, see: f) Gioia, C.; Ricci, A.; Bernardi, L.; Bourahla, K.; Tanchoux, N.; Robitzer, M.; Quignard, F. Eur. J. Org. Chem. 2013, 588-594; for leucine-catalyzed aldol reaction, see: g) Burroughs, L.; Vale, M. E.; Gilks, J. A. R.; Forintos, H.; Hayes, C. J.; Clarke, P. A. Chem. Commun. 2010, 46, 4776-4778; h) Burroughs, L.; Clarke, P. A.; Forintos, H.; Gilks, J. A. R.; Hayes, C. J.; Vale, M. E.; Wade, W.; Zbytniewski, M. Org. Biomol. Chem. 2012, 10, 1565-1570.
- a) Guillena, G.; Hita, M. C.; Najera, C. *Tetrahedron: Asymmetry* 2006, 17, 1493-1497; b) Wu, Y.; Zhang, Y.; Yu, M.; Zhao, G.; Wang, S. Org. Lett. 2006, 8, 4417-4420; c) Font, D.; Jimeno, C.; Pericas, M. A. Org. Lett. 2006, 8, 4653-4656; d) Guizzetti, S.; Benaglia, M.; Raimondi, L.; Celentano, G. Org. Lett. 2007, 9, 1247-1250; e) Maya, V.; Raj. M.; Singh, V. K. Org. Lett. 2007, 9, 2593-2595; f) Wang, C.; Jiang, Y.; Zhang, X.-X.; Huang, Y.; Li, B.-G.; Zhang, G.-L. *Tetrahedron Lett.* 2007, 48, 4281-4285; g) Aratake, S.; Itoh, T.; Okano, T.; Nagae, N.; Sumiya, T.; Shoji, M.; Hayashi, Y. Chem. Eur. J. 2007, 13, 10246-10256; h) Zu, L.; Xie, H.; Li, H.; Wang, J.; Wang, W. Org. Lett. 2008, 10, 1211-1214; j) Zhao, J.-F.; He, L.; Jiang, J.; Tang, Z.; Cun, L.-F.; Gong, L.-Z. *Tetrahedron Lett.* 2008, 49, 3372-3375; j) Mase, N.; Noshiro, N.; Mokuya, A.; Takabe, K. Adv. Synth. Cat. 2009, 351, 2791-2796;

k) Zhang, S.-P.; Fu, X.-K.; Fu, S.-D. Tetrahedron Lett. 2009, 50, MANUSCRIPT

1173-1176; l) Giacalone, F.; Gruttadauria, M.; Agrigento, P.; Lo Meo, P.; Noto, R. *Eur. J. Org. Chem.* **2010**, 5696-5704; m) Wang, B.; Liu, X.-W.; Liu, L.-Y.; Chang, W.-X.; Li, J. *Eur. J. Org. Chem.* **2010**, 5951-5954; n) Tang, G.; Hu, X.; Altenbach, H. J. *Tetrahedron Lett.* **2011**, *52*, 7034-7037; o) Lipshutz, B. H.; Ghorai, S. *Org. Lett.* **2012**, *14*, 422-425; p) Kochetkov, S. V.; Kucherenko, A. S.; Kryshtal, G. V.; Zhdankina, G. M.; Zlotin, S. G. *Eur. J. Org. Chem.* **2012**, 7129-7134.

- 14. Psarra, A.; Kokotos, C. G.; Moutevelis-Minakakis, P. *Tetrahedron* **2014**, *70*, 608-615.
- a) Chronopoulos, D. D.; Tsakos, M.; Karousis, N.; Kokotos, C. G.; Tagmatarchis, N. *Mat. Lett.* **2014**, *137*, 343-346; b) Chronopoulos, D. D.; Kokotos, C. G.; Karousis, N.; Kokotos, G.; Tagmatarchis, N. *Nanoscale* **2015**, *7*, 2750-2757; c) Chronopoulos, D. D.; Kokotos, C. G.; Tsakos, M.; Karousis, N.; Kokotos, G.; Tagmatarchis, N. *Mat. Lett.* **2015**, *157*, 212-214.
- a) Tsakos, M.; Elsegood, M. R. J.; Kokotos, C. G. *Chem. Commun.*2013, 49, 2219-2221; b) Limnios, D.; Kokotos, C. G. *RSC Adv.* 2013, 3, 4496-4499; c) Theodorou, A.; Papadopoulos, G. N.; Kokotos, C. G. *Tetrahedron* 2013, 69, 5438-5443; d) Kokotos, C. G. *Org. Lett.* 2013, 15, 2406-2409.
- 17. The main pathway for racemization in peptide coupling is azlactone formation. It is known in literature that proline does not give racemization in peptide coupling; for a book, see: Doonan, S. *Peptides and Proteins*, Royal Chemical Society: Cambridge, 2002, p 37-38.
- 18. Brepa-Valle, L. J.; Sαnchez, C. R.; Cruz-Almanza, R. *Tetrahedron: Asymmetry* **1996**, *7*, 1019-1026.
- Kokotos, G.; Constantinou, V. J. Chem. Research 1992, 391, 3117-3132.
- 20. Qiu, X. L.; Qing, F. L. J. Org. Chem. 2005, 70, 3826-3837.
- 21. Kokotos, C. G. J. Org. Chem. 2012, 77, 1131-1135.
- 22. Tanabe, M.; Peters, R. Org. Synth. 1990, 7, 386-392.
- 23. Subba Reddy, B. V.; Bhavani, K.; Raju, A.; Yadav, J. S. *Tetrahedron: Asymmetry* **2011**, *22*, 881-886.
- 24. Karmakar, A.; Maji, T.; Wittmann, S.; Reiser, O. *Chem. Eur. J.* **2011**, *17*, 11024-11029.