

Available online at www.sciencedirect.com

Chinese Chemical Letters 22 (2011) 1443-1446

CHINESE Chemical Letters

www.elsevier.com/locate/cclet

Solution-phase synthesis of a muramyl dipeptide analogue MDA

Nan Zhao, Yao Ma, Gang Liu*

Department of Synthetic Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China

> Received 25 May 2011 Available online 10 October 2011

Abstract

The solution-phase synthesis of a muramyl dipeptide (MDP) analogue of N^{α} -[4-chlorocinnamoyl-L-alanyl-D-isoglutaminyl]-Llysine (MDA, **2**) is reported that possesses the features of easy feasibility, safety and low cost in large scale of synthesis. © 2011 Gang Liu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Keywords: Muramyl dipeptide analogue; Solution-phase synthesis; MDA

Muramyl dipeptide (MDP, 1, Fig. 1) is the minimum structure of the cell wall of Gram-positive bacteria that is recognized by human immunological response. It non-specifically stimulates human macrophages to become active against virus, bacteria, and tumors [1–3]. In view of its activities, we embarked on the structural modification of MDP for many years [4–8]. A MDP analogue of N^{α} -[4-chlorocinnamoyl-L-alanyl-D-isoglutaminyl]-L-lysine (MDA, 2, Fig. 1) has been conjugated with Paclitaxel in our group to synthesize a novel compound termed as MTC-220 [8]. The unique pharmacological property allows MTC-220 to effectively inhibit tumor growth in nude mice and significantly prevent tumor metastasis in Lewis lung carcinoma and 4T1-tumor-bearing mice through suppressing myeloid derived suppressor cell (MDSC) accumulation in the spleen and bone marrow of tumor-bearing mice and repressing inflammatory cytokines in tumor tissue [8]. MTC-220 is currently under research for its preclinical studies as a dual function drug candidate to treat breast and lung cancers. Therefore, it is important to find a feasible method for production of MTC-220 as well as its intermediate MDA in large scale.

We previously reported that MDA was prepared through a solid-phase synthetic route with the total yield of 96% [8]. Solid-phase synthesis is a common strategy of peptide chemistry. The advantages of this method mainly include highly coupling efficiency and yield. However, drawbacks of solid-phase synthesis often limit the preparation of aim product in large scale including the necessary and expensive solid resin, costly washing and cleavage solvents, incomplete/truncated peptides and/or resin anchored impurities that are produced in the process of synthesis. Especially, the building blocks of non-natural amino acids need to be pre-prepared and pre-protected in solution-phase where addresses additional chemical processes. Therefore, alternative solution-phase synthesis of certain peptide or peptide analogue, especially bearing non-natural amino acids, is normally considered to facilitate the production in

* Corresponding author.

E-mail address: gliu@imm.ac.cn (G. Liu).

^{1001-8417/\$-}see front matter © 2011 Gang Liu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. doi:10.1016/j.cclet.2011.07.020

Fig. 1. Chemical structure of the natural MDP 1 and its analogue MDA 2.

Scheme 1. Synthetic route of *t*-butoxycarbonyl-D-isoglutaminyl benzyl ester **6**. Reagents and conditions: (a) benzyl alcohol, $BF_3 \cdot Et_2O$, r.t., 15 h; (b) (Boc)₂O, NaHCO₃, 50% dioxane/H₂O, r.t., 20 h; (c) HOSu, DIC, 0 °C, 5 h, r.t., 20 h; (d) dry ammonia gas, THF, -10 °C, 1.5 h.

Scheme 2. Synthetic route of N^{α} -t-butoxycarbonyl- N^{ε} -carbobenzyloxy-L-lysinyl amide **8**. Reagents and conditions: (a) HOSu, DIC, 0 °C, 5 h, r.t., 20 h; (b) dry ammonia gas, THF, -10 °C, 1.5 h.

large scale. In this letter, we reported a solution-phase synthetic method of MDA that can be used to prepare MDA in kilogram scale (Schemes 1–3).

t-Butoxycarbonyl-D-isoglutaminyl benzyl ester **6** and N^{α} -*t*-butoxycarbonyl- N^{ε} -carbobenzyloxy-L-lysinyl amide **8** were prepared from commercial available D-glutamic acid **3** and N^{α} -*t*-butoxycarbonyl- N^{ε} -carbobenzyloxy-L-lysine **7** in Schemes 1 and 2, respectively. γ -Carboxyl group of **3** was firstly esterified in benzyl alcohol to gain D-glutaminyl γ -benzyl ester **4** in the presence of Lewis acid BF₃·Et₂O [9]. The amino group of **4** was then protected by (Boc)₂O to yield *t*-butoxycarbonyl-D-glutaminyl γ -benzyl ester **5** under a weakly basic condition [10]. Compound **5** was further activated by HOSu and DIC, then reacted with dry ammonia gas to finally form compound **6** in a yield of 53% (Scheme 1) [4,5]. Similarly, compound **8** was obtained by the method in a yield of 92% shown in Scheme 2.

The peptide assembly in solution-phase was carried out as described in Scheme 3. All Boc groups in various building blocks were generally removed under an acidic condition of 50% TFA/DCM (v/v). And all coupling steps were performed by HOSu and DIC activation of carboxyl groups. Building blocks of t-butoxycarbonyl-L-alanine 9 and t-butoxycarbonyl-D-isoglutaminyl benzyl ester 6 were firstly coupled to yield a protected dipeptide of tbutoxycarbonyl-L-alaninyl-D-isoglutaminyl benzyl ester 10 in 81% yield. After removal of Boc group and performance of coupling reaction again, a protected tripeptide of 4-chlorocinnamoyl-L-alanyl-D-isoglutaminyl benzyl ester 12 was obtained in a total yield 79% of two reaction steps. Considering the sensitivity of chlorine atom and a double bond of 4-chlorocinnamoyl group, palladium-charcoal/hydrogenation was avoided to deprotect Bzl group in this letter. Various basic conditions were investigated to completely cleave Bzl group such as K_2CO_3 , NaHCO₃ and LiOH aqueous solution. Unexpectedly, two major products (molar ratio = 4:6) with the same molecular weight were gained at all the time. Results of elucidation by ¹H NMR indicated that they were the aim compound 4chlorocinnamoyl-L-alanyl-D-isoglutamine 13 and its structural isomer 4-chlorocinnamoyl-L-alanyl-D-glutamine 13a that very likely were produced through a cyclic intermediate 3(R)-[4-chlorocinnamoyl-L-alanyl]-amino-2,6dioxopiperidine 15 (Scheme 4). We then switch our attention to acidic conditions to deprotect Bzl group. A solution of HBr/AcOH was optimally selected to afford 9 in a high yield of 85%. Final iteration of the deprotection of Boc group and coupling procedure led N^{α} -[4-chlorocinnamoyl-L-alanyl-D-isoglutaminyl]- N^{ε} -carbobenzyloxy-L-lysine 14 produced in a yield of 74%. With the assistance of a mixture of BF₃·Et₂O, TFA and EtSH (v:v:v = 9:9:2), Z

Scheme 3. Solution-phase synthesis of MDA. Reagents and conditions: (a) 50% TFA/DCM, r.t., 1 h; (b) HOSu, DIC, THF, 0 °C, 5 h, then, r.t., 20 h; (c) THF, 0 °C, 5 h, r.t., 24 h; (d) HBr/AcOH, r.t., 3 h; (e) BF₃·Et₂O, TFA, EtSH (9:9:2), r.t., 2 h.

group of **14** was completely removed with a yield of 72%. The aimed MDA **2** was obtained eventually after purification by ODS column chromatography and fully characterized by ¹H NMR, ¹³C NMR, IR and HR MS (TOF) [11].

In conclusion, we have developed a solution-phase synthesis of MDA. This strategy can be employed to synthesize a novel antitumor agent of MTC-220 in kilogram scale. After all steps, targeted compound MDA was obtained with the total yield of 14%.

Scheme 4. Structural isomers of 13 produced under basic conditions.

1446

Acknowledgment

This research is supported financially by the National Natural Science Foundation of China (No. 90713045).

References

- [1] F. Ellouz, A. Adam, R. Ciorbaru, et al. Biochem. Biophys. Res. Commun. 59 (1974) 1317.
- [2] S. Kotani, Y. Watanabe, F. Kinoshita, et al. Biken J. 18 (1975) 105.
- [3] C. Carelli, F. Audibert, L. Chedid, Infect. Immun. 33 (1981) 312.
- [4] G. Liu, S.D. Zhang, S.Q. Xia, et al. Bioorg. Med. Chem. Lett. 10 (2000) 1361.
- [5] H.Z. Yang, S. Xu, X.Y. Liao, et al. J. Med. Chem. 48 (2005) 5112.
- [6] X.Q. Li, J.L. Yu, S. Xu, et al. Glycoconj. J. 25 (2008) 415.
- [7] Y.Z. Chen, G. Liu, S. Senju, et al. Int. J. Immunopathol. Pharmacol. 23 (2010) 165.
- [8] M. Yao, Z. Nan, L. Gang, J. Med. Chem. 54 (2011) 2767.
- [9] R. Albert, J. Danklmaier, H. Hönig, et al. Synthesis 07 (1987) 635.
- [10] S.H. Kang, Y.S. Hwang, J.-H. Youn, Tetrahedron Lett. 42 (2001) 7599.
- [11] Chemical data of (2) list as following: mp: 215–217 °C, [α]_D²⁵ +37.7 (*c* 11.0 mg/mL, DMF). ¹H NMR (600 MHz, DMSO-*d*₆): δ lysine's part: 7.90 (d, 1H, *J* = 8.4 Hz, NH), 7.10 (s, 1H, CONH_a), 7.30 (s, 1H, CONH_b), 4.11 (m, 1H, α-H), 1.46 (m, 1H, β-H_a), 1.63 (m, 1H, β-H_b), 1.27 (m, 2H, γ-H), 1.53 (m, 2H, δ-H), 2.73 (m, 2H, ε-H), 7.75 (br. s, 2H, NH₂); b-isoglutamine's part: 8.21 (d, 1H, *J* = 8.4 Hz, NH), 6.98 (s, 1H, CONH_a), 7.41 (s, 1H, CONH_b), 4.14 (m, 1H, α-H), 1.71 (m, 1H, β-H_a), 1.97 (m, 1H, β-H_b), 2.15 (t, 2H, *J* = 7.2 Hz, γ-H); alanine's part: 8.39 (d, 1H, *J* = 6.6 Hz, NH), 4.38 (m, 1H, α-H), 1.26 (m, 3H, β-H); 4-chloro-cinnamoyl part: 6.75 (d, *J* = 15.9 Hz, 1H, *trans*-α-H), 7.39 (d, 1H, *J* = 15.9 Hz, *trans*-β-H), 7.57 (d, 2H, *J* = 8.4 Hz, ph-o-H), 7.47 (d, 2H, *J* = 8.4 Hz, ph-*m*-H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ lysine's part: 173.3 (CONH₂), 52.1 (α-C), 31.3 (β-C), 22.4 (γ-C), 26.8 (δ-C), 38.7 (ε-C); p-isoglutamine's part: 173.8 (CONH₂), 52.2 (α-C), 27.7 (β-C), 31.7 (γ-C), 171.6 (CONH); alanine's part: 172.4 (CONH), 48.8 (α-C), 18.1 (β-C); 4-chloro-cinnamoyl part: 164.7 (CONH), 122.7 (*trans*-α-C), 137.6 (*trans*-β-C), 133.8 (ph-*q*-C), 129.2 (ph-*o*-C), 129.0 (ph-*m*-C), 134.0 (ph-*p*-C). IR (KBr, cm⁻¹): 3281.5, 3198.9, 3063.4, 2935.2, 1609.8, 1539.0, 1452.2, 1200.2, 1134.1, 973.6, 821.6, 799.8, 720.2. HR MS (TOF): found 509.2270 [M+H]⁺; calcd. for C₂₃H₃₄ClN₆O₅ 509.2279.