

pubs.acs.org/OrgLett

Letter

Copper-Catalyzed Aerobic Oxidative Cyclization of 2-Alkynylanilines with Nitrosoarenes: Synthesis of Organic Solid Mechanoluminescence Compounds of 4-Oxo-4*H*-cinnolin-2-ium-1ide

Xiaolan Fang, Ji Cao, Weijie Ding, Huile Jin, Xiaochun Yu,* and Shun Wang*

ABSTRACT: An efficient Cu(I)/DMAP/air system for the one-pot synthesis of 4-oxo-4*H*-cinnolin-2-ium-1-ides, which are often difficult to prepare by traditional routes from substituted 2-alkynylanilines and nitrosoarenes, was developed. These 4-oxo-4*H*-cinnolin-2-ium-1-ides have practical applications as mechanoluminescent materials. Preliminary mechanistic experiments were performed, and a plausible mechanism for this tandem process is proposed. The use of an inexpensive copper catalyst and molecular oxygen as the oxygen source and the oxidant make this an attractive green protocol with potential synthetic applications.

U nique chemical and biological activities have conferred quaternary ammonium salts many outstanding biofunctional properties.¹ Cinnolinium salts being an example, they have been widely used as core functional structures in desired medical and gene compounds (Figure 1).² The development of methods for the synthesis of cinnolinium salts has therefore attracted much attention. The classical method for synthesizing these compounds involves S_N2 -type reactions of cinnolines with alkyl halides, but such a synthetic approach is hardly industrialized due to the halide pollution and less availability of reactants. Furthermore, *N*-aryl-substituted salts cannot be

Figure 1. Representative cinnolinium salts with pharmaceutically and biologically active.

synthesized via this route.³ Although Heck et al. proposed a novel approach for the synthesis of cocinnolinium salts through the palladium(II) coordinated azobenzenes (Scheme 1a),⁴ this method is not catalytic and results in a relatively low yield.

Transition-metal-catalyzed cross-coupling reactions are powerful synthetic methods for the construction of useful chemicals and extensively adopted by synthetic chemists because of their good step and atom economies.⁵ Meanwhile, azobenzenes and their derivatives demonstrated superior properties due to their cis-trans transformation.⁶ As a result, the synthesis of heterocyclic compounds via transition-metalcatalyzed aromatic ortho C-H bond activation and cyclization reactions of azobenzenes has been widely studied.⁷ Cheng and You independently developed oxidative C-H activation/ cyclization coupling reactions of alkynes with azo compounds affording cinnolinium salts (Scheme 1b).^{8a-c} Chuang's group developed a one-pot cascade synthesis of cinnolinium salts via palladium(II)-catalyzed C-H bond activation of alkenes and 2-azobiaryl compounds (Scheme 1c).^{8d} Li and co-workers used diazo compounds as effective coupling partners in rhodium-

Received: December 18, 2020 Published: February 1, 2021

pubs.acs.org/OrgLett

Scheme 1. Reaction Design for the Construction of 4-Oxo-4H-cinnolin-2-ium-1-ides

(III)-catalyzed C-H transformations to cinnolinium salts.⁹ Wang's group reported Rh(III)-catalyzed oxidative coupling/ cyclization reactions of Boc-arylhydrazines and alkynes to afford cinnolinium salts.¹⁰ However, in many cases, the practicality of these methods is offset by the excessive use of strong oxidants, expensive additives, and noble-metal catalysts, the narrow reaction scope, and the laborious workups needed for side-product removal. The development of convenient, practical methods for accessing diverse cinnolinium salt skeletons from stable and easily obtained substrates is therefore important. Inspired by previous research, we envisioned that 2alkynyl-substituted azobenzenes formed in situ from 2alkynylanilines and aromatic nitroso compounds would undergo intramolecular electrophilic addition to yield cinnolinium salts. Here, we report a copper-catalyzed condensation/cycloaddition cascade for the synthesis of organic solid mechanoluminescence compounds of 4-oxo-4Hcinnolin-2-ium-1-ides from 2-alkynylanilines and aromatic nitroso compounds (Scheme 1d).

Therefore, we initiated our studies by the synthesis of 4-oxo-2,3-diphenyl-4H-cinnolin-2-ium-1-ide (3a) from 2-(phenylethynyl)aniline (1a) and nitrosobenzene (2a) for optimization experiments. First, the screening of copper sources showed that CuCl was superior in furnishing the aiming product 3a in 66% isolated yield (Table 1, entries 1-6). The structure of 3a was further confirmed by X-ray diffraction analysis (CCDC 2045163; Figure 2). This reaction did not work while Cu(0) such as copper powder was used (Table 1, entry 6). A series of nitrogen ligands were then screened with 4-dimethylaminopyridine (DMAP) giving the best 69% yield (Table 1, entries 7-10). A survey of solvents revealed that the solvent effect did not significantly influence the current transformation, and the use of dimethylsulfoxide (DMSO), CH₃CN, 1,4-dioxane, and hexane afforded the desired product 3a in 58% to 63% yield (Table 1, entries 11-

Table 1. Conditions Screening^a

NH ₂	+	NO Catalyst, Addative Solvent, Temp		
	1a :	2a	3a	
entry	catalyst ($x \mod \%$)	additive (x equiv)	solvent	yield ^d
1	CuCl (10)	pyridine (1.0)	toluene	66%
2	CuBr (10)	pyridine (1.0)	toluene	52%
3	CuI (10)	pyridine (1.0)	toluene	N.D.
4	$CuCl_2$ (10)	pyridine (1.0)	toluene	N.D.
5	$Cu(OAc)_2$ (10)	pyridine (1.0)	toluene	54%
6	Cu powder (10)	pyridine (1.0)	toluene	N.D.
7	CuCl (10)	o-phenanthroline (1.0)	toluene	37%
8	CuCl (10)	$Et_{3}N$ (1.0)	toluene	61%
9	CuCl (10)	2,2'-bipyridine (1.0)	toluene	37%
10	CuCl (10)	DMAP (1.0)	toluene	69%
11	CuCl (10)	DMAP (1.0)	DMSO	62%
12	CuCl (10)	DMAP (1.0)	CH ₃ CN	63%
13	CuCl (10)	DMAP (1.0)	dioxane	59%
14	CuCl (10)	DMAP (1.0)	hexane	58%
15	CuCl (10)	DMAP (0.6)	toluene	74%
16	CuCl (10)	DMAP (0.4)	toluene	86%
17	CuCl (10)	DMAP (0.2)	toluene	62%
18	CuCl (10)	DMAP (0)	toluene	N.D.
19	CuCl (5)	DMAP (0.4)	toluene	28%
20	CuCl (20)	DMAP (0.4)	toluene	84%
21 ^b	CuCl (10)	DMAP (0.4)	toluene	69%
21 ^c	CuCl (10)	DMAP (0.4)	toluene	85%

^{*a*}Conditions: 1a (0.5 mmol), 2a (0.75 mmol), catalyst (x mol %), additive (x equiv), toluene (1.5 mL), air, 100 °C, 24 h. ^{*b*}80 °C. ^{*c*}120 °C. ^{*c*}N.D.: Not detected.

Figure 2. X-ray crystal structure of product 3a.

14). The amount of additive was next tested, and the yield increased to 86% when 0.4 equiv of DMAP was used (Table 1, entries 15–17). The reaction did not work when the ligand was absent, a significant amount of azobenzene was formed instead (Table 1, entry 18). It was found that 10 mol % of CuCl was sufficient to carry out this reaction successfully (Table 1, entries 19 and 20). However, the yield of 3a decreased to 69% when the temperature was elevated to 120 °C (Table 1, entry 21). Therefore, the optimal reaction conditions can be summarized as follows: 0.5 mmol of 2-(phenylethynyl) aniline and 0.75 mmol of nitrosobenzene in toluene (1.5 mL) with CuCl catalyst (10 mol %), DMAP (40 mol %), at 100 °C for 24 h under an air atmosphere.

With the optimized reaction conditions in hand, the scope of this copper-catalyzeddehydration/cycloaddition cascade reaction to 4-oxo-4*H*-cinnolin-2-ium-1-ide was investigated. The scope of the R group attached to the alkyne was tested with

aryl (1b-1i), heteroaryl (1j, 1k), alkyl (1l), and alkenyl (1m) functionalities, as shown in Scheme 2. The reaction worked

^aConditions: 1 (0.5 mmol), 2 (0.75 mmol), CuCl (10 mol %), DMAP (40 mol %), toluene (1.5 mL), air, 100 °C, 24 h, isolated yield.

well with these functional groups, affording the desired products **3b**, **3c**, **3d**, **3e**, **3g**, **3h** and **3i** in 71–92% yields irrespective of the electronic properties. The structure of **3g** was confirmed by X-ray diffraction analysis (CCDC 2045166; Figure 3). The steric effect of the substituent had an obvious impact on the reaction. For example, treatment of **2a** with **1f** provided **3f** in 61% yield compared with that of **3e**. The reaction worked smoothly with heteroaryl-containing compounds such as **1j** and **1k**, affording the desired compound **3j** and **3k** in 76% and 75% yield, respectively. The current conditions gave a considerable yield of the desired product **31**

Figure 3. X-ray crystal structure of product 3g.

(86%) when an alkyl derivative such as cyclopropyl was performed. However, the reaction failed to deliver the desired product when an alkenyl derivative such as **1m** was used as the substrate.

Next, substrates 1n-1v with a diverse substituted R¹ group of the *o*-alkynylanilines were tested. The reaction proceeded well when the aryl was attached with 4-Me, 4-F, 4-Br, 4-NO₂, 4-CN, 4-COOCH₃, 5-Cl, 3-Cl, and 3,5-dichloro to afford the corresponding derivatives 3n-3v in 59–86% yields. Next, representative examples of substituted nitrosobenzenes 2 were examined to synthesize 4-oxo-4*H*-cinnolin-2-ium-1-ide derivatives 3w-3zb. The results showed that the steric bulky nitrosobenzene such as 2-methyl and 2-methoxyl nitrosobenzene could not go through the current transformation smoothly.

We investigated the crystal structure of 3a and found that the dihedral angles between the peripheral phenyl rings (A and B) and the central aryl ring were 50.5° and 73.0° , respectively (Figure 4a), which indicated that 3a showed a twisted

Figure 4. Single crystal of compound 3a: (a) molecular conformation and the dihedral angles between the peripheral phenyl rings (A and B) and the central aryl ring (C); (b) stacking arrangement; (c) intermolecular interactions.

molecular conformation. Furthermore, the molecules of 3a were found to adopt a ladder-like stacking arrangement (Figure 4b). Because of the big distance between the upper and lower molecules, no strong $\pi \cdots \pi$ stacking was observed among the molecules, indicating the loose stacking mode of 3a. According to the previous literatures,¹¹ when an organic compound had a twisted molecular and loose stacking mode, this solid-state sample of this compound might exhibit the mechanoluminescence (ML) property due to the morphological change, which suggested that the fluorescence color and/or intensity changed significantly under the stimulation of external pressure. Inspired by this, we investigated the MFC activity of compound 3a (Figure 4 and Video 1 in Supporting Information). Under the 365 nm UV light irradiation, the original solid sample of compound 3a exhibited extremely weak blue fluorescence with a maximum emission wavelength of 461 nm. However, when the solid sample was ground with a mortar and a pestle, it showed bright blue fluorescence emission at 462 nm due to the destruction of the crystalline structure. After the external pressure was removed, the sample returned to its original state of extremely weak blue fluorescence after being exposed to air for 40 s, which might be attributed to the strong crystallization ability of compound 3a including the C-H···O and C-H··· π bonds in the crystalline state (Figure 4c). More detailed change over time of the luminescence spectra after the mechanical stimuli can be

pubs.acs.org/OrgLett

found in the Supporting Information (Figure S1). The excellent ML property of this compound provided a huge opportunity for the development of new organic fluorescent materials based on 4-oxo-4H-cinnolin-2-ium-1-ides.

Several control experiments were carried out to elucidate the mechanism of this electrophilic cyclization reaction, as shown in Scheme 3. According to previous reports¹² and control

Scheme 3. Mechanistic Studies

experiments (entry 18 in Table 1), the (E)-1-phenyl-2-(2-(phenylethynyl)phenyl)diazene (3a-1) might be an intermediate in the current transformation. The treatment of 3a-1 under standard conditions provided target compound 4-oxo-2,3diphenyl-4H-cinnolin-2-ium-1-ide (3a) in 97% yield (Scheme 3a), indicating that the azobenzene species might be an intermediate in the current transformation. The reaction cannot work well when performed under a N2 atmosphere (Scheme 3b). Next, the reaction was performed in the presence of 10 equiv of ¹⁸OH₂ in toluene under our standard conditions. However, no 3a-18O was detected (Scheme 3c). A labeling study with ¹⁸O₂ was further carried out, and the reaction proceeded smoothly to provide the 4-oxo-4Hcinnolin-2-ium-1-ide product 3a-18O containing 18O in 81% yield. These results indicate that the oxygen atom of the 3a originated from oxygen and dioxygen was essential for the transformation.

On the basis of the above experiments and the reported literature, 13 a plausible mechanism is proposed (Scheme 4). First, condensation of 2-(phenylethynyl)aniline (1a) and nitrosobenzene (2a) gives (*E*)-1-phenyl-2-(2-(phenylethynyl)-phenyl)diazene (3a-1). Complexation of Cu(I) and ligand DMAP with 3a-1 yields intermediate **A**, which undergoes intramolecular cyclization to intermediate **B**. Intermediate **B** could be oxidized with oxygen in air, generating the peroxycopper **C**. Subsequent isomerization affords peroxide **D**. The O–O bond cleavage leads to intermediate **E**. Finally, rearrangement of **E** affords the desired product 3a.

In conclusion, we have developed an efficient and mild Cu(I)/DMAP/air system for the synthesis of organic solid luminescent 4-oxo-4*H*-cinnolin-2-ium-1-ides from substituted 2-alkynylanilines and nitrosoarenes. The use of an inexpensive copper catalyst and molecular oxygen as the oxygen source and oxidant makes this an attractive green protocol with a range of

Scheme 4. Proposed Mechanism

potential synthetic applications. A novel catalytic cycle is proposed based on preliminary mechanistic studies. These 4oxo-4*H*-cinnolin-2-ium-1-ides have practical applications as mechanoluminescent materials. Further studies by our group on the synthetic applications of this method are ongoing.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.0c04186.

Experimental procedures, characterization data, NMR spectra (PDF)

MFC activity of compound 3a (MP4)

Accession Codes

CCDC 2045163 and 2045166 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

- Xiaochun Yu College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China;
 orcid.org/0000-0001-6407-5798; Email: xiaochunyu@ wzu.edu.cn
- Shun Wang College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China; Email: shunwang@wzu.edu.cn

Authors

- Xiaolan Fang College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Ji Cao College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Weijie Ding College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Huile Jin College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.0c04186

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from the National Natural Science Foundation of China (No. 21302143 and 51572198), and Natural Science Foundation of Zhejiang Province (No. LY13B020006 and No. LZ17E020002) are greatly appreciated.

REFERENCES

(1) (a) Kim, T. S.; Kida, T.; Nakatsuji, Y.; Ikeda, I. Preparation and Properties of Multiple Ammonium Salts Quaternized by Epichlorohydrin. Langmuir 1996, 12, 6304-6308. (b) Spath, A.; Konig, B. Molecular Recognition of Organic Ammonium Ions in Solution Using Synthetic Receptors. Beilstein J. Org. Chem. 2010, 6, 32. (c) Korivi, R. P.; Cheng, C. H. Protecting-Group-Free Total Synthesis of Isoquinoline Alkaloids by Nickel-Catalyzed Annulation of o-Halobenzaldimine with an Alkyne as the Key Step. Chem. - Eur. J. 2010, 16, 282-287. (d) Facchetti, A.; Abbotto, A.; Beverina, L.; van der Boom, M. E.; Dutta, P.; Evmenenko, G.; Marks, T. J.; Pagani, G. A. Azinium-(*n*-Bridge)-Pyrrole NLO-Phores: Influence of Heterocycle Acceptors on Chromophoric and Self-Assembled Thin-Film Properties. Chem. Mater. 2002, 14, 4996-5005. (e) Seddon, K. R. Taste of the Future. Nat. Mater. 2003, 2, 363-365. (f) Krane, B. D.; Fagbule, M. O.; Shamma, M. The Benzophenanthridine Alkaloids. J. Nat. Prod. 1984, 47. 1-43.

(2) (a) Kalk, W.; Schundehutte, K. H. US Patent, US4139530, 1979. (b) Yu, Y.; Singh, S. K.; Liu, A.; Li, T. K.; Liub, L. F.; LaVoiea, E. J. Substituted Dibenzo [c, h] Cinnolines: Topoisomerase I-Targeting Anticancer Agents. Bioorg. Med. Chem. 2003, 11, 1475-1491. (c) Lewgowd, W.; Stanczak, A. Cinnoline Derivatives with Biological Activity. Arch. Pharm. 2007, 340, 65-80. (d) Hu, B.; Unwalla, R.; Collini, M.; Quinet, E.; Feingold, I.; Nilsson, A. G.; Wihelmsson, A.; Nambi, P.; Wrobel, J. Discovery and SAR of Cinnolines/Quinolines as Liver X Receptor (LXR) Agonists with Binding Selectivity for LXRβ. Bioorg. Med. Chem. 2009, 17, 3519-3527. (e) Young, B. S.; Marshall, J. L.; MacDonald, E.; Vonnegut, C. L.; Haley, M. M. Diazaheterocycle Analogues of Tetracene: Synthesis and Properties of A Naphtho-Fused Cinnoline and A Naphtho-Fused Isoindazole. Chem. Commun. 2012, 48, 5166-5168. (f) Shen, Y.; Shang, Z.; Yang, Y.; Zhu, S.; Qian, X.; Shi, P.; Zheng, J.; Yang, Y. Structurally Rigid 9-Amino-benzo[c]cinnoliniums Make Up a Class of Compact and Large Stokes-Shift Fluorescent Dyes for Cell-Based Imaging Applications. J. Org. Chem. 2015, 80, 5906-5911.

(3) (a) Simpson, J. C. The Chemistry of Heterocyclic Compounds: Pyridazineand Pyrazine Rings, Vol. 5; Wiley-VCH: Weinheim, 2008.
(b) Boekelheide, V.; Gall, W. G. Synthesis of Quinolizinium and Dehydroquinolizinium Derivatives. J. Am. Chem. Soc. 1954, 76, 1832– 1836. (c) Boekelheide, V.; Ross, J. M. Synthesis of the 4-Methyldehydroquinolizinium Ion and Related Compounds. J. Am. Chem. Soc. 1955, 77, 5691–5693. (d) Abramovitch, R. A.; Klingsberg, E. E. Pyridine and its Derivatives. Supplement; Wiley-Interscience: New York, London, 1974.

(4) Wu, G.; Rheingold, A. L.; Heck, R. F. Cinnolinium Salt Synthesis from Cyclopalladated Azobenzene Complexes and Alkynes. *Organometallics* **1987**, *6*, 2386–2391.

(5) (a) Ruiz-Castillo, P.; Buchwald, S. L. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions. *Chem. Rev.* 2016, 116, 12564–12649. (b) Gandeepan, P.; Muller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. 3d Transition Metals for C-H Activation. *Chem. Rev.* 2019, 119, 2192–2452. (c) Hazari, N.; Melvin, P. R.; Beromi, M. M. Well-Defined Nickel and Palladium Precatalysts for Cross-Coupling. *Nat. Rev. Chem.* 2017, 1, No. 0025. (d) Lyons, T. W.; Sanford, M. S. Palladium-Catalyzed Ligand-Directed C-H Functionalization Reactions. *Chem. Rev.* 2010, 110, 1147–1169. (e) Shang, R.; Ilies, L.; Nakamura, E. Iron-Catalyzed C-H Bond Activation. *Chem. Rev.* 2017, 117, 9086–9139. (f) Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. Palladium(II)-Catalyzed C-H Activation/C-C CrossCoupling Reactions: Versatility and Practicality. Angew. Chem., Int. Ed. 2009, 48, 5094-5115.

(6) (a) Harvey, A. J.; Abell, A. D. Azobenzene-Containing, Peptidyl α -Ketoesters as Photobiological Switches of α -Chymotrypsin. Tetrahedron 2000, 56, 9763-9771. (b) Yager, K. G.; Barrett, C. J. Novel Photo-Switching Using Azobenzene Functional Materials. J. Photochem. Photobiol., A 2006, 182, 250-261. (c) Fu, L. N.; Leng, B.; Li, Y. S.; Gao, X. K. Photoresponsive Organic Field-Effect Transistors Involving Photochromic Molecules. Chin. Chem. Lett. 2016, 27, 1319-1329. (d) Yamada, S.; Bessho, J.; Nakasato, H.; Tsutsumi, O. Color Tuning Donor-Acceptor-Type Azobenzene Dyes by Controlling the Molecular Geometry of the Donor Moiety. Dyes Pigm. 2018, 150, 89-96. (e) Dong, M.; Babalhavaeji, A.; Collins, C. V.; Jarrah, K.; Sadovski, O.; Dai, Q.; Woolley, G. A. Near-Infrared Photoswitching of Azobenzenes under Physiological Conditions. J. Am. Chem. Soc. 2017, 139, 13483-13486. (f) Yu, X.; Ding, W.; Ge, P.; Wang, S.; Wang, J. Oxidative Coupling of Aromatic Amines and Nitrosoarenes: Iodine-Mediated Formation of Unsymmetrical Aromatic Azoxy Compounds. Adv. Synth. Catal. 2018, 360, 3150-3156. (g) Ding, W.; Xu, S.; Yu, X.; Wang, S. Synthesis of Unsymmetrical Aromatic Azoxy Compounds by Silver-Mediated Oxidative Coupling of Aromatic Amines with Nitrosoarenes. Adv. Synth. Catal. 2019, 361, 1394-1399. (7) (a) Nguyen, T. H. L.; Gigant, N.; Joseph, D. Advances in Direct Metal-Catalyzed Functionalization of Azobenzenes. ACS Catal. 2018, 8, 1546-1579. (b) Xiao, Y.; Wu, X. P.; Wang, H. P.; Sun, S.; Yu, J. T.; Cheng, J. Rhodium-Catalyzed Reaction of Azobenzenes and Nitrosoarenes toward Phenazines. Org. Lett. 2019, 21, 2565-2568. (c) Oh, H.; Han, S.; Pandey, A. K.; Han, S. H.; Mishra, N. K.; Kim, S. Synthesis of (2H)-Indazoles through Rh(III)-Catalyzed Annulation Reaction of Azobenzenes with Sulfoxonium Ylides. J. Org. Chem. 2018, 83, 4070-4077. (d) Zhang, S.; Wang, B. Y.; Jia, X. D.; Yuan, Yu. Rhodium-Catalyzed Cascade Annulation Reaction via C-H Activation of Azobenzenes with Terminal Alkynes: A Synthesis of Indolo [1,2-b]cinnolines. Adv. Synth. Catal. 2019, 361, 451-455. (e) Jeong, T.; Han, S. H.; Han, S.; Sharma, S.; Park, J.; Lee, J. S.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. Access to 3-Acyl-(2H)-indazoles via Rh(III)-Catalyzed C-H Addition and Cyclization of Azobenzenes with α -Keto Aldehydes. Org. Lett. 2016, 18, 232–235.

(8) (a) Zhao, D.; Wu, Q.; Huang, X.; Song, F.; Lv, T.; You, J. A General Method to Diverse Cinnolines and Cinnolinium Salts. *Chem.* - *Eur. J.* **2013**, *19*, 6239–6244. (b) Prakash, S.; Muralirajan, K.; Cheng, C. Cobalt-Catalyzed Oxidative Annulation of Nitrogen-Containing Arenes with Alkynes: An Atom-Economical Route to Heterocyclic Quaternary Ammonium Salts. *Angew. Chem., Int. Ed.* **2016**, 55, 1844–1848. (c) Muralirajan, K.; Cheng, C. Rhodium(III)-Catalyzed Synthesis of Cinnolinium Salts from Azobenzenes and Alkynes: Application to the Synthesis of Indoles and Cinnolines. *Chem. - Eur. J.* **2013**, *19*, 6198–6202. (d) Jayakumar, J.; Vedarethinam, G.; Hsiao, H. C.; Sun, S. Y.; Chuang, S. C. Cascade One-Pot Synthesis of Orange-Red-Fluorescent Polycyclic Cinnolino [2,3-f] Phenanthridin-9-ium Salts by Palladium(II)-Catalyzed C-H Bond Activation of 2-Azobiaryl Compounds and Alkenes. *Angew. Chem., Int. Ed.* **2020**, *59*, 689–694.

(9) Chen, X. H.; Zheng, G. F.; Song, G. Y.; Li, X. W. Rhodium(III)-Catalyzed Synthesis of Cinnolinium Salts from Azobenzenes and Diazo Compounds. *Adv. Synth. Catal.* **2018**, *360*, 2836–2842.

(10) Wang, Y. W.; Li, B.; Wang, B. Q. Synthesis of Cinnolines and Cinnolinium Salt Derivatives by Rh(III)-Catalyzed Cascade Oxidative Coupling/Cyclization Reactions. *J. Org. Chem.* **2018**, *83*, 10845–10854.

(11) (a) Zhang, J.-C.; Wang, X.; Marriott, G.; Xu, C.-N. Trap-Controlled Mechanoluminescent Materials. *Prog. Mater. Sci.* 2019, *103*, 678–742. (b) Xie, Y.; Li, Z. Triboluminescence: Recalling Interest and New Aspects. *Chem.* 2018, *4*, 943–971. (c) Li, W.; Huang, Q.; Yang, Z.; Zhang, X.; Ma, D.; Zhao, J.; Xu, C.; Mao, Z.; Zhang, Y.; Chi, Z. Inside Cover: Synergistic N-Heterocyclic Carbene/ Palladium-Catalyzed Umpolung 1,4-Addition of Aryl Iodides to Enals. *Angew. Chem., Int. Ed.* 2020, *59*, 22645–22651. (d) Chi, Z.; Zhang, X.; Xu, B.; Zhou, X.; Ma, C.; Zhang, Y.; Liu, S.; Xu, J. Recent Advances in Organic Mechanofluorochromic Materials. *Chem. Soc. Rev.* 2012, *41*, 3878–3896. (e) Huang, X.; Qian, L.; Zhou, Y.; Liu, M.; Cheng, Y.; Wu, H. Effective Structural Modification of Traditional Fluorophores to Obtain Organic Mechanofluorochromic Molecules. *J. Mater. Chem. C* 2018, *6*, 5075–5096. (g) Sagara, Y.; Yamane, S.; Mitani, M.; Weder, C.; Kato, T. Mechanoresponsive Luminescent Molecular Assemblies: An Emerging Class of Materials. *Adv. Mater.* 2016, *28*, 1073–1095.

(12) (a) Hamon, F.; Djedaini-Pilard, F.; Barbot, F.; Len, C. Azobenzenes-Synthesis and Carbohydrate Applications. *Tetrahedron* **2009**, *65*, 10105–10123. (b) Merino, E. Synthesis of Azobenzenes: the Coloured Pieces of Molecular Materials. *Chem. Soc. Rev.* **2011**, *40*, 3835–3853.

(13) (a) Li, T.; Wang, Z.; Xu, K.; Liu, W.; Zhang, X.; Mao, W.; Guo, Y. M.; Ge, X.; Pan, F. Rhodium-Catalyzed/Copper-Mediated Tandem C(sp2)-H Alkynylation and Annulation: Synthesis of 11-Acylated Imidazo [1,2-a:3,4-a'] dipyridin-5-ium-4-olates from 2H-[1,2'-Bipyridin] -2-ones and Propargyl Alcohols. Org. Lett. 2016, 18, 1064-1067. (b) Zhang, C.; Jiao, N. Dioxygen Activation under Ambient Conditions: Cu-Catalyzed Oxidative Amidation-Diketonization of Terminal Alkynes Leading to α -Ketoamides. J. Am. Chem. Soc. 2010, 132, 28-29. (c) Wang, Z. Q.; Zhang, W. W.; Gong, L. B.; Tang, R. Y.; Yang, X. H.; Liu, Y.; Li, J. H. Copper-Catalyzed Intramolecular Oxidative 6-exo-trig Cyclization of 1,6-Enynes with H₂O and O₂. Angew. Chem., Int. Ed. 2011, 50, 8968-8973. (d) Wang, H.; Wang, Y.; Liang, D.; Liu, L.; Zhang, J.; Zhu, Q. Copper-Catalyzed Intramolecular Dehydrogenative Aminooxygenation: Direct Access to Formyl-Substituted Aromatic N-Heterocycles. Angew. Chem., Int. Ed. 2011, 50, 5678-5681. (e) Zhou, W.; Fan, W.; Jiang, Q.; Liang, Y.-F.; Jiao, N. Org. Lett. 2015, 17, 2542-2545. (f) Hiroya, K.; Itoh, S.; Sakamoto, T. J. Org. Chem. 2004, 69, 1126-1136. (g) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2012, 77, 617-625. (h) Oda, Y.; Matsuyama, N.; Hirano; Satoh, T.; Miura, M. Synthesis 2012, 44, 1515-1520.