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Abstract: LC/MS-based chemical profiling of a ginseng farm soil-derived actinomycete strain,
Streptomyces sp. BYK1371, enabled the discovery of two new cyclic heptapeptides, depsidomycins B
and C (1 and 2), each containing two piperazic acid units and a formyl group at their N-terminus.
The structures of 1 and 2 were elucidated by a combination of spectroscopic and chemical analyses.
These new compounds were determined to possess D-leucine, D-threonine, D-valine, and S-piperazic
acid based on the advanced Marfey’s method and a GITC (2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl
isothiocyanate) derivatization of their hydrolysates, followed by LC/MS analysis. Depsidomycins
B and C displayed significant antimetastatic activities against metastatic breast cancer cells
(MDA-MB-231).
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1. Introduction

Secondary metabolites from soil bacteria have been prolific sources of bioactive natural products
for the last century, and they have provided a number of important clinical drugs [1]. However,
exhaustive studies of soil bacteria with conventional strategies involving bioassay-guided fractionation
have shown decreasing success rates in the discovery of new bacterial secondary metabolites.
The recent development of chemical analysis-based search methods has enabled the efficient
discovery of new bioactive compounds from bacteria [2]. Our time-course chemical analysis of
bacterial metabolites using LC/MS chemical profiling yielded new chemotypes, demonstrating
the value of chemical analysis-based research in natural products chemistry. A recent example
of the success of such a method is the discovery of a novel pyrazolone-bearing metabolite from
a Streptomyces strain collected in an intertidal mudflat [3]. A Deinococcus strain isolated from the
gut of the carpenter ant, Camponotus japonicus, was found to produce new aminoglycolipids [4].
New naphthoquinone-oxindoles with a novel carbon framework were discovered from a gut bacterial
strain of the dung beetle, Copris tripartitus [5]. For the efficient discovery of new bioactive small
molecules from bacteria, a new paradigm of search strategies could be used to investigate poorly
studied bacterial habitats. Farm soil appears readily accessible but has been essentially abandoned
in natural product discovery, possibly because the environment can be regarded as anthropogenic
rather than natural. However, the rhizosphere, a narrow region of farm soil, is a unique environment
harboring microbial communities that interact with plant root exudates, which could allow these
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strains to produce unique secondary metabolites [6]. One of our pioneering studies on farm soil
bacterial metabolites based on detailed LC/MS chemical profiling resulted in the discovery of a rare
norditerpenoid with antibacterial activity from Actinomadura sp. inhabiting an experimental farm in
the United Kingdom [7]. Our ongoing search for bioactive compounds from farm soil bacteria led us
to investigate ginseng farm soil-derived actinomycetes. Ginseng, from the genus Panax, is considered
one of the most valuable medicinal plants in many Asian countries including Korea [8]. Even though
the chemistry of ginseng has been exhaustively studied because of its bioactive compounds [9],
the chemistry of the bacterial communities of ginseng farm soil have not been examined. We collected
soil from a farm cultivating Panax ginseng in Cheorwon, Gangwon-do, Republic of Korea. More than
100 bacterial strains were isolated from the ginseng farm soil. Chemical analyses of the bacteria were
performed with a focus on the actinobacterial strains, which are the most prolific bacterial group for
the production of small molecules [1]. Time-course chemical analyses of the actinobacterial strains
conducted by LC/MS detected multiple unique metabolites with molecular ions ([M + H]+) at m/z
792 and 778 from Streptomyces sp. BYK1371. Further large-scale culture and subsequent chemical
analysis enabled the elucidation of the structures of these new compounds, and the compounds were
named depsidomycins B and C (1 and 2, Figure 1). Here, we report their structure determination and
biological activity.
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Figure 1. The chemical structures of depsidomycins B and C (1 and 2).

2. Results and Discussion

2.1. Structure Elucidation

Depsidomycin B (1) was isolated as a white, amorphous powder. The molecular formula of
1 was found to be C38H65N9O9 on the basis of its HR-ESI-MS data. The 13C NMR data confirmed
the presence of 38 carbons, namely, eight carbonyl carbons (δC 161.8–175.9), one oxygen-bearing
aliphatic carbon (δC 71.4), nine nitrogen-bearing carbons (δC 47.8–56.2), and 20 aliphatic carbons (δC

41.4–11.9) (Table 1). Comprehensive analysis of the 1H, 13C, and HSQC NMR spectroscopic data of
1 revealed the presence of seven D2O exchangeable protons (δH 7.62, 7.59, 7.52, 7.49, 7.07, 4.86, and
3.95), one formyl functional group (δH 8.27; δC 161.8), nine aliphatic methylenes, twelve aliphatic
methines, and nine methyl groups. The five downfield, heteroatom-bound protons (δH 7.62–7.07) and
eight carbonyl carbons in the amide/ester carbon chemical shift range indicated that depsidomycin B
could be a modified peptide decorated with a formyl functional group. Eight of the eleven double
bond equivalents inherent in the molecular formula of 1 could be attributed to carbonyl groups,
which indicated the existence of three rings in the structure of depsidomycin B (1).
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Table 1. 1H and 13C NMR data of depsidomycins B and C (1 and 2) in acetone-d6
a.

Position
Depsidomycin B (1) Depsidomycin C (2)

δC, Type δH, mult (J in Hz) a δC, Type δH, mult (J in Hz) a

1 169.3, C 170.0, C
2 51.4, CH 5.18, br s 51.5, CH 5.17, br s
3a 23.4, CH2 1.85, m 23.3, CH2 1.87, m
3b 2.19, m 2.19, m
4a 21.3, CH2 1.55, m 21.9, CH2 1.55, m
4b 1.86, m
5a 47.9, CH2 3.12, m 48.4, CH2 3.15, m
5b 2.85, m 2.85, m

5-NH 4.86, m 4.85, m
6 175.4, C 175.9, C
7 49.7, CH 5.40, dd (10.5, 10.5) 49.4, CH 5.39, dd (10.5, 10.5)

7-NH 7.62, br d (10.5) 7.60, br d (10.5)
8a 41.4, CH2 1.68, m 41.9, CH2 1.68, m
8b 1.95, m 1.97, m
9 26.6, CH 1.78, m 26.7, CH 1.78, m
10 21.0, CH3 1.02, d (6.5) 21.9, CH3 1.03, d (6.5)
11 23.7, CH3 0.93, d (6.5) 19.7, CH3 0.96, d (6.5)
12 167.7, C 168.5, C
13 52.8, CH 5.12, d (4.5) 53.1, CH 5.11, d (4.5)

14a 24.9, CH2 1.58, m 25.5, CH2 1.58, m
14b 2.57, br d (13.5) 2.57, br d (13.3)
15a 23.0, CH2 1.39, m 23.7, CH2 1.39, m
15b 1.55, br d (10.5) 1.55, br d (10.5)
16a 47.8, CH2 2.75, m 48.5, CH 2.77, m
16b 3.12, m 3.12, m

16-NH 3.95, d (12.5) 3.94, d (12.5)
17 175.9, C 175.9, C
18 56.2, CH 5.20, dd (10.0, 6.0) 56.2, CH 5.20, dd (10.5, 6.0)

18-NH 7.59, d (6.0) 7.58, d(6.0)
19 29,5, CH 1.99, m 29.8, CH 1.99, m
20 21.0, CH3 1.02, d (6.5) 20.8, CH3 1.04, d (6.5)
21 19.7, CH3 0.97, d (6.5) 19.8, CH3 0.97, d (6.5)
22 174.7, C 175.7, C
23 51.0, CH 4.88, m 51.7, CH 4.87, m

23-NH 7.07, br s 7.05, d (9.5)
24a
24b 40.8, CH2

1.68, m
2.17, m 41.6 CH2

1.69, m
2.17, m

25 25.8, CH 1.71, m 26.3, CH 1.70, m
26 20.6, CH3 0.89, m 20.7, CH3 0.89, m
27 24.0, CH3 0.91, m 0.90, m
28 167.4, C 168.1, C
29 55.8, CH 4.48, br s 55.8, CH 4.47, m

29-NH 7.52, br s 7.50, d (6.0)
30 71.4, CH 4.91, m 72.0, CH 4.90, m
31 13.6, CH3 1.17, d (6.5) 13.6, CH3 1.17, d (6.5)
32 171.7, C 171.6, C
33 55.4, CH 4.66, m 57.3, CH 4.49, m

33-NH 7.49, br s 7.49, br d (6.5)
34 38.1, CH 1.98, m 32.2, CH 2.18, m

35a 26.9, CH2 1.21, m 23.9, CH3 0.93, d (6.5)
35b 1.43, m
36 11.8, CH3 0.90, m 24.0. CH3 0.92, d (6.5)
37 14.6, CH3 0.87, d (7.0) 161.7, CH 8.25, s
38 161.8, CH 8.27, s

a 1H and 13C NMR were recorded at 850 and 212.5 MHz, respectively.

After establishing 1-bond 1H-13C correlations, structural fragments were assembled based on
combined analysis of the COSY, TOCSY, and HMBC NMR spectra. An array of COSY and TOCSY
correlations from H-2 to 5-NH through H2-3, H2-4, and H2-5 identified a four-carbon spin system
building piperazic acid. In addition, one more piperazic acid unit was established from the COSY
correlations among H-13, H2-14, H2-15, H2-16, and 16-NH, along with the corresponding HMBC
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signals. Continuous analysis of the COSY, TOCSY and HMBC NMR spectra constructed the other
amino acids present, namely, an isoleucine, a valine, a threonine, and two leucine amino acid residues.
Therefore, depsidomycin B (1) possesses eight discrete spin systems composed of two piperazic acids
(Pip-1 and Pip-2), two leucines (Leu-1 and Leu-2), an isoleucine (Ile), a valine (Val), a threonine (Thr),
and a formyl group.

Based on the eight partial structures and the molecular formula, dereplication of depsidomycin
B (1) indicated that this compound could have the same planar structure as the previously reported
depsidomycin [10,11]. The sequence (Pip-1-Leu-1-Pip-2-Val-Leu-2-Thr-Ile-formamide) of the amino
acid residues was confirmed by 1H-13C HMBC correlations (Figure 2). The formyl functional group
was connected to Ile by 33-NH/H-38 COSY and H-38/C-33 HMBC correlations (Figure 2).
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Figure 2. The 1H-1H TOCSY (bold line) and key HMBC (arrow) correlations of depsidomycin B (1).

The molecular formula (C38H65N9O9) of depsidomycin B indicated 11 double bond equivalents.
Eight carbonyl carbons and two piperazic acid rings accounted for 10 out of the 11 unsaturations,
indicating one additional ring was required in the structure of 1. The 1D and 2D NMR spectra collected
in the aprotic solvents acetone-d6 and pyridine-d5 did not show a signal for the hydroxy proton at
the β-position of Thr, which implied that a tethered lactone ring could be connected to this unit.
In addition, the ROESY NMR cross-peak between H-2 and H-30 (δH 4.91) supported the existence
of a macrocyclic ring connecting Pip-1 and Thr. However, a key HMBC signal from H-30 to C-1 (δC

169.3), which could unequivocally confirm the presence of such a ring, was not detected in the NMR
spectra acquired in these solvents. Therefore, we derivatized depsidomycin B (1) by methanolysis and
comprehensively analyzed the 1D and 2D NMR spectra of the derivative (3) (Figures S22–S27). In the
HMBC NMR spectrum of the methanolysis product, the methoxy protons (H-39, δH 3.74) showed clear
correlations with C-1 (δC 172.1), establishing the connectivity between Pip-1 and Thr in depsidomycin
B (1) through an ester functional group (Table S2). The sequence of the amino acid residues was also
confirmed based on the MS/MS spectrum (fragmentation ions at m/z 243, 356, 370, 455, 567, and 680)
of the methanolysis product (Figure 3 and Figure S28). Overall, the planar structure of depsidomycin
B (1) was determined to be a cyclic heptapeptide bearing a formamide attached at D-Ile moiety.
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The planar structure of 1 was identical to that reported previously for depsidomycin, which
showed antibacterial activity [10,11]. A careful comparison of our NMR data of depsidomycin B with
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the reported data revealed that most of the 1H and 13C chemical shifts are very similar (within 0.02
and 0.2 ppm, respectively; Table S3). However, the chemical shifts of 7-NH (δH 7.62), 18-NH (δH

7.59), 23-NH, and 33-NH (δH 7.49) in the 1H NMR spectra of the two compounds varied by 0.3 ppm.
More strikingly, the chemical shifts of 29-NH and H-33 were substantially different; they varied by 0.17
and 0.10 ppm, respectively. The 13C NMR chemical shifts at C-13 (δC 52.8), C-34 (δC 38.1), and C-36 (δC

11.8) varied by 0.3, 0.4, and 0.3 ppm, respectively. Moreover, the specific rotation of depsidomycin B
(−1.7) was significantly different from that of depsidomycin (−59.7). These spectroscopic differences
strongly indicated that depsidomycin B (1) is a stereoisomer of depsidomycin, and its amino acid
residues are in different configurations; however, fully elucidating these differences requires extensive
stereochemical determinations (see Section 2.2).

Depsidomycin C (2) was purified as a white powder. Its HR-ESI-MS data confirmed a molecular
formula of C37H63N9O9, which has one fewer methylene than does depsidomycin B (1). The 1D and
2D NMR spectroscopic data of 2 suggested that its NMR spectroscopic features were quite similar
to those of 1, indicating that depsidomycin C (2) is structurally analogous to depsidomycin B (1).
Comprehensive analysis of its 2D NMR spectra revealed that the isoleucine unit of 1 had been replaced
with a valine (Val) in 2 (Table 1). Thus, the structure of depsidomycin C (2) was elucidated to be a new
cyclic heptapeptide with the sequence Pip-1-Leu-Pip-2-Val-1-Leu-2-Thr-Val-2-formamide.

2.2. Determination of the Absolute Configurations of Depsidomycins B and C

The absolute configurations of the amino acids were determined by advanced Marfey’s
method [12,13] and 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl isothiocyanate (GITC) derivatization
followed by LC/MS analysis [14]. The acid hydrolysate of 1 was derivatized with Marfey’s reagents,
N-(5-fluoro-2,4-dinitrophenyl)-L-alanine amide (L-FDAA) and D-FDAA. The elution sequences of
the L- and D-FDAA derivatives (elution order: D→L for Val, Leu, Thr, and Ile) in the LC/MS
chromatography established that the valine, leucine, threonine and isoleucine residues are in the
D-configuration (Table S4, Figure S29). Piperazic acid causes the D-FDAA derivatives to elute before the
L-FDAA derivatives when it is in the S-configuration [15]. In the LC/MS chromatogram, the D-FDAA
adduct of the piperazic acid units eluted faster than did the L-FDAA derivative, which confirmed the
two piperazic acids in 1 were in the S-configuration (Table S4). The absolute configurations of the
β-carbons of D-threonine and D-isoleucine were assigned by GITC derivatization and LC/MS analysis.
The chromatogram of the GITC adducts of the hydrolysate of depsidomycin B (1) displayed retention
times consistent with those of D-Thr and D-Ile rather than D-allo-Thr and D-allo-Ile. This assignment
was further confirmed by co-injecting the GITC derivatives of authentic D-Thr, D-allo-Thr, D-Ile, and
D-allo-Ile individually with the GITC derivative of 1. Based on advanced Marfey’s analysis and GITC
derivatization, the absolute configurations of the amino acid units common to 1 and 2 were identical
(Figures S30–S32). The additional valine residue in depsidomycin C (2), which replaced the D-Ile unit
in 1, was determined to be D-Val.

Overall, depsidomycin B (1) was determined to contain D-valine, D-threonine, D-isoleucine,
two D-leucines and two S-piperazic acids, whereas depsidomycin contains D-valine, L-threonine,
L-allo-isoleucine, L-leucine, D-leucine, and two configurationally-undetermined piperazic acids.
The differences in the NMR chemical shifts (Table S3) and the optical rotations of depsidomycin
B and depsidomycin, which have identical planar structures, could be explained by the differences in
their stereochemistries.

2.3. Biological Activity of Depsidomycins B and C

Even though depsidomycin was originally reported to show antibacterial activity against
Micrococcus luteus, depsidomycins B and C did not exhibit antibacterial activity against M. luteus
in our tests. These cyclic peptides did not inhibit the growth of any in vitro-tested bacteria (Gram
positive: Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 19433, and Enterococcus faecium
ATCC 19434; Gram negative: Micrococcus luteus ATCC 9341, Klebsiella pneumoniae ATCC 10031,
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Salmonella enterica ATCC 14028, Escherichia coli ATCC 25922) and fungi (Aspergillus fumigatus HIC 6094,
Trichophyton rubrum NBRC 9185, Trichophyton mentagrophytes IFM 40996, and Candida albicans ATCC
10231) [16], or cancer cell lines (MDA-MB-231, A549, HCT116, SK-HEP-1, SNU638, and K562) [17].
Therefore, their biological activities were further evaluated with respect to their antimetastatic activities
against MDA-MB-231 cells (a metastatic breast cancer cell line) in a wound-healing assay [18]. After
mechanically generating scratches in MDA-MB-231 cells, the cells were treated with vehicle or
depsidomycins B and C for 24 h. The wounds were photographed at 0 h (immediately after wounding)
and 24 h with an inverted microscope. Compared to the vehicle-treated group, cell migration
(antimetastatic effect) was suppressed in the depsipeptide-treated groups. The remaining cell-free
area (%) calculated 24 h after wounding of the vehicle-treated group was 22%, while those of the
depsidomycin B-treated groups (20 and 40 µM) were 56% and 82%, respectively (Figures 4 and 5).
Depsidomycin C displayed less potent activity, as it provided 47% and 70% remaining cell-free area
at 20 and 40 µM, respectively (Figures 4 and 5). This result indicated that depsidomycins B and C (1
and 2) have significant dose-dependent antimetastatic effects on the metastatic breast cancer cell line
MDA-MB-231 in vitro.
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3. Experimental Section

3.1. General Experimental Procedures

The optical rotations were recorded with a JASCO P-1020 polarimeter. UV spectra were measured
on a Perkin-Elmer (Waltham, MA, USA) Lambda 35 UV/VIS spectrometer. IR spectra were recorded on
a JASCO FT-IR-4200 spectrometer. 1H NMR (850 MHz, 600 MHz) and 13C NMR (212.5 MHz, 150 MHz)
spectral data were obtained on a Bruker (Billerica, MA, USA) Avance 3 HD and Avance-600 at NCIRF
(National Center for Inter-University Research Facilities, Seoul, Republic of Korea). Low-resolution
LC/MS data were acquired on an Agilent Technologies (Santa Clara, CA, USA) 1200 series HPLC
coupled with an Agilent Technologies (Santa Clara, CA, USA) 6130 quadrupole mass spectrometer.
High-resolution electrospray ionization mass spectrometry (HR-ESI-MS) data were collected with a
Thermo (Waltham, MA, USA) Finnigan LTQ high-resolution mass spectrometer at NICEM (National
Instrumentation Center for Environmental Management, Seoul, Republic of Korea). LC-MS/MS data
were obtained with an AB SCIEX Q-TOF 5600 at NICEM and a Waters (Milford, MA, USA) XEVO G2S
Q-TOF mass spectrometer at Ewha Womans University (Seoul, Republic of Korea).

3.2. Bacterial Isolation

The soil samples were collected from a four-year ginseng farm in Cheorwon, Gangwon-do,
Republic of Korea. The samples were dried at room temperature (rt) for 5 h, and the dry soil (1 g)
was mixed with 8 mL of sterilized water. The supernatant of the mixture was inoculated onto TWYE
agar (TWYE: 1 L of tap water, 18 g of agar, 0.25 g of yeast extract and 0.5 g of K2HPO4) and then
spread. Colonies were repeatedly isolated onto fresh agar plates to obtain single strains. The strain
BYK1371 (GenBank accession no. MH037157) was phylogenetically identified as a Streptomyces sp.
by the phylogenetic tree based on 16S rRNA gene sequence analysis. It is most closely related to
Streptomyces vinaceus NRBC 13425 and Streptomyces cirratus NRRL B-3250 (Figure S35).

3.3. Cultivation and Extraction of the Bacterial Strain

The BYK1371 strain was cultured on solid YEME medium (4 g of yeast extract, 10 g of malt extract,
4 g of glucose, and 18 g of agar per 1 L of sterilized water) at 27 ◦C. The culture was then transferred
to 50 mL of liquid YEME medium in a 125 mL Erlenmeyer flask. After incubation at 25 ◦C with
shaking at 180 rpm for 2 days, 20 mL of the culture was inoculated into each of the 2.8 L Fernbach flask
containing 1 L of YEME liquid medium. The cultures were cultivated at 27 ◦C with shaking at 140 rpm
for five days because the yields of 1 and 2 were the best for harvest based on the time-course LC/MS
analysis of the strain (Figure S34). In total, 85 L of culture was prepared for the isolation of 1 and 2.
The combined total culture (85 L) was extracted twice with 200 L of EtOAc using a 3-L separation
funnel. After adding anhydrous sodium sulfate to remove the residual water, the EtOAc layer was
concentrated in vacuo to yield 13.2 g of extract.

3.4. Isolation of Depsidomycin B (1) and C (2)

An aliquot (4.3 g) of the extract was resuspended in MeOH and dried onto Celite in vacuo to
generate a Celite-adsorbed extract mixture. The mixture was loaded onto 20 g of prepacked C18 Sepak
resin. The extract was fractionated by elution with a step gradient solvent system composed of MeOH
and H2O (20%, 40%, 60%, 80%, and 100% MeOH in H2O). Depsidomycins B and C (1 and 2) eluted
in the 80% aqueous MeOH fraction. To obtain pure compounds, further purification was performed
using an analytical reverse-phase HPLC system (Phenomenex, Torrance, CA, USA) Luna 10 µm C8 (2)
250 × 4.6 mm, 35% to 70% aqueous CH3CN as the solvent gradient system over 40 min, flow rate of 1
mL/min, and UV detection at 210 nm). Depsidomycin B (1, 23.6 mg) and C (2, 7.3 mg) were collected
at retention times of 28 min and 25 min, respectively.
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Depsidomycin B (1): white powder; [α]25
D −1.7 (c 0.2, MeOH); UV (MeOH) λmax (log ε) 201 (2.31) nm;

IR (neat) λmax 3407, 2843, 1646, 1451, 1017 cm−1; 1H and 13C NMR data, see Table 1; HR-ESI-MS m/z
814.4799 [M + Na]+ (calcd for C38H65N9O9Na, 814.4798).

Depsidomycin C (2): white powder; [α]25
D −0.01 (c 0.2, MeOH); UV (MeOH) λmax (log ε) 200 (2.29) nm;

IR (neat) λmax 3375, 2948, 1657, 1451, 1024 cm−1; 1H and 13C NMR data, see Table 1; HR-ESI-MS m/z
800.4640 [M + Na]+ (calcd for C37H63N9O9Na, 800.4641).

3.5. Determination of the Absolute Configurations of the α-Carbons of the Amino Acid Residues

Depsidomycin B (1 mg) was hydrolyzed in 0.5 mL of 6 N HCl at 115 ◦C. After 90 min, the reaction
vial was cooled to 0 ◦C in ice for 3 min. Then, the HCl in the reaction vial was removed in vacuo.
The dry material was dissolved again in 1 mL of H2O and dried in vacuo. This process was repeated
three times to completely remove the HCl. The hydrolysate was divided into two portions, and each
portion was transferred to a 4-mL vial. To each vial, 100 µL of 1 N NaHCO3 was added to dissolve the
hydrolysate. Then, 50 µL of either 10 mg/mL L-FDAA (L-fluoro-2,4-dinitrophenyl-5-L-alanine amide)
or D-FDAA in acetone was added to the vials. After the reaction was maintained at 80 ◦C in a water
bath for 3 min, 50 µL of 2 N HCl was added to quench the reaction by neutralization. Additionally,
300 µL of 50% aqueous CH3CN was added to the solution to dissolve the reaction products. A 10-µL
aliquot of each reaction mixture was analyzed by LC/MS with a gradient solvent system (20% to 60%
CH3CN with 0.1% formic acid over 40 min) on a C18 reversed-phase column (100 × 4.6 mm) with UV
detection at 210 nm (Table S4). The absolute configurations of the amino acid residues in depsidomycin
C (2) were determined using the procedure described above.

3.6. Determination of the Absolute Configurations at the β-Carbons of Threonine and Isoleucine

The hydrolysates of 1 and 2 were dissolved in H2O (1 mg/mL) in two separate 4-mL vials.
Then, 100 µL of 1% GITC (2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl isothiocyanate) in acetone and
100 µL of 6% triethylamine were added to each vial. Each reaction mixture was stirred for 15 min at
rt, and then 100 µL of 5% acetic acid was added to dilute the reaction mixtures. The products were
analyzed by LC/MS under different gradient solvent systems (10% to 100% CH3CN with 0.1% formic
acid over 20 min on a Phenomenex Luna C18 reversed-phase column, 100 × 4.6 mm, for Thr, and
30% to 55% CH3CN with 0.1% formic acid over 80 min on a Phenomenex Luna C18 reversed-phase
column, 250 × 4.6 mm, for Ile). Detection at 210 nm was performed by a UV detector. The authentic
standards of D-Thr, D-allo-Thr, D-Ile and D-allo-Ile were also derivatized with GITC by using the
identical method. The GITC-derivatized products for D-Thr in 1 and 2 eluted at 9.4 min, indicating that
the threonine units in 1 and 2 are D-Thr and not D-allo-Thr. The GITC adduct of D-Ile in 1 was detected
at 53.7 min, which establish that this residue is D-Ile and not D-allo-Ile. Then, the GITC derivatives of
the hydrolysate were co-injected with the GITC derivatives of each of the standards (D-Thr, D-allo-Thr,
D-Ile and D-allo-Ile) to confirm the assignments. The GITC derivatives of authentic D-Thr, D-allo-Thr,
D-Ile and D-allo-Ile eluted at 9.4, 9.6, 53.7 and 52.3 min, respectively, confirming the configurations of
the β-carbons of D-Thr and D-Ile.

3.7. Methanolysis of Depsidomycin B (1)

Depsidomycin B (1, 8 mg) was dissolved in 2 mL of MeOH, and 11.2 mg of NaOMe was added
to the vial to prepare a 0.5 M NaOMe solution. The reaction mixture was stirred at r.t. for 3 h,
and the reaction was quenched with 1 N HCl. After evaporating the MeOH in vacuo, the residue
of the methanolysis reaction was partitioned into H2O and EtOAc. After removing the solvent, the
methanolysis products (3, 6 mg) were purified on a Sephadex LH-20 (GE Healthcare, Chicago, IL, USA)
open column using MeOH as the eluent. The structure of the methanolysis product (3) was assigned
by analyzing its 1D and 2D NMR and LC-MS/MS data. For 1H and 13C NMR data, see Table S2,
HR-ESI-MS m/z 824.5252 [M + H]+ (calcd. for C39H70N9O10 824.5245).
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3.8. Evaluation of Antimetatastic Activity

MDA-MB-231 cells were used to measure the antimetastatic activities of 1 and 2 based on the
wound-healing assay method described previously in the literature [18]. Sunitinib was used as a
positive control (Figure S33).

3.9. Statistical Analysis

Data are expressed as the mean ± standard deviation (SD) for the indicated number of
independently performed experiments. Statistical significance was analyzed using a Student’s t-test or
one-way analysis of variance (ANOVA) coupled with a Dunnett’s t-test. Differences were considered
statistically significant at * p < 0.05, ** p < 0.01.

4. Conclusions

Depsidomycins B and C (1 and 2) are new cyclic heptapeptides bearing modified amino acid
residues including two S-piperazic acids and D-Leu, D-Val, D-Thr, and D-Ile (D-Val for 2), along
with formyl groups at their N-termini. Even though the planar structure of depsidomycin B (1) is
identical to that of the previously reported compound depsidomycin, the absolute configurations of
the amino acids in 1 are clearly different from those in depsidomycin [10]. In addition, considering
that the piperazic acid units in the original literature on depsidomycin were not configurationally
assigned [10], this work constitutes the first report of new members of the depsidomycin class
of cyclic peptides and the first complete stereochemical structure elucidation of these compounds.
The discovery of these new compounds from a Streptomyces sp. strain isolated from ginseng farm soil
based on a time-course LC/MS analysis of its metabolite profiles suggests that the investigation of
farm soil-derived actinomycetes using a chemical analysis-based search strategy could provide an
additional route for the effective discovery of new bioactive natural products.
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