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2-Phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole derivatives:
New potent inhibitors of fMLP-induced neutrophil chemotaxis
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Abstract—It is well known that both acute and chronic autoimmune inflammatory disorders arise following a breakdown in control
of neutrophil activation and recruitment. In the search for new anti-inflammatory agents, we synthesized some new 2-phenyl-2,3-
dihydro-1H-imidazo[1,2-b]pyrazole derivatives and tested them in vitro in order to evaluate their ability to interfere with human
neutrophil functions. All tested compounds showed strong inhibition of fMLP-OMe-induced chemotaxis, although they appeared
unable to block degranulation and the fMLP-OMe-induced respiratory burst, and were inactive in binding experiments.
� 2007 Elsevier Ltd. All rights reserved.
R

Inflammation is the immune system’s first response to
infection or irritation. The white blood cells (leukocytes)
extravasate from the capillaries into tissue and continue
as phagocytes, picking up bacteria and cellular debris. If
the injurious agent persists, or the control of cellular
recruitment breaks down, both acute and chronic auto-
immune inflammatory disorders, such as asthma, rheu-
matoid arthritis, multiple sclerosis and inflammatory
bowel disease, will ensue. In recent years, remarkable
efforts have been made in order to clarify the complex
regulation pathways involved in acute inflammation,
during which neutrophils are the main cells infiltrated.
Their recruitment to sites of inflammation depends upon
a gradient of locally produced chemotactic factors. The
bacterial peptide N-formyl-methionyl-leucyl-phenylala-
nine (fMLP) has been identified as potent leukocyte
chemoattractant.1,2 It acts by binding classical G-pro-
tein-coupled receptors, first identified in 1976 and then
classified as high-affinity (FPR) or low-affinity (FPRL1,
FPR-like 1) fMLP receptors.3,4 Downstream of these, a
number of signalling systems are activated. The intracel-
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lular FPR-signalling cascade includes activation of
phosphoinositide 3-Kinases (PI3Ks), phospholipase A
(PLA), phospholipase D (PLD) and mitogen activated
protein kinases (MAPKs).5 In recent years, many aca-
demics, medicinal chemists and pharmaceutical research
divisions have been involved in the search for new mol-
ecules able to interfere in neutrophil upregulation in
order to exploit their therapeutic potential.

In this context, we recently synthesized a number of pyr-
azolyl-ureas (see Fig. 1), beginning from the interesting
intermediate 1 (see Scheme 1). These compounds inhib-
ited the IL8-induced, but not the fMLP-induced, neu-
trophil chemotaxis at nanomolar concentration.6a–c

Synthetic rearrangement of the same intermediate 1 gave
new interesting 2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]
pyrazoles, which were preliminarily tested in chemotaxis
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Figure 1. General structure of N-Pyrazolyl-N 0alkyl/benzyl/phenyl-

ureas, potent inhibitors of IL8-induced neutrophil chemotaxis.6a–c
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Scheme 1. Synthesis of title compounds. Reagents and conditions: (a) Ethyl ethoxymethylenecyanoacetate, anhyd toluene, 70–80 �C, 8 h; (b) Concd.

H2SO4, rt, 15 min.; then, aq. NH3, 0 �C; (c) 2M NaOH, 120 �C, 2h; then, CH3COOH until pH 5.5; (d) Anhyd. DMF, excess amines, anhyd Et3N,

DPPA, 30–60 �C,12 h; (e) 3.5 M NaOH, ethanol, reflux 4 h then 1M HCl until pH 5.5; (f) Heating at 190 �C until complete development of CO2; (g)

Ethoxymethylenemalononitrile, anhyd ethanol, 70–80 �C, 6 h; (h) 2M NaOH, ethanol/water (50%), reflux, 2 h; (i) Heating at 190 �C until complete

development of CO2.
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assays. The positive results obtained in these tests
prompted us to develop a new series of 7-substituted
derivatives, since no imidazo[1,2-b]pyrazoles have yet
been reported as anti-inflammatory agents.

Here we report the synthesis of 2-phenyl-2,3-dihydro-
1H-imidazo[1,2-b]pyrazoles 2, 3, 4a–h, 7 and 10, and
the results of a preliminary biological study aimed at
evaluating their ability to interfere in neutrophil activa-
tion and recruitment.

The synthetic methods used to obtain the title com-
pounds are reported in Scheme 1. Compound 1, ob-
tained from 2-hydrazino-1-phenylethanol with ethyl
ethoxymethylenecyanoacetate as previously reported,7

was treated with concentrated sulfuric acid at 0 �C to
give the 2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyra-
zole-7-carboxylic acid ethyl ester (2).8 Compound 39

was prepared by hydrolysis in an alkaline medium of
compound 2. Since compound 2 reacts slightly with pri-
mary or secondary amines to give amido derivatives, we
prepared compounds 4a–h by reaction of compound 3 in
anhydrous dimethylformamide (DMF) with an excess of
the suitable amine in the presence of anhydrous triethyl-
amine and diphenylphosphorylazide (DPPA).10 Several
modes of reaction are available to DPPA, depending
upon the co-reactant and reaction conditions.11 In this
case, the Curtius rearrangement was not observed
because the coupling of the excess amine to the interme-
diate carboxy-diphenylphosphorazidate prevented for-
mation of the carboxy-azide.

The intermediate compounds 5 and 6 were prepared by
hydrolysis and subsequent decarboxylation of com-
pound 1, as previously reported.12 Treatment with con-
centrated sulfuric acid yielded the 2-phenyl-2,3-dihydro-
1H-imidazo[1,2-b]pyrazole (7).13 The same compound
can be obtained from compound 3 by decarboxylation
at high temperature.

Starting from 2-hydrazino-1-phenylethanol, we ob-
tained the intermediate 5-amino-1-(2-hydroxy-2-phenyl-
ethyl)-1H-pyrazole-4-carbonitrile (8) by condensation
with ethoxymethylenemalononitrile.14 Compound 8
was then hydrolysed in an alkaline ethanol/water solu-
tion to 5-amino-1-(2-hydroxy-2-phenylethyl)-1H-pyra-
zole-4-carboxamide (9),15 which was finally cyclized to
2-phenyl-2,3-dihydro-1H-imidazo[1,2-b]pyrazole-7-car-
boxamide (10) by the same procedure used for com-
pounds 2 and 7.16

The anti-inflammatory properties of compounds 2, 3,
4a–h, 7 and 10 were determined as their ability to inhibit
functions such as superoxide anion (O�2 ) production,
granule enzyme release and chemotaxis, in neutrophils
activated by fMLP-OMe (a synthetic derivative of
fMLP endowed with the same chemoattractant activity)
following the methods already reported17 and summa-
rised here.18a–d

The antagonist data (percentage activity) were obtained
by comparing nmoles of O�2 production, the percentage
of lysozyme released and the chemotactic index (% C.I.)
in the absence (100%) and in the presence of the com-
pounds tested. Due to their complete inactivity in super-
oxide anion production, as well as in lysozyme release,
we report here only the results of the influence of
increasing concentrations of these compounds on



Table 1. IC50 values of compounds 2, 3, 4a–h, 7, 10, CSA (positive

control) and DMSO (negative control) in fMLP-OMe-induced

chemotaxis

Compound IC50 (nM)

2 2400 ± 220

3 1.16 ± 0.10

7 29 ± 3

10 3.67 ± 0.42

4a 0.48 ±0.05

4b 7.52 ± 0.72

4c 9000 ± 850

4d 1.48± 0.15

4e 300 ± 32

4f 1.01 ± 0.09

4g 10,000 ± 1500

4h 27 ± 2

CSA 0.047 ± 0.006

DMSO >10,000
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chemotaxis. These effects are expressed as dose-depen-
dent curves (Fig. 2), induced by 10 nM fMLP-OMe,
and as antagonist concentrations inhibiting fMLP-
OMe-induced chemotaxis by 50% (IC50) (Table 1). Data
were compared with positive (cyclosporine A, CSA)19,20

and negative (DMSO, blank) controls. Functional
experiments (n = 6) were calculated by nonlinear regres-
sion analysis using the equation for a sigmoid concen-
tration response curve (Graph Pad Prism, San Diego,
CA, USA).

In addition, competition binding experiments were car-
ried out18e to establish the relative ability of the synthe-
sized compounds to compete for [3H]-fMLP binding,
following previously reported methods.21

The inhibitory binding constant, Ki, values were also
calculated from the IC50 values according to the Cheng
and Prusoff equation.22

All tested compounds were found to be ineffective as
antagonists in superoxide anion production, as well as
in granule enzyme release (data not shown).

However, the results of chemotaxis experiments were
extremely interesting. In fact, all compounds inhibited
fMLP-OMe-induced neutrophil chemotaxis in a
dose-dependent manner, as evidenced by the curves in
Figure 2.
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Figure 2. Effect of compounds 2, 3, 7, 10, CSA (positive control),

DMSO (negative control) and 4a–h on fMLP-OMe-activated neutro-

phil chemotaxis. Data are expressed as a percentage of the C.I.
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value.
The most active compounds in this respect were found
to be 4a, 4f, 4d, 3 and 10, with IC50s of 0.48, 1.01,
1.48, 1.16 and 3.67 nM, respectively (Table 1). On the
other hand, compounds 4b, 4h and 7 were also shown
to be active, with IC50s ranging from 7.52 to 29 nM.
An order of potency of 4e (300 nM) > 2 > 4c > 4g
(10,000 nM) was found for the remaining compounds.

In binding studies, fMLP-OMe was found to be the
most potent compound (Ki = 42 ± 5 nM), but not all
of the compounds tested were efficacious in displacing
[3H]-fMLP from its specific binding sites (Table 2). This
is not surprising if we hypothesise that the formylpep-
tide receptor undergoes conformational changes depen-
dent on the type of cellular response that it must
evoke.23 In addition, it has long been known that the
transduction pathway underlying the chemotactic
response is different from those responsible for O�2 pro-
duction or lysozyme release.24,25 However, the existence
of at least three formylpeptide receptor subtypes has
been demonstrated in humans. It has also been reported
that some of these receptor subtypes show different
affinity values for fMLP26,27 so we can theorize that
the different antagonist activity exerted by the molecules
towards the various neutrophil responses could be the
consequence of their interaction with different states
and/or different subtypes of the FPR. There are many
compounds which are able to inhibit neutrophil
responses, and these act by impairing some of the differ-
ent steps in these transduction pathways.28 However, the
major limitation in their use as therapeutic agents for
the treatment of inflammation-related diseases is that
these molecules are not selective and may inhibit other
cellular responses at the same time. Nevertheless, the
Table 2. [3H]-fMLP competition binding experiments on human

neutrophils using the tested compounds 2, 3, 4a–h, 7 and 10. Data

are taken from a series of three independent experiments

Compound Ki (nM)

fMLP 42 ± 5

2, 3, 4a–h, 7, 10 >10,000

Non-specific binding was determined in the presence of 10 ll fMLP.
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development of receptor antagonists of neutrophil stim-
ulators, able to transiently inhibit cellular responses,
should improve knowledge about leukocyte chemoat-
tractant functions and could be of clinical relevance.
Additional studies are therefore planned to further
explore this topic.

Little information on SAR can be obtained owing to the
small number of compounds. At the moment it seems
reasonable to affirm that the presence of a tertiary amide
or carboxyethyl ester in position 7 results in less active
compounds (see compounds 4c, 4e and 2), with com-
pound 4d (piperidinyl-amide) as the exception. The
introduction in the amide group of a benzyl is detrimen-
tal (see compound 4g) but, if a piperazine is employed as
a spacer between the benzyl and carbonyl groups (see
compound 4h), only a slight reduction in activity is ob-
served. On the other hand, the steric hindrance of the
substituent in position 7 is not a decisive factor in deter-
mining the activity, as the most active compounds (4a
and 4f) show.

In conclusion, further investigation is required as many
structural modifications have been planned in order to
obtain more information for SAR studies.
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