The Synthesis of the Kynurenamines K₁ and K₂, Metabolites of Melatonin

Gary Amiet, Helmut M. Hügel,* Faizul Nurlawis

RMIT University, Department of Applied Chemistry, GPO Box 2476V Melbourne 3001 Victoria, Australia Fax +61(3)99257477; E-mail: helmut.hugel@rmit.edu.au

Received 30 November 2001

Abstract: An efficient synthesis of the kynurenamines K_1 and K_2 , the major brain and antioxidant metabolites of melatonin **1** is described. Regioselective lithiation of *tert*-butyl(4-methoxyphenyl) carbamate and iodination provided the (2-iodoaryl)carbamate which when coupled with *N*-acetyl-propargylamine underwent a Sonogashira reaction. Simultaneous alkyne hydration and N-formylation produced K_2 , whereas alkyne hydration only, produced K_2 .

Key words: kynurenamine synthesis, ortho lithiation, Sonogashira coupling, arylpropargylamine, alkyne hydration

Biological rhythms are essential to life. The biosynthesis of the neurohormone melatonin (*N*-acetyl-5-methox-ytryptamine, **1**) varies at different times during the day

and this is known as a circadian rhythm. Melatonin has been implicated in pathologies associated with circadian rhythm disorders. The administration of **1** to humans has illustrated it can induce sleep,¹ alleviate jet lag,² and to advance the sleep rhythm of subjects with delayed sleep phase syndrome.³ It has been proposed to protect against damage caused by free radicals in vivo.⁴ In vitro experiments have demonstrated that **1** is able to scavenge ·OH radicals. The proposed mechanism⁵ which involves the abstraction of an electron to form an indolyl cation radical has been computed to be an enderogonic reaction and calculations have shown that an alternative thermodynamically more feasible process whereby hydrogen abstraction leading to a neutral indole radical as shown in Scheme 1, is bioenergetically more likely to occur.⁶

Scheme 1

Synlett 2002, No. 3, 04 03 2002. Article Identifier: 1437-2096,E;2002,0,03,0495,0497,ftx,en;Y23401ST.pdf. © Georg Thieme Verlag Stuttgart · New York ISSN 0936-5214

Scheme 2 (a) *N*-acetyl-2-azetidione; (b) 1.5 equiv 1,2-diiodoethane, 63%; (c) *N*-acetylpropargylamine, 5 mol% PdCl₂ (PPh₃)₂, CuI 10 mol%, Et₃N, 76%; (d) HgSO₄, 10% H₂SO₄, 41 °C, 59%; (e) HgSO₄, H₂O, HCOOH, CH₂Cl₂, r.t., 54%; (f) HCOOH, reflux, 54%.

There are no known morphophysiological barriers to melatonin and it is generally believed that it readily enters every cell in the organism. To further investigate the claims that **1**, as an antioxidant, protects against damage caused by free radicals, we required quantities of its metabolites,⁷ K_1 and K_2 for biological testing and analysis to determine if they can serve as an index for melatonin's antioxidant activity.

Whilst N_{b} -acetyl-5-methoxykynurenamine has been previously prepared by the ozonolysis⁸ of **1** and the photosensitized oxygenation of N_{b} -methoxycarbonyltryptamines⁹ also produced kynurenamines, our repeated efforts using these approaches met with limited success.

The synthesis (Scheme 2) commenced with the directed ortho lithiation of 4-methoxy-N-(tert-butoxycarbonyl)aniline¹⁰ to give the dilithio intermediate 2. Quenching with the lactam N-acetyl-2-azetidione, to give K₂ was unsuccessful.¹¹ Lithium-iodine exchange produced **3**,¹⁴ followed by a Sonogashira reaction¹² (the Pd⁰/Cu¹-catalyzed coupling of aryl halides with terminal acetylenes under basic conditions) with N-acetylpropargylamine that resulted in formation of the arylalkynamide 4.¹⁵ This compound was directly converted into K₁ by hydration of the triple bond with catalytic mercuric sulfate in formic acid solution, which also replaced the NHBOC group with NHCHO substituent. Alternatively, when the triple bond in 4 was hydrated with HgSO₄ in 10% H₂SO₄, the β -aminoketone derivative,¹³ K₂^{16,17}was prepared, which when refluxed with formic acid was converted into K₁.¹⁶

References

- (a) Sack, R. L.; Lewy, A. J.; Parrot, K.; Singer, C. M.; McArthur, A. J.; Blood, M. L.; Bauer, V. K. *Eur. J. Med. Chem.* **1995**, *30*, 661. (b) Dollins, A. B.; Zhdanova, I. V.; Wurtman, R. J.; Lynch, H. J.; Deng, M. H. *Proc. Natl. Acad. Sci. U.S.A.* **1994**, *91*, 1824. (c) Zhdanova, I. V.; Wurtman, R. J.; Lynch, H. J.; Ives, J. R.; Dollins, A. B.; Morabito, C.; Matheson, J. K.; Schomer, D. L. *Clin. Pharmacol. Ther.* **1995**, *57*, 552.
- (2) (a) Petrie, K.; Conaglen, J. V.; Thompson, L.; Chamberlain, K. Br. Med. J. **1989**, 298, 705. (b) Arendt, J.; Aldhous, M.; Marks, V. Annu. Rev. Chronopharmacol. **1986**, 3, 49.

- (3) Odani, A.; Ferini-Strambi, L.; Zucconi, M.; Stankof, B.; Frachini, F.; Smirne, S. *Neuro Report* **1994**, *6*, 132.
- (4) (a) Reiter, R. J.; Menendez-Pelaez, A.; Poeggeler, B.; Tan, D.-X.; Pablos, M. I.; Acuna-Castroviejo, D. Advances in Pineal Research; Moller, M.; Pevet, P., Eds.; John Libbey and Co.: London, **1994**, 403. (b) Marshall, K.-A.; Reiter, R. J.; Poeggeler, B.; Aruoma, O. I.; Halliwell, B. Free Radical Biol. Med. **1996**, 21, 307. (c) Cuzzocrea, S.; Zingarelli, B.; Gilad, E.; Hake, P.; Salzman, A. L.; Szabo, C. J. Pineal Res. **1997**, 23, 106. (d) Reiter, R. J.; Tang, L.; Garcia, J. J.; Munos-Hoyos, A. Life Sci. **1997**, 62, 853. (e) Antunes, F.; Barclay, L. R. C.; Ingold, K. U.; King, M.; Norris, J. Q.; Scaiano, J. C.; Xi, P. Free Radical Biol. Med. **1999**, 26, 117.
- (5) Zhang, H.; Squadrito, G. L.; Uppu, R.; Pryor, W. A. Chem. Res. Toxicol. 1999, 12, 526.
- (6) Turjanski, A. G.; Rosenstein, R. E.; Estrin, D. A. J. Med. Chem. 1998, 41, 3684.
- (7) Metabolites of melatonin formed either in the peripheral or CNS are potent inhibitors of the calcium-dependent release of dopamine from retina. K_2 , (IC₅₀: 10 nM) which is formed in the CNS are potent activators of melatonin receptor sites in retina.
- (8) Hirata, F.; Hayaishi, O.; Tokuyama, T.; Senboh, S. J. Biol. Chem. 1974, 249, 1311.
- (9) Nakagawa, M.; Okajima, H.; Hino, T. J. Am. Chem. Soc. 1977, 99, 4424.
- (10) Kondo, Y.; Kojima, S.; Sakamoto, T. J. Org. Chem. 1997, 62, 6507.
- Reaction of 2 with γ-butyrolactone gave the required ketoalcohol product.
- (12) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. *Tetrahedron Lett.* **1975**, 4467. (b) Sonogashira, K. In *Comprehensive Organic Synthesis*, Vol. 3; Trost, B. M.; Fleming, L., Eds.; Pergamon Press: New York, **1991**, Chap. 2.4.
- (13) These compounds have been prepared form Weinreb amides, see: (a) Gomtsyan, A. *Org. Lett.* 2000, 2, 11.
 (b) Gomtsyan, A.; Koenig, R. J.; Lee, C.-H. *J. Org. Chem.* 2001, *66*, 3613.
- (14) To a solution of *tert*-butyl (4-methoxyphenyl) carbamate (10.0 g, 44.82 mmol) in dry THF (112 mL) under N₂ at -78 °C, was added a solution of *tert*-butyllithium in pentane (68.56 mL, 116.53 mmol). After 15 min the solution was warmed to -20 °C and kept at that temperature for 2.5 h whereupon a solution of 1,2-iodoethane (18.95 g, 67.23 mmol) in dry THF (40 mL) was added. The reaction mixture was stirred at ambient temperature overnight. After quenching with sat. aq Na₂S₂O₃ solution (170 mL), the reaction mixture was extracted with Et₂O (3 × 270 mL). The organic phase was washed with brine (160 mL), dried over

Na₂SO₄, filtered and concentrated. Flash chromatography (hexane/Et₂O, 10:1) afforded **3** (9.97 g. 63.74%) as colorless prisms, mp 49–51 °C. IR (KBr): 3346 (s), 2978 (m), 1700 (s), 1515 (s), 1163 (s)cm⁻¹; ¹H NMR (200 MHz, CDCl₃): $\delta =$ 7.75 (d, *J* = 9.1 Hz, 1 H), 7.23 (d, *J* = 2.9 Hz), 6.85 (dd, *J* = 2.9, 9.0 Hz), 6.55 (br, 1 H), 3.76 (s, 3 H), 1.53 (s, 9 H); ¹³C NMR (90 MHz, CDCl₃): $\delta =$ 155.9, 153.0, 132.3, 123.6, 114.8, 80.7, 55.6, 28.3; MS: *m/z* = 349 [M⁺].

- (15) To a solution of **3** (1.75 g, 5 mmol), PdCl₂[PPh₃]₂ (140.3 mg, 0.2 mmol), CuI (85 mg, 0.45 mmol), in dry Et₃N (9.12 mL) at r.t. under N2 atmosphere, was slowly added N-acetyl propargylamine (0.65 g, 6.65 mmol) (30 min). The reaction mixture was stirred at r.t. for 1 h and then partitioned between Et₂O (25 mL) and brine (7 mL). The organic layer was dried over MgSO₄, filtered and evaporated to give 176 mg. Flash chromatography (ethyl acetate/hexane, 2:1) afforded 4, tert-butyl(2-[3'-N-acetylaminopropargyl]-4methoxy phenyl) carbamate, (122 mg, 76.7%) as white crystals, mp 114-118 °C. IR (KBr): 3328 (s), 1698 (s), 1652 (s), 1525 (s), 1292 (s), 1163 (s)cm⁻¹; ¹H NMR (200 MHz, $CDCl_3$): $\delta = 7.97$ (d, J = 9.89 Hz, 1 H), 6.96 (br, 1 H), 6.96-6.83 (mt, 2 H), 6.05 (br, 1 H), 4.33 (d, J = 5.11 Hz, 2 H), 3.75 (s, 3 H), 2.05 (s, 3 H), 1.53 (s, 9 H); ¹³C NMR (90 MHz, CDCl₃): δ = 199.91, 154.32, 152.69, 133.13, 119.68, 116.28, 115.83, 111.91, 91.42, 80.55, 78.50, 55.36, 29.91, 28.20, 22.79; HRMS (ES, Na): m/z = 341.1473 ([M + Na]⁺; calcd for C₁₇H₂₂N₂O₄Na: 341.3564).
- (16) Mercuric sulfate (0.36 g, 1.13 mmol), distd H_2O (2.75 mL), formic acid (19.25 mL) and DCM (11 mL) were magnetically stirred in a 100 mL round bottom flask until the mixture had dissolved. To this solution, **4** (0.36 g, 1.12 mmol) was added over 0.5 h and stirring at 42 °C was continued for 4 h. Solid NaHCO₃ was added to adjust solution to pH 7–8 and the reaction mixture was freeze dried

497

followed by extraction with EtOAc (3 × 50 mL). The organic phase was washed with H₂O (100 mL), brine (100 mL), dried over MgSO₄, filtered and concentrated. Flash chromatography (EtOAc–MeOH, 30:1) afforded **K**₁ (0.165 g, 62%) as fine white needles, mp 142–144 °C and **K**₂ (0.0421 g, 14.1%), mp **K**₁ IR (KBr): 3331 (m), 1687 (s), 1671 (s), 1649 (s), 1540 (s), 1195 (s)cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ = 11.15 (br, 1 H), 8.53 (d, *J* = 9.16 Hz, 1 H), 8.31 (d, *J* = 1.65 Hz, 1 H), 7.26 (d, *J* = 2.75 Hz, 1 H), 7.03 (dd, *J* = 2.75, 9.16 Hz), 6.99 (dd, *J* = 2.75, 9.16 Hz), 6.2 (br, 1 H), 3.72 (s, 3 H), 3.6–3.4 (m, 2 H), 3.2–3.1 (m, 2 H), 1.86 (s, 3 H); ¹³C NMR (90 MHz, CDCl₃): δ = 203.20, 170.242, 159.35, 154.83, 133.10, 123.07, 120.66, 118.07, 115.46, 55.64, 39.64, 34.42, 23.19; HRMS (ES, Na): *m/z* = 287.1004 ([M + Na]⁺; calcd for C₁₃H₁₆N₂O₄Na: 287.2662).

(17) Mercuric sulfate (0.36 g, 1.13 mmol), 10% H_2SO_4 (25 mL) and CH₃OH (10 mL) were magnetically stirred in a 100 mL round bottom flask until the mixture had dissolved. To this solution, 4 (0.36 g, 1.12 mmol) was added over 0.5 h and stirring at 42 °C was continued for 5 h. Solid NaHCO₃ was added to adjust solution to pH 7-8 and the reaction mixture was freeze dried followed by extraction with EtOAc (3×50 mL). The organic phase was washed with H₂O (100 mL), brine (100 mL), dried over MgSO₄, filtered and concentrated. Flash chromatography (EtOAc-MeOH, 30:1) afforded K₂ (0.154 g, 58%) as yellow powder, mp 86-88 °C. IR (KBr): 3446 (s), 3339 (s), 2937 (s), 1731 (s), 1651 (s), 1557 (s), 1237 (s)cm⁻¹; ¹H NMR (200 MHz, CDCl₃): $\delta =$ 7.13 (d, *J* = 2.93 Hz, 1 H), 6.99 (dd, *J* = 2.93, 8.9 Hz, 1 H), 6.95 (dd, *J* = 2.93, 8.9 Hz, 1 H), 6.3 (br, 1 H), 5.8–5.0 (br, 2 H); 13 C NMR (90 MHz, CDCl₃): $\delta = 200.87, 170.10, 150.14,$ 145.04, 123.94, 118.83, 117.32, 112.95, 55.91, 38.72, 34.49, 23.30; HRMS (ES, Na): m/z = 259.1054 ([M + Na]⁺; calcd for $C_{12}H_{16}N_2O_3Na: 259.2623$).