Synthesis of Dianhydrohexitole-based Benzamidines as Factor Xa Inhibitors Using Cross Couplings, Phenyl Ether and Amidine Formations as Key Steps

Marko Vogler,^a Ulrich Koert,^{*a} Dieter Dorsch,^b Johannes Gleitz,^b Peter Raddatz^b

^a Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany

Received 23 June 2003

Abstract: Starting with isosorbide or isomannide several dianhydrohexitole-based benzamidines were synthesized as potential factor Xa inhibitors. The key steps for the synthesis of the bisbenzamidines were nucleophilic aromatic substitutions and Mitsunobu reactions to build up phenylethers. Another type of monobenzamidines had *ortho*-substituted biphenyl groups. Their synthesis necessitated an optimization of cross coupling procedures due to the great sterical hindrance of the *ortho*-substituent. The benzamidines showed biological activity against factor Xa and selectivity against other serine proteases.

Key words: isosorbide, dianhydrohexitoles, amidines, Negishi reaction, factor Xa inhibitors

The serine protease factor Xa (fXa) plays a decisive role in the blood coagulation cascade.¹ Thus, it has emerged as a very attractive target to develop orally active antithrombotic agents.² Highly potent and specific inhibitors of fXa can effectively block both venous and arterial thrombosis formation.

We intended to use the dianhydrohexitoles isosorbide **1** (one *exo*-OH, one *endo*-OH, Figure 1) and isomannide **2** (two *endo*-OH) as molecular scaffolds linking two specific ligands for the S1 and S4 pockets of the fXa active site. **1** and **2** were already explored as successful templates for RGD-mimetics³ in the development of integrin antagonists. They have the advantage of combining high rigidity with stereochemical bias.

Here we present a novel synthetic approach to the phenylether benzamidines 3-6 with the isosorbide scaffold (Figure 2) and evaluate their potential as fXa inhibitors.

Figure 2

The synthesis of **3** started with TBS-protection of isosorbide **1** (Scheme 1). Using the standard conditions (TBS-Cl, imidazole, DMF) both monoprotected isomers **7** (33%) and **8** (16%) as well as diprotected **9** (20%) were obtained besides 31% unreacted starting material. The structures of **7** and **8** could be assigned by NMR analysis

^b Merck KgaA, Preclinical Research & Development, 64271 Darmstadt, Germany Fax +49(6421)2825677; E-mail: koert@chemie.uni-marburg.de

Synlett 2003, No. 11, Print: 02 09 2003. Web: 25 08 2003. Art Id.1437-2096,E;2003,0,11,1683,1687,ftx,en;G14703ST.pdf. DOI: 10.1055/s-2003-41426 © Georg Thieme Verlag Stuttgart · New York

and IR spectroscopy. Due to the intramolecular hydrogen bond of the *endo*-OH group with the ether oxygens, **8** shows a lower hydroxy IR absorption than **7** (diluted solution in CCl₄):⁴ 3625 cm⁻¹ for the *exo*-OH in **7**, but 3553 cm⁻¹ for *endo*-OH in **8**. A comparing look at the NMR spectra of **1**, **2**, **7** and **8** in DMSO- d_6 reveals that the protons of *exo* hydroxy functions in dianhydrohexitoles are shifted down-field compared to the *endo* ones. Together with a precise analysis of the coupling constants⁵ this NMR assignment is consistent with the IR data.

The *exo*-alcohol 7 was then converted to the phenylether 10 by nucleophilic substitution with 4-fluorobenzonitrile and subsequent TBAF-mediated deprotection. Unexpectedly, only 23% 10 were obtained, but 55% of 2,5-O,Obis-(4-cyanophenyl)-isosorbide. Due to the lability of the endo-OTBS group in 7 under the reaction conditions of the aromatic substitution (NaH, DMF, 60 °C), silyl cleavage occurred already at this stage resulting in the formation of 10. A nucleophilic aromatic substitution of alcohol 10 with 3-fluorobenzonitrile gave the bisnitrile (98%). Finally, the reaction of 11 in an one-pot procedure with LiHMDS^{6,7} and a subsequent hydrolysis using ethanolic HCl led to the target bisamidine **3**. After purification by preparative HPLC (CH₃CN/H₂O + 0.1% TFA) and lyophilization 3 could be isolated as bisamidinium-trifluoroacetic salt.7

The synthesis of bisamidine **4** was accomplished as depicted in Scheme 2. First, one hydroxy function of isomannide **2** was TBS-protected to the monosilylether **12** (43% yield).⁸ Since the *endo*-hydroxy group in isomannide **2** is intramolecularly hydrogen bound to the ether oxygens, the alcohol-alcoholate reactivity difference is low in this case. The free *endo*-OH in **12** was then inverted to the *exo*-phenylether by a Mitsunobu reaction with 3-hydroxybenzonitrile. After TBAF-mediated silyl ether cleavage isosorbide-based **14** was isolated in 79% yield. A detailed analysis of the NMR coupling constants⁵ of **14** proved the inversion of the stereocenter. After nucleophilic aromatic substitution of **14** with 4-fluorobenzonitrile to the bisnitrile **15** (93%), a subsequent bisamidine formation led to the target compound **4**.

Since the in vitro data of the bisamidines 3 and 4 showed high potency against fXa, we intended to optimize the new dianhydrohexitole lead structure with regard to better pharmacokinetic properties. Thus, one benzamidine moiety was replaced by a less basic, more lipophilic ortho- SO_2NH_2 -substituted biphenyl group (5 and 6, Figure 2).⁹ The synthesis of 5 started with the monobenzylation of 2 to mono-benzyl-isomannide 16, which was allowed to react with 4-fluoronitrobenzene to 17 in 95% yield. After reduction of the nitro group to an amine, the transformation into an aryl bromide or iodide was envisaged. Sandmeyer conditions with catalytic^{10,11} or stochiometric¹² amounts of copper salts were unsatisfying (maximum 39% for the bromide and 64% for the iodide). Alternatively, we tried a new procedure¹³ with KI, KNO₂ and HBr in DMSO. This gave reliably high yields of the iodide 18 of 80%. In the next step, 18 had to be cross-coupled to the biphenyl

Scheme 2 a) TBS-Cl, Im, DMF, 12 43%, 13 33%. b) $3-HOC_6H_4CN$, DEAD, PPh₃, THF; TBAF, THF, 79%. c) NaH, $4-FC_6H_4CN$, DMF, 15 93%. d) LiHMDS, THF; HCl, EtOH/H₂O, 48%.

compound **21**. A Suzuki protocol using standard conditions $[Pd(PPh_3)_4, PhMe, aq. Na_2CO_3, reflux]$ with 2-(*tert*butylaminosulfonyl)-phenylboronic acid (**19**) to build up the biphenyl moiety is described in the literature, ^{9a} but due to the great steric hindrance of the *ortho*-SO₂NH*t*Bu-substituent the yield was only 58%. We tried several Suzuki procedures¹⁴ to optimize this coupling step. But none of these methods gave satisfying yields (maximum 44%). As a consequence we examined Negishi conditions¹⁵ $[Pd_2(dba)_3, PPh_3, LiCl, THF reflux]$ using the corresponding aryl zinc intermediate **20** (from PhSO₂NH*t*-Bu by *ortho*-lithiation and transmetallation). This worked well and produced the coupling product **21** in 83% yield. Hydrogenolysis of the benzylether provided the alcohol **22**.

The synthesis of **5** continued with a Mitsunobu inversion using 3-hydroxybenzonitrile to yield the phenylether **23** (Scheme 3). For the conversion of the cyano function into an amidine group, a two-step procedure via amide oximes was most successful.¹⁶ First, the benzonitrile was transformed via the amide oxime followed by acetylation and a heterogenous hydrogenation with palladium on charcoal or Raney-nickel¹⁷ into the desired benzamidine. Finally, the *tert*-butyl protecting group was cleaved from the sulfone amide by treatment with a 10:1 mixture of TFA/anisole to produce **5**.^{16b}

The synthesis of the sulfone **6** is summarized in Scheme 4. Suzuki coupling of commercially available 2-(methylthio)benzeneboronic acid with iodide **18** gave thioether **24** with 70% yield.^{14e} Magnesium monoperoxo phthalate oxidation¹⁸ to the sulfone and hydrogenolytic benzyl ether cleavage gave the alcohol **25** (86% for both steps). The Mitsunobu reaction using the oxadiazolylphenol **26**¹⁹ led to an isosorbide-based precursor **27**, which could be converted to the amidine **6** by hydrogenolysis (96%).

The biological screening of the dianhydrosugar-based amidines 3-6 began with the potency determination against factor Xa. Subsequently, the activity against

Scheme 3 a) NaH, DMF, TBAI (cat.), BnBr, 48%. b) NaH, DMF, 4-FC₆H₄NO₂, 95%. c) H₂, MeOH/THF, Pd/C 100%; KI, KNO₂, DMSO, HBr, 81%. d) PhSO₂NH*t*Bu, *n*-BuLi, THF; ZnCl₂; LiCl, Pd₂(dba)₃, PPh₃, 83%. e) H₂, Pd(OH)₂/C, THF/MeOH, 100%. f) DIAD, PPh₃, 4-HOC₆H₄CN, THF, 46%. g) NH₂OH·HCl, Na₂CO₃, THF/EtOH/H₂O; MeOH/HOAc, Ac₂O; H₂, Pd/C; TFA, PhOMe, 53%.

Scheme 4 a) $2-CH_3SC_6H_4B(OH)_2$, $Pd_2(dba)_3$, PPh_3 , $Ba(OH)_2$, DME/H_2O , 70%. b) MMPP, $CH_2Cl_2/EtOH/H_2O$; H_2 , $Pd(OH)_2/C$, MeOH/EtOAc, 86%. c) DIAD, PPh_3 , THF, 92%. d) H_2 , Pd/C, MeOH/HOAc, 96%.

thrombin, trypsin and plasmin were measured in order to get informations about the general specifity for serine proteases. The in vitro data were measured as IC_{50} values (Table 1).

Table 1Biological Activity of the Dianhydrosugar-basedBenzamidines 3–6Against fXa, Thrombin, Trypsin and Plasmin

	IC ₅₀ /mM			
Compd.	fXa	Thrombin	Trypsin	Plasmin
3	0.18	>10	6.3	>10
4	0.15	>10	8.0	>10
5	1.0	>10	>10	>10
6	1.3	>10	>10	>10

The biological activities of the isosorbide-based bisamidines **3** and **4** with a substitution pattern 'inverse' to each other (*meta-/para*-benzamidine) are active against fXa and selective against thrombin and plasmin. But the trypsin-selectivity is low. Due to the favorable interactions of the biphenyl unit with the protein, the inhibitors 5 and 6 show not only high potency, but a better selectivity against trypsin. The reason might be, that the structural differences between the fXa and trypsin active sites play a greater role in the specific interactions with the biphenyl unit compared to a benzamidine.

In summary, a novel highly active and selective lead structure for fXa inhibitors was developed with rigid but stereodefined dianhydrohexitole scaffolds. A synthetic access to the class of isosorbide-based bisbenzamidines was developed with nucleophilic aromatic substitutions of fluorobenzonitriles, Mitsunobu reactions and amidine formation with LiHMDS as key steps. The biphenyl compounds **5** and **6** were synthesized from isomannide **2**. An optimized synthetic route to the aryl halide uses Suzuki and Negishi couplings to build up the biphenyl moiety. Despite a sterically demanding *ortho*-substituent an efficient novel Negishi protocol gave the target compound in very good yield. Current work is aimed to further optimize this lead structure in terms of higher biological activity and bioavailability.

Acknowledgment

This work was supported by Merck KgaA, Darmstadt, Germany.

References

- Davie, E. W.; Fujikawa, K.; Kisiel, W. *Biochemistry* 1991, 30, 10363.
- (2) (a) Rai, R.; Sprengeler, P. A.; Elrod, K. C.; Young, W. B. *Curr. Med. Chem.* 2001, 8, 101. (b) Samama, M. M. *Thromb. Res.* 2002, 106, V267. (c) Kaiser, B. *Cell. Mol. Life Sci.* 2002, 59, 189. (d) Leadley, R. J. Jr. *Curr. Top. Med. Chem.* 2001, 1, 151.
- (3) Osterkamp, F.; Wehlan, H.; Koert, U.; Wiesner, M.; Raddatz, P.; Goodman, S. L. *Tetrahedron* **1999**, *55*, 10713.
 (4) Discrete the second sec
- (4) Brimacombe, J. S.; Foster, A. B.; Stacey, M.; Whiffen, D. H. *Tetrahedron* 1958, 4, 351.
 (5) H. G. C. L. Ch. 10(0), 17
- (5) Hopton, F. J.; Thomas, G. H. S. Can. J. Chem. 1969, 47, 2395.
- (6) Boeré, R. T.; Oakley, R. T.; Reed, R. W. J. Orgmet. Chem. 1987, 331, 161.
- (7) (a) General procedure for the preparation of bisamidines 3and 4 from bisnitriles by the LiHMDS⁶ method: A ovendried Schlenck-flask equipped with a rubber septum is charged with HMDS (2.6 mmol) in THF (3 mL) under argon atmosphere and cooled by an ice bath. After addition of n-BuLi (3.0 mmol, 2.5 M in hexane) and stirring for 1 h a solution of the bisnitrile (0.52 mmol) in THF (3 mL) was added. The reaction mixture turned dark red or brown. It was stirred for 24 h at room temperature and then quenched with 6 M HCl in ethanol (2 mL). After 1 h the solvents were removed in vacuo. The residue was solved in few MeOH and purified by preparative HPLC (Rainin RP18, H₂O/CH₃CN mixtures with 0.1% TFA). The bisamidine was isolated as a TFA salt by lyophilization resulting in a colorless powder. (b) Analytical data of 3 and 4: 2-O-(4'-Amidinophenyl)-5-O-(3"-amidinophenyl)-1,4:3,6-dianhydro-D-sorbitol trifluoroacetic acid salt (3):

trifluoroacetic acid salt (4): $[\alpha]_{D}^{21} = +46, [\alpha]_{578}^{21} = +49, [\alpha]_{546}^{21} = +55, [\alpha]_{436}^{21} = +94,$ $[\alpha]_{365}^{21} = +157 (c 0.267, H_2O); {}^{1}H NMR (300 MHz, DMSO-d_6) \delta = 3.86-4.10 (m, 4 H, 1-H_2, 6-H_2), 4.60 (d,$ *J*= 4.7 Hz, 1 H, 3-H), 5.00-5.15 (m, 3 H, 2-H, 4-H, 5-H), 7.18 (pd,*J*= 9.0 Hz, 2H, 2"-H, 6"-H), 7.34-7.45 (m, 3 H, 2'-H, 4'-H, 6'-H), 7.53 (t,*J*= 7.9 Hz, 1 H, 5'-H), 7.83 (pd,*J* $= 8.9 Hz, 2 H, 3"-H, 5"-H), 9.00-9.35 [m, 8 H, 2 × C(NH_2)_2]; {}^{13}C NMR (75 MHz, DMSO-d_6) \delta = 70.9, 72.8 (C-1, C-6), 77.3, 80.8, 81.6,$

86.0 (C-2, C-3, C-4, C-5), 114.6 (C-2'), 115.7 (C-2", C-6"), 120.5, 120.7 (C-4', C-6'), 120.6 (C-4"), 129.6 (C-3'), 130.6 (C-3", C-5"), 158.0 (C-1'), 161.1 (C-1"), 164.9, 165.5 [2 \times C(NH₂)₂]; HRMS (FAB): *m*/*z* calcd. 383.1719, found 383.1715 (C₂₀H₂₃N₄O₄, M + H⁺).

- (a) Quan, M. L.; Liauw, A. Y.; Ellis, C. D.; Pruitt, J. R.; Carini, D. J.; Bostrom, L. L.; Huang, P. P.; Harrison, K.; Knabb, R. M.; Thoolen, M. J.; Wong, P. C.; Wexler, R. R. J. Med. Chem. 1999, 42, 2752. (b) Quan, M. L.; Ellis, C. D.; Liauw, A. Y.; Alexander, R. S.; Knabb, R. M.; Lam, G.; Wright, M. R.; Wong, P. C.; Wexler, R. R. J. Med. Chem. 1999, 42, 2760. (c) Fevig, J. M.; Pinto, D. J.; Han, Q.; Quan, M. L.; Pruitt, J. R.; Jacobson, I. C.; Galemmo, R. A.; Wang, S. A.; Orwat, M. J.; Bostrom, L. L.; Wong, P. C.; Lam, P. Y. S.; Wexler, R. R. Bioorg. Med. Chem. Lett. 2001, 11, 641. (d) Jia, Z. J.; Wu, Y.; Huang, W.; Goldman, E.; Zhang, P.; Woolfrey, J.; Wong, P.; Huang, B.; Sinha, U.; Park, G.; Reed, A.; Scarborough, R. M.; Zhu, B.-Y. Bioorg. Med. Chem. Lett. 2002, 12, 1651. (e) Su, T.; Wu, Y.; Doughan, B.; Jia, Z. J.; Woolfrey, J.; Huang, B.; Park, G.; Sinha, U.; Scarborough, R. M.; Zhu, B.-Y. Bioorg. Med. Chem. Lett. 2001, 11, 2947. (f) Pruitt, J. R.; Pinto, D. J.; Estrella, M. J.; Bostrom, L. L.; Knabb, R. M.; Wong, P. C.; Wright, M. R.; Wexler, R. R. Bioorg. Med. Chem. Lett. 2000, 10, 685.
- (10) Courtin, A. Helv. Chim. Acta 1983, 66, 68.
- (11) Dains, F. B.; Eberly, F. Org. Synth., Coll. Vol. II; Wiley: New York, **1943**, 355.
- (12) Doyle, M. P.; Siegfried, B.; Dellaria, J. F. J. Org. Chem. 1977, 42, 2426.
- (13) Baik, W.; Kim, J. M.; Kim, Y. S.; Lee, S. W. European Symposium on Organic Chemistry 12; Poster presentation: Groningen Netherlands, 2001.
- (14) Coupling of boronic acid 19 using several Suzuki methods:
 (a) Miyaura, N.; Suzuki, A. *Chem. Rev.* 1995, *95*, 2457; standard conditions: PdCl₂(PPh₃)₂, Bu₄NBr (cat.), aq. Na₂CO₃, PhMe reflux, 44%. (b) Wallow, T. I.; Novak, B. M. *J. Org. Chem.* 1994, *59*, 5034; Pd(OAc)₂, aq. Na₂CO₃, THF reflux, 0%. (c) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. *J. Am. Chem. Soc.* 1999, *121*, 9550; Pd(OAc)₂, 2-(di-*tert*-butylphosphino)-biphenyl, KF, THF reflux, 0%. (d) Alo, B. I.; Kandil, A.; Patil, P. A.; Sharp, M. J.; Siddiqui, M. A.; Snieckus, V. *J. Org. Chem.* 1991, *56*, 3763; Pd₂(dba)₃, PPh₃, aq. Na₂CO₃, DME reflux, 35%.
 (e) Watanabe, T.; Miyaura, N.; Suzuki, A. *Synlett* 1992, 207; Pd₂(dba)₃, PPh₃, Ba(OH)₂, DME/H₂O reflux, 39%.
- (15) (a) Savage, S. A.; Smith, A. P.; Fraser, C. L. J. Org. Chem. 1998, 63, 10048. (b) Negishi coupling of aryl iodide 18: An oven-dried Schlenk-flask equipped with a rubber septum was charged with 1.29 g (6.0 mmol) PhSO₂NHt-Bu in 15 mL THF under an argon atmosphere and cooled in an ice bath. After addition of 8.2 mL n-BuLi (1.6 M in hexanes) the solution was stirred for 2 h. A thick, pale yellow precipitate formed. 1.82 g (13.4 mmol) ZnCl₂ beads were added (the precipitate dissolves) and 1 h later a solution of 2.19 g (5.0 mmol) 18, 185 mg (0.2 mmol) Pd₂(dba)₃ and 262 mg (1.0 mmol) PPh₃ in 10 mL THF was transferred into the reaction mixture. After addition of 424 mg (10.0 mmol) dried LiCl the reaction mixture was refluxed for 70 h. 100 mL sat. aq. NH₄Cl and 100 mL MTBE were added and the aqueous layer was extracted three times with MTBE. The combined organic fractions were washed with brine and dried over MgSO₄. Purification by flash chromatography (pentane/ MTBE 2:1→1:1) yielded 2.18 g (4.2 mmol, 83%) pure 21. (c) Analytical data of 2-O-benzyl-5-O-[4'-(2"-tertbutylamino-sulfonylphenyl)-phenyl]-1,4:3,6-dianhydro-Dmannitol (21): colorless solid; Mp 62 °C; $[\alpha]_D^{20} = +128$, $[\alpha]_{578}^{20} = +133, [\alpha]_{546}^{20} = +152$ (*c* 1.008, CHCl₃); ¹H NMR (500 MHz, CDCl₃) $\delta = 0.98$ [s, 9 H, C(CH₃)₃], 3.58 (s, 1 H, NH), 3.78 (t, J = 8.7 Hz, 1H, 1-H), 3.94 (dd, J = 8.6 Hz, 7.0 Hz, 1H, 1-H), 4.06–4.12 (m, 2H, 2-H, 6-H), 4.20 (dd, J = 9.4

- Hz, 6.0 Hz, 1 H, 6-H), 4.60 (d, J = 11.9 Hz, 1 H, CHHPh), 4.62 (t, J = 4.7 Hz, 1 H, 3-H), 4.78 (d, J = 11.9 Hz, 1 H, CHHPh), 4.79–4.85 (m, 2 H, 4-H, 5-H), 7.04 (pd, J = 8.7 Hz, 2H, 2'-H, 6'-H), 7.29 (dd, *J* = 7.7 Hz, 1.0 Hz, 1 H, 6'''-H), 7.29-7.40 (m, 5 H, Ph-H), 7.43-7.47 (m, 3 H, 3'-H, 5'-H, 4^{'''}-H), 7.53 (td, *J* = 7.6 Hz, 1.2 Hz, 1H, 5^{'''}-H), 8.15 (dd, *J* = 7.9 Hz, 1.0 Hz, 1H, 3^{$\prime\prime\prime$}-H); ¹³C NMR (75 MHz, CDCl₃) δ = 29.7 [C(CH₃)₃], 54.3 [C(CH₃)₃], 71.0, 71.6, 72.6 (C-1, C-6, CH₂Ph), 77.9, 78.9, 80.6, 80.8 (C-2, C-3, C-4, C-5), 114.9 (C-2', C-6'), 127.6, 128.1 (C-3", C-6"), 127.9, 128.4 (Ph-C), 131.1 (C-3', C-5'), 131.7, 132.4 (C-4", C-5"), 132.2 (C-4'), 137.6 (Ph-C_q), 139.4 (C-1"), 142.2 (C-2"), 158.1 (C-1'); IR(film): 3371, 2973, 2876, 1607, 1514, 1467, 1324, 1245, 1152, 1128, 1076, 988, 834, 765 cm⁻¹; Anal. calcd. for C₂₉H₃₃NO₆S (523.65) C 66.52, H 6.35, N 2.68, found C 66.41, H 6.01, N 2.48.
- (16) (a) Judkins, B. D.; Allen, D. G.; Cook, T. A.; Evans, B.; Sardharwala, T. E. Synth. Commun. 1996, 26, 4351. (b) Preparation of benzamidine **5** via amide oxime: Benzonitrile 23 (1 mmol) was dissolved in 10 mL THF/ EtOH (1:1). After addition of NH₂OH·HCl (3 mmol), Na₂CO₃ (2 mmol) and 10 mL water the mixture was heated to 80 °C and stirred for 20 h (TLC monitoring). After cooling 20 mL water was added and the aqueous layer was extracted three times each with 20 mL CH₂Cl₂. The combined organic fractions were dried over MgSO4 and the solvents were removed in vacuo. The crude amide oxime was then dissolved in 30 mL MeOH/HOAc (1:1) and Ac₂O (2 mmol) was added. After 30 min Pd/C was added and the reaction mixture was vigorously stirred under hydrogen atmosphere (HPLC monitoring, Rainin RP18, H₂O/CH₃CN mixtures + 0.1% TFA). Finally, the solution was filtrated over a pad of celite and the solvents were completely removed in vacuo. The crude bezamidine was then stirred under an argon

atmosphere in dry TFA/anisole (10:1) for 24 h. Purification by flash chromatography (CH₂Cl₂/MeOH/TFA, 100:2:1 \rightarrow 100:5:1), concentration of all product fractions and subsequent precipitation with MTBE/hexane gave 5 as TFA salt. (c) Analytical data of 2-O-(4'-amidinophenyl)-5-O-[4"-(2"'-aminosulfonylphenyl)-phenyl]-1,4:3,6-dianhydro-Dsorbitol trifluoroacetic acid salt (5): colorless solid; $[\alpha]_D^{20} =$ +51, $[\alpha]_{578}^{20} = +54$, $[\alpha]_{546}^{20} = +61$, $[\alpha]_{436}^{20} = +108$, $[\alpha]_{365}^{20} =$ +174 (c 0.407, CH₂Cl₂/MeOH, 1:1); ¹H NMR (500 MHz, DMSO- d_6) $\delta = 3.56$ (d, J = 10.4 Hz, 1 H, 1-H), 3.89 (dd, J =9.4 Hz, 5.4 Hz, 1 H, 6-H), 4.07 (dd, *J* = 9.4 Hz, 5.7 Hz, 1 H, 6-H), 4.11 (dd, J = 10.4 Hz, 3.8 Hz, 1 H, 1-H), 4.62 (d, J = 5.1 Hz, 1 H, 3-H), 4.97 (q, J = 5.5 Hz, 1 H, 5-H), 5.04 (t, J = 5.0 Hz, 1 H, 4-H), 5.11 (d, J = 3.3 Hz, 1 H, 2-H), 7.02 (pd, J = 8.7 Hz, 2 H, 2"-H, 6"-H), 7.13 (s, 2 H, SO₂NH₂), 7.20 (pd, *J* = 8.9 Hz, 2 H, 2'-H, 6'-H), 7.29 (d, *J* = 7.5 Hz, 1 H, 6^{'''}-H), 7.32 (pd, J = 8.7 Hz, 2 H, 3"-H, 5"-H), 7.53 (t, J = 7.5 Hz, 1 H), 7.59 (t, J = 7.4 Hz, 1 H, 4^{'''}-H, 5^{'''}-H), 7.83 (pd, J = 8.8 Hz, 2 H, 3'-H, 5'-H), 8.01 (d, J = 7.8 Hz, 1 H, 3^{'''}-H), 9.01/ 9.15 [s/s, 4 H, C(NH₂)₂]; ¹³C NMR (75 MHz, DMSO- d_6) δ = 70.9, 71.7 (C-1, C-6), 77.1, 80.7, 81.8, 86.0 (C-2, C-3, C-4, C-5), 114.3 (C-2", C-6"), 115.7 (C-2', C-6'), 120.6 (C-4'), 127.4 (C-3^{'''}, C-6^{'''}), 130.5, 130.6 (C-3', C-5', C-3", C-5"), 131.6, 132.7 (C-4", C-4^{'''}, C-5^{'''}), 139.8 (C-1^{'''}), 142.4 (C-2""), 157.3 (C-1"), 161.2 (C-1'), 164.9 [C(NH₂)₂]; HRMS (ESI) m/z calcd. 496.1542, found 496.1544 ($C_{25}H_{26}N_3O_6S$, $M + H^{+}$).

- (17) Pd/C is preferred, since the use of Raney-nickel in MeOH/ AcOH leads to the formation of minor amounts of Ni(OAc)₂, which is difficult to remove by chromatography.
- Brougham, P.; Cooper, M. S.; Cummerson, D. A.; Heaney, H.; Thompson, N. *Synthesis* 1987, 1015.
- (19) Krone, W. Chem. Ber. 1891, 24, 834.