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ABSTRACT:  Alkyl chlorides and aryl chlorides are among 
the most abundant and stable carbon electrophiles. Although 
their coupling with carbon nucleophiles is well developed, 
the cross-electrophile coupling of aryl chlorides with alkyl 
chlorides has remained a challenge. We report here the first 
general approach to this transformation. The key to produc-
tive, selective cross-coupling is the use of a small amount of 
iodide or bromide along with a recently reported ligand, pyr-
idine-2,6-bis(N-cyanocarboxamidine) (PyBCamCN). The 
scope of the reaction is demonstrated with 35 examples (63% 
±16% ave yield) and we show that the Br– and I– additives act 
as co-catalysts, generating a low, steady-state concentration of 
more-reactive alkyl bromide/iodide. 

Cross-electrophile coupling has rapidly become an im-
portant approach to the synthesis of Csp2-Csp3 bonds,1 but 
engaging less reactive C-Cl bonds, outside of activated sys-
tems2 or intramolecular reactions,3 has proven challenging. 
Indeed, unactivated C-Cl bonds are well-tolerated functional 
groups4 in cross-electrophile coupling methods (Scheme 
1).5,6 The ability to cross-couple with organic chlorides is 
valuable for several reasons – first, organic chlorides are more 
abundant than organic bromides or organic iodides;7 second, 
the low reactivity of the C-Cl bond allows it to be introduced 
early in a synthesis and later diversified.8,9,10 

The central challenge presented by C-Cl bonds in cross-
electrophile coupling is the need for higher reactivity without 
sacrificing selectivity (Scheme 1). While the homodimeriza-
tion of alkyl chlorides11 and aryl chlorides8c has been report-
ed, no general cross-selective approach has yet been found.12 
Recently, Zhang reported couplings of a variety of aryl chlo-
rides, but only with an excess of ClCF2R reagents.13 Several 
groups have reported on the coupling of aryl chlorides with 
alkyl bromides14 or tertiary alkyl oxalate esters.15 However, 
the coupling of chlorobenzene with a simple alkyl bromide 
provided less than 25% yield of cross-coupled product.14a 
Switching to an alkyl chloride further diminishes selectivity 
and yield using our standard conditions (Scheme 1).16 

Based upon our proposed mechanism for the coupling of 
aryl iodides with alkyl iodides,17-19 overcoming this dual reac-
tivity-selectivity challenge requires a catalyst that selectively 
reacts with the Ar-Cl over the Alkyl-Cl, yet can slowly gener-
ate an alkyl radical from the Alkyl-Cl starting material. Here-
in we show that this can be accomplished through the use of 
salt additives to maintain a very low, steady-state concentra-
tion of an alkyl bromide/iodide and a uniquely selective pyr-
idine-2,6-bis(N-cyanocarboxamidine) (PyBCamCN)20,21 ligat-
ed nickel catalyst (Scheme 1). 
Scheme 1. Challenges in the Cross-Electrophile Coupling 
Organic Chlorides. 

 
During reaction development, we observed a strong syner-

gistic effect between the catalyst and the presence of sub-
stoichiometric amounts (10-30 mol%) of bromide or iodide 
(Table 1 and Supporting Information Figures S1, S3-S6). 
While no catalysts were found that provided high yields of 
product in the absence of bromide or iodide, high selectivity 
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could be achieved in reactions with PyBCamCN ligand and 
NiBr2(dme) or NiI2•4H2O; and in reactions with PyBCam 
ligand and NiBr2(dme) (Table 1, bold-faced entries). Reac-
tions with bipyridine (bpy) or pyridine 2-carboxamidine 
(PyCam) ligands, which are optimal for the coupling of aryl 
bromides with alkyl bromides,20,22 favored formation of aryl 
dimer products (bpy) or hydrodehalogenated arene 
(PyCam) without consuming the alkyl chloride. Reactions 
with terpyridine (tpy), which is useful for the dimerization of 

alkyl halides,23 converted alkyl chloride to dimeric and hy-
drodehalogenated products without consuming aryl chlo-
ride. In contrast to tpy, reactions with 4,4´,4´´-tri-tert-butyl-
2,2´:6´,2´´-terpyridine (tpy´´´), which is useful in Negishi 
cross-coupling reactions of alkyl halides,24 consumed both 
substrates but formed approximately 1:1:1 product/alkyl 
dimer/aryl dimer.25 See also Chart S1 in the Supporting In-
formation.

Table 1. The Effect of Ligands and Additives on the Cross-Electrophile Coupling of Chlorobenzene with Chlorooctane.a 

 

Ligand X Yield 3a 
(%)b 

Yield 4 
(%)b 

Yield 5 
(%)b Ligand X Yield 3a 

(%)b 
Yield 4 

(%)b 
Yield 5 

(%)b 

bpy 

Cl 2 48 1 

PyCam 

Cl 16 19 6 

Br 9 43 4 Br 43 9 5 

I 17 39 17 I 19 2 3 

tpy 

Cl 10 0 25 

PyBCam•2HCl 

Cl 11 0 0 

Br 4 2 40 Br 53 0 2 

I 1 0 16 I 18 0 23 

tpy´´´ 

Cl 38 28 16 

PyBCamCN 

Cl 46 1 7 

Br 22 26 19 Br 65 0 9 

I 4 33 8 I 87 (82)c 0 6 
aReaction conditions: chlorobenzene (0.5 mmol), 1-chlorooctane (0.5 mmol), NiX2 = NiI2•4H2O/NiBr2(dme)/NiCl2(dme) (0.05 

mmol), ligand (0.05 mmol), LiCl (0.5 mmol), Zn (1.0 mmol), and NMP (1 mL) were assembled in a N2 filled glovebox and heated for 
24 h. bYields were determined by GC analysis calibrated against 1,3,5-trimethoxybenzene as an internal standard. cIsolated yield after 
column chromatography. 

Routine optimization with PyBCam and PyBCamCN 
demonstrated that PyBCamCN was superior, that reactions 
were best conducted at 60-80 °C, and that a variety of iodide 
and bromide additives provide similar results.25 Reactions 
with bromide additive provided the highest yields when the 
alkyl chloride was added slowly, either portionwise via sy-
ringe or dropwise through an addition funnel. Reactions with 
iodide additive did not benefit from slow addition. The pri-
mary side products in both cases are the alkyl dimer and aryl 
hydrodehalogenated product. 

The optimized conditions were then applied to a variety of 
primary alkyl chlorides and chloroarenes (Scheme 2). Elec-
tron-rich aryl chlorides, which were unreactive under our 
previously published conditions, coupled in 69-72% yield 
(3b, 3f, 3g, 3r). However, a more sterically hindered aryl 
chloride, 2-chlorotoluene, coupled poorly (3e, 15% yield). 
While we had coupled electron-poor aryl chlorides with alkyl 

bromides previously,14 under these conditions electron-poor 
aryl chlorides could be coupled with alkyl chlorides for the 
first time, with yields ranging from 53-73% yield (3c, 3h, 3i, 
3s, 3u, 3v). As expected with PyBCam ligands,20 a variety of 
heterocycles could be coupled, including both electron-poor 
quinoline (3s, 63%) and pyridine (3u, 66% and 3v, 73%); 
and electron-rich indole (3r, 71%) and thiophene (3t, 33%). 
A particular advantage of cross-electrophile coupling is toler-
ance for alkyl halides with b-leaving groups (3z-3ad). The 
analogous organometallic reagents would be prone to elimi-
nation. Finally, secondary alkyl chlorides do couple under 
these conditions, but in lower yield (3ai, 44%). 

Despite the higher temperatures, functional group compat-
ibility remained broad. The low basicity of the conditions 
allowed us to tolerate both aryl and alkyl pinacol boronic acid 
esters (3o-3q, 49-73% yield), providing opportunities for 
further elaboration of the products. Acidic N-H (3ag, 60%) 
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and O-H (3ae, 57%) groups are tolerated, which would be a 
challenge for organomagnesium or organozinc reagents.26 As 
a testament to the low basicity of the conditions, a free thiol 
was tolerated (3g, 70% yield), avoiding competing SN2 with 
the alkyl electrophile and S-arylation (pKa of thiophenol in 
DMSO is 10.3,27 which makes it more acidic than acetic ac-
id).28 On the other hand, despite the presence of Lewis acids 
(ZnII salts, Li+ salts) at 60-80 °C, Boc groups on nitrogen 
were still tolerated (3ag, 60%; 3ah, 71%). While esters were 
tolerated, we did observe scrambling when two different es-
ters were present due to transesterification (for example, me-

thyl and ethyl ester exchange). For this reason, we coupled 
chloroarenes bearing esters (3i, 3j) with 1-chlorooctane. 
Other functional group highlights include a benzylic dieth-
ylphosphonate ester (3n, 51%) and a trimethoxysilane (3y, 
32%). Despite the low yield, the cross-coupling to form tri-
methoxysilane product 3y is notable because it is a different 
approach29,30 to forming functionalized silanes that could be 
useful in attaching molecules to glass or silica.31 As in our 
previous studies on cross-electrophile coupling reactions 
with less reactive substrates, this chemistry can be scaled up 
using standard techniques (3ac). 32

Scheme 2. Reaction Scope for the Nickel-Catalyzed Coupling of Aryl Chlorides with Alkyl Chlorides. 

 
aReaction was conducted with 1.25 equiv of alkyl chloride (0.75 mmol) with either NiBr2(dme) or NiI2•4H2O as NiX2. bReaction 

was run on a 7.0 mmol scale. 

The distinctive feature of this reaction, when compared to 
other cross-electrophile couplings of aryl halides with alkyl 
halides, is the ability to engage two relatively unreactive sub-
strates in a selective manner (Scheme 1). There are three 
keys to the success of this method. 

First, LiCl was essential for efficient reduction of the nickel 
catalyst by the zinc surface. We have recently noted that 
ZnCl2 can have an inhibitory effect on reduction of nickel 
catalysts and that lithium chloride is among the best agents 
for overcoming inhibition,33 consistent with previous reports 
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on reduction of organic molecules.34 Here too, reactions con-
ducted without LiCl resulted in 3% formation of the cross-
coupled product and primarily returned both substrates 
(Supporting Information Figure S2). We also verified that 
neither organic chloride reacts directly with zinc to form an 
organozinc reagent (Supporting Information Figure S2). 

Second, halide exchange plays a key role by increasing the 
reactivity of the alkyl chloride. We found that 10-30% of bro-
mide or iodide, regardless of how it was introduced, was essential 
for reasonable reaction rates (Scheme 3 and Supporting In-
formation Figures S4-S7). Importantly, the low concentra-
tion of bromide was essential; reactions run without any 
bromide (Scheme 3d) or with only alkyl bromide (Scheme 
3e) provided lower yields than reactions with a catalytic 
amount of bromide (Scheme 3a – Scheme 3c and Table 1). 
Scheme 3. Evidence for Bromide Co-Catalysis.a 

 
aReactions were run on a 0.5 mmol scale. Yields were deter-

mined by GC analysis calibrated against 1,3,5-
trimethoxybenzene as an internal standard. bReaction run with 
DIPEA (20 mol%). DIPEA had no effect on reaction outcome.  

Studies on halide exchange showed that it is fast compared 
to the rate of reaction (reaching equilibrium in 1-2 h vs 24 h 
for reaction time) and unfavorable (Supporting Information 
Figure S8-S16). Significantly, the presence of zinc and lithi-
um salts altered the equilibrium to more strongly favor alkyl 
iodide/bromide. This led to the counterintuitive outcome 
that increasing total chloride concentration increased alkyl 
iodide concentration. Under concentrations of salts chosen 

to mimic those present catalytic reactions, we found that the 
amount of alkyl iodide increased as the concentration of 
ZnCl2 increased, although the ratio of alkyl-Cl/alkyl-I re-
mained large in all cases (≥98:2, Figure S10 and S16). We 
tentatively attribute this phenomenon to the favorable for-
mation of LiZnCl3

 over LiZnCl2Br or LiZnCl2I, resulting in 
sequestration of chloride as the concentration of Zn2+ in-
creases at later reaction times.35 The halogen exchange is also 
somewhat faster than reported for exchanges in amide sol-
vents with only sodium bromide, but this process could be 
catalyzed by zinc:  catalysis of alkyl halogen exchange by tita-
nium, zirconium, rhodium, and iron salts has been reported.36  

While iodide exchange to enhance the reactivity of alkyl 
bromides,14 sulfonic acid esters,37 epoxides,38 and chlorides11 
in cross-coupling reactions is now well established, the use of 
bromide is more rare.39 In cases where iodide co-catalysis isn’t 
practical, the use of bromide co-catalysis should be consid-
ered. 

Finally, studies with a variety of ligands revealed that Py-
BCam nickel catalysts are unique in being able to react with 
both substrates at similar rates, even with activation by halide 
exchange (Table 1 and Supporting Information Figure S1). 
Compared to nickel complexes of tpy´´´, which could also 
react with both substrates but formed both biaryl and bialkyl, 
nickel PyBCam catalysts avoid biaryl formation entirely and 
form only small amounts of alkyl dimer. The origin of these 
differences in reactivity are not yet clear and are the subject 
of ongoing studies, but it is clear that PyBCam and Py-
BCamCN are a distinctive, new class of tridentate ligands for 
nickel catalysis.40 

In conclusion, the first selective cross-electrophile cou-
pling reaction of aryl chlorides with primary alkyl chlorides 
has been developed by the synergistic effect of three changes:  
a new, selective ligand (PyBCamCN), LiCl to enhance catalyst 
turnover, and bromide/iodide co-catalysis. The mechanism 
by which PyBCamCN improves yields is under investigation 
and will be reported in due course. We expect that the gener-
ally unreactive nature of alkyl and aryl chlorides should make 
this new method to functionalize them a useful addition to 
synthesis. 
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