

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 14 (2004) 5881-5884

Tetrahydroisoquinoline derivatives as melatonin MT₂ receptor antagonists

George N. Karageorge,* Stephen Bertenshaw, Lawrence Iben, Cen Xu, Nathan Sarbin, Anthony Gentile and Gene M. Dubowchik

Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT 06492-7660, USA

Received 14 July 2004; revised 9 September 2004; accepted 10 September 2004 Available online 30 September 2004

Abstract—A series of tetrahydroisoquinolines has yielded potent MT_2 receptor antagonists, which are selective versus the MT_1 receptor.

© 2004 Elsevier Ltd. All rights reserved.

Melatonin (N-acetyl-5-methoxytryptamine) has been shown to exert its biological effects through binding to specific G-protein coupled receptors in the brain.¹ Cloning of several melatonin receptor genes has revealed at least three melatonin receptor proteins. Two of these receptors are G-protein coupled receptors and have been designated as MT_1 and MT_2 .^{2,3} Specific 2-[¹²⁵I]iodomelatonin binding within the hypothalamus in the brain is completely localized to the suprachiasmatic nucleus, the area in the brain thought to regulate the body's internal clock. Further evidence suggests that the melatonin subtype primarily responsible for this action is the MT_2 receptor.⁴ This hypothesis has been further strengthened by recent studies showing that MT₂ receptor agonists advance circadian rhythms⁵ while MT₂ antagonists block melatonin-mediated phase advances of circadian rhythms.⁶

Accordingly, this body of evidence suggests that selective MT_2 receptor agonists should be particularly useful for the treatment of sleep and chronobiotic disorders, including jet lag and work shift syndrome.^{7,8} By focusing on selective MT_2 receptor antagonism, other effects of endogenously secreted melatonin should not be interrupted. This is important as melatonin has also been thought to be involved in seasonal affective disorder^{9,10} immune disorders, premenstrual syndrome, and reproductive disorders.¹¹

Keywords: Melatonin; Antagonist.

Limited previous research has led to the identification of a small number of selective MT_1 or MT_2 melatoninergic ligands. Furthermore, much of this earlier work focused on MT_1 receptor ligands.¹² Few reports have appeared on selective MT_2 receptor agonists.^{13–15} and MT_2 receptor antagonists.^{16–18} In this paper we present a novel series of MT_2 receptor antagonists. This series of compounds was discovered via directed high-throughput screening, and the central feature around which we focused our initial SAR efforts was the tetrahydroisoquinoline scaffold as shown in compound **4** (Scheme 1).

Scheme 1. Reagents and conditions: (a) formic acid 95 °C, \sim 50% yield; (b) R₆(C=O)Cl, Et₃N, CH₂Cl₂ or R₆(C=O)Cl, poly(4-vinylpyridine), dichloroethane, Wa21J (Supelco) polyamine scavenging resin, rt (42–88% yield).

^{*} Corresponding author. Tel.: +1 203 677 6351; fax: +1 203 677 7702; e-mail: karageog@bms.com

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2004.09.024

The general synthetic route to these compounds is described in Scheme 1. Pictect–Spengler¹⁹ reaction of amine 2 with aldehyde 3 in formic acid afforded intermediate 4 in approximately 50% yield. Acylation of compound 4 using an appropriate activated acyl derivative was accomplished either singly or in parallel fashion using automated high-speed synthesis techniques to yield amide 1.

Using the methodology described above with 3,3-diphenylproprionaldehyde (i.e., R_1 and Ar = Ph in 4) and 3,4-dimethoxyphenethylamine, a diverse set of racemic compounds (1a-o) were prepared and evaluated for their melatonergic properties (Table 1) in a human MT1 and MT2 receptor binding assay.^{20,21} Acetamide **1a** had the most potent MT_2 receptor binding affinity with a greater than 100-fold selectivity for the MT_2 receptor. Urea 1g, formamide 1b, and carbamate 1i were also potent MT₂ receptor ligands. However, the latter two possessed less selectivity versus the MT₁ receptor, when compared to 1a. Larger substituents at R_6 (i.e., pentyl 11, hexyl 10, and c-hexyl 1k) had significantly reduced MT₂ receptor affinity. These results indicated that MT₂ receptor affinity could be achieved with small substituents at R_6 , but selectivity versus MT_1 receptor binding was optimized with a specific substitution pattern found in 1a.

Removal of one of the side-chain phenyl rings was investigated. Using the methodology described in Scheme 1 with 3-phenylproprionaldehyde (i.e., $R_1 = H$ and Ar = Ph in 4), afforded compounds 1p-u (Table 2). When $R_6 = Me$ (1p), the removal of the phenyl group (i.e., $R_1 = H$) led to a decrease in MT_2 receptor affinity. For example, compound 1a has an MT_2 affinity of 9.7 nM (Table 1), while des-phenyl analog 1p had an IC₅₀ of 76 nM (Table 2). However, when R_6 was larger

Table 1. Melatonin receptor binding of compounds 1a-o

MeO	\sim
MeO	
	CH ₂ O

Example	R_6	MT_2	MT_1	MT_1/MT_2
		IC ₅₀ (nM)	IC ₅₀ (nM)	
1a	Me	9.7	>1000	>103
1b	Н	9.9	621	62
1c	Et	62	>1000	>16
1d	Pr	79	>1000	>12
1e	Ph	120	>1000	>8
1f	CF ₃	100	>1000	>9
1g	NH_2	30	>1000	>33
1h	NHMe	60	>1000	>17
1i	OMe	22	673	30
1j	c-Bu	310		
1k	c-Hex	370		
11	Pentyl	280	_	
1m	c-Bu	240		
1n	4-CF ₃ Ph	810	_	_
10	Hexyl	400		

Table 2. Melatonin receptor binding of compounds 1p-u

MeO_	
MeO	^I ^I ^I ^R 6
	ĊH₂ Ö
	H

Example	R_6	MT_2	MT_1	MT_1/MT_2
		IC ₅₀ (nM)	IC ₅₀ (nM)	
1p	Me	76	>1000	>13
1q	c-Bu	24		_
1r	c-Hex	220		
1s	4-CF ₃ Ph	1000		_
1t	Н	83	>1000	>12
1u	NH_2	160	>1000	>6

(1q), there was an increase in MT₂ affinity. For example, *c*-Bu derivative 1j had an $IC_{50} = 310 \text{ nM}$ (Table 1), whereas, des-phenyl analog 1q had an IC_{50} of 24 nM (Table 2). These results suggest that the lipophilic binding pocket occupied by the second phenyl ring in 1a is adjacent to the area where R₆ binds, and that a larger R₆ may be able to partially fill that pocket when the phenyl ring is removed.

Finally, substitution on the aromatic phenyl ring of the tetrahydroisoquinoline was evaluated. This was accomplished with a variety of phenethylamines 2 in the Pictect–Spengler reaction (Scheme 1). The results of these efforts are shown in Table 3.

Proper substitution of the phenyl ring of the tetrahydroisoquinoline was necessary for potent affinity at the MT_2 receptor. The absence of substitution on the phenyl ring led to no affinity for the MT_1 and MT_2 receptor (i.e., **1w**). Substitution at R_2 was uniformly deleterious to MT_2 and MT_1 receptor affinity (i.e., **1x,ab**, and **1ad**). In contrast, substitution at R_4 led to potent MT_2 receptor ligands (i.e., **1a,z**, **1ae**). In fact, **1z** with only a single methoxy substituent at R_4 is the most potent compound encountered in this study, and it was reasonably selective versus the MT_1 receptor.

Additional substitution at R_3 had significant effects on selectivity. Addition of a second methoxy substituent at R_3 (1a) improved selectivity, while addition of bromine (1ae) diminished selectivity. This diminution of selectivity for 1ae was a result of both increased MT₁ receptor affinity and a loss of MT₂ receptor affinity.

Compounds **1a,b,e**, and **1f** were selected for evaluation of their functional activity at the MT_2 receptor. Agonism of MT_2 receptors leads to inhibition of adenylate cyclase, leading to a decrease in intracellular cAMP. Thus, inhibition of forskolin-stimulated cAMP accumulation in NIH-3T3 cells stably expressing the MT_2 receptor was used as our functional assay.⁵ Compounds **1a**, **1b**, **1e**, and **1f** demonstrated full antagonism in this assay (intrinsic activity = 0), indicating these compounds, as representatives of the series, are full MT_2 receptor antagonists.

Table 3. Melatonin receptor binding of amides 1v-ae

Example	R ₂	R ₃	R_4	R ₅	$MT_2 IC_{50} (nM)$	$MT_1 IC_{50} (nM)$	MT_1/MT_2
1a	Н	OMe	OMe	Н	9.7	>1000	>103
1w	Н	Н	Н	Н	130	>1000	>7
1x	OMe	Н	Н	Н	>1000	>1000	
1y	Н	OMe	Н	Н	270	>1000	>3
1z	Н	Н	OMe	Н	5.5	512	93
1aa	Н	OMe	Н	OMe	45	>1000	>22
1ab	OMe	OMe	Н	Н	>1000	>1000	
1ac	Н	F	Н	Н	140	>1000	>7
1ad	CH ₂ C	CH ₂ O	Н	Н	>1000	>1000	_
1ae	Н	Br	OMe	Н	24	230	9

In summary, we have identified a novel series of tetrahydroisoquinolines,²² which are potent and selective MT_2 receptor antagonists. In particular, compound **1a** demonstrated single-digit nanomolar binding affinity, a > 100-fold selectivity for the MT_2 receptor versus the MT_1 receptor, and functional antagonism for the MT_2 receptor. This compound represents a useful pharmacological tool to further investigate the chronobiotic function of the MT_2 receptor. Behavioral aspects will be disclosed in further publications.

References and notes

- 1. Li, P.-K.; Witt-Enderby, P. A. Drugs Future 2000, 25, 945.
- Reppert, S. M.; Weaver, D. R.; Godson, C. Trends Pharmacol. Sci. 1996, 17, 100.
- 3. IUPHAR reclassified the Mel **1a** and Mel **1b** receptors to MT₁ and MT₂, *The IUPHAR Compendium of Receptor Characterization and Classification*, IUPHAR media: London, 2000; pp 271–277.
- 4. Dubocovich, D. L. et al. Adv. Exp. Med. Biol. 1999, 460, 181–190.
- Mattson, R. J.; Catt, J. D.; Keavy, D.; Sloan, C. P.; Epperson, J.; Gao, Q.; Hodges, D. B.; Iben, L.; Mahle, C. D.; Ryan, E.; Yocca, F. D. *Bioorg. Med. Chem. Lett.* 2003, *13*, 1199–1202.
- 6. Dubocovich, M. L. et al. FASEB J. 1998, 12, 1211-1219.
- Arendt, J.; Deacon, S.; English, J.; Hampton, S.; Morgan, L. J. Sleep Res. 1995, 4, 74.
- 8. Wirz-Justice, A.; Armstrong, S. M. J. Sleep Res. 1996, 5, 137.
- 9. Cassone, V. M. Trends Neurosci. 1990, 13, 457.
- 10. Bartness, T. J.; Goldman, B. D. Experientia 1989, 45, 939.
- 11. Nelson, R. J.; Drazen, D. L. Reprod. Nutr. Dev. 1999, 39, 383.
- Descamps-Francois, C.; Yous, S.; Chavatte, P.; Audinot, V.; Bonnaud, A.; Boutin, J. A.; Delagrange, P.; Bennejean, C.; Renard, P.; Lesieur, D. J. Med. Chem. 2003, 46, 1127.
- Faust, R.; Garratt, P. J.; Jones, R.; Yeh, L. K.; Tsotinis, A.; Panoussopoulou, M.; Calogeropoulou, T.; Teh, M. T.; Sugden, D. J. Med. Chem. 2000, 43, 1050.

- Conway, S.; Canning, S. J.; Howell, H. E.; Mowat, E. S.; Barrett, P.; Drew, J. E.; Delagrange, P.; Lesieur, D.; Morgan, P. J. *Eur. J. Pharmacol.* 2000, 15, 390.
- Spadoni, G.; Balsamini, C.; Diamantini, G.; Tontini, A.; Tarzia, G.; Mor, M.; Rivara, S.; Plazzi, P. V.; Nonno, R.; Lucini, V.; Pannacci, M.; Fraschini, F.; Stankov, B. M. *J. Med. Chem.* **2001**, *44*, 2900.
- Dubocovich, M. L.; Masana, M. I.; Iacob, S.; Sauri, D. M. N-S Arch. Pharmacol. 1997, 355, 365–375.
- Spandoni, G.; Balsamini, C.; Diamantin, G.; Tontini, A.; Tarzia, G.; Mor, M.; Rivara, S.; Plazzi, P. V.; Nonno, R.; Lucini, V.; Pannacci, M.; Fraschini, F.; Stankov, B. M. J. Med. Chem. 2001, 44, 2900–2912.
- Yous, S.; Durieux-Poissonnier, S.; Lipka-Belloli, E.; Guelzim, H.; Bochu, C.; Audinot, V.; Boutin, J. A.; Delagrange, P.; Bennejean, C.; Renard, P.; Lesieur, D. *Bioorg. Med. Chem.* 2003, 11, 753–759.
- McElvain, S. M.; Bolliger, K. M. Org. Synth. Coll. 1932, 1, 473.
- (a) Reppert, S. M.; Weaver, D. R.; Ebisawa, T. *Neuron* **1994**, *13*, 1177; (b) Reppert, S. M.; Godson, C.; Mahle, C. D.; Weaver, D. R.; Slaugenhaupt, S. A.; Gusella, J. F. *Proc. Natl. Acad. Sci. U.S.A.* **1995**, *92*, 8734.
- Takaki, K. S.; Sun, L.-Q.; Johnson, G.; Epperson, J. R.; Bertenshaw, S. B. U.S. Patent 6,569,894, 2003.
- 22. Selected spectral data. Compound 1a: ¹H NMR (CDCl₃) (approx. 1.8:1 ratio of rotomers, A:B, respectively): δ 7.32 (rotomers A and B, m, 10H), 6.62 (rotomer A, s, 1H), 6.60 (rotomer B, s, 1H), 6.53 (rotomer A, s, 1H), 6.38 (rotomer B, s 1H), 5.68 (rotomer A, m, 1H), 4.60 (rotomer B, m, 1H), 4.12 (rotomer B, t, 1H), 4.03 (rotomer A, m, 1H), 3.92 (rotomer A, s, 3H), 3.88 (rotomers A and B, s, 3H), 3.77 (rotomer B, s, 3H), 3.43 (rotomers A and B, m, 1H), 3.21 (rotomer A, m, 1H), 2.94 (rotomer A, m, 1H), 2.80 (rotomers A and B, m, 1H), 2.67 (rotomer A, m, 1H), 2.54 (rotomer A, m, 1H), 2.35 (rotomer B, m, 1H), 1.96 (rotomer B, s, 3H), 1.65 (rotomer A, s, 3H). Mass spec. 416 (MH)⁺. Anal. Calcd for $C_{27}H_{29}NO_3-2/3H_2O$: C, 75.85; H, 7.15; N, 3.28. Found: C, 75.89; H, 7.03; N, 3.24. Compound **1b**: ¹H NMR (CDCl₃) (approx. 1.8:1 mixture of rotomers A:B, respectively): δ 8.09 (rotomer B, s, 1H), 7.89 (rotomer A, s, 1H), 7.30 (rotomers A and B, m, 10H), 6.61 (rotomer A, s, 1H), 6.55 (rotomer B, s, 1H), 6.47 (rotomer A, s, 1H), 6.30 (rotomer B, s, 1H), 5.40 (rotomer B, q, 1H), 4.52 (rotomer A, q, 1H), 4.22 (rotomer A, q,

1H), 4.16 (rotomer B, t, 1H), 4.01 (rotomer A, q, 1H), 3.89 (rotomer A, s, 3H), 3.86 (rotomer A, s, 3H), 3.83 (rotomer B, s, 3H), 3.74 (rotomer B, s, 3H), 3.48 (rotomer A, m, 1H), 2.80 (rotomers A and B, m, 4H). Mass spec. 402 (MH)⁺. Anal. Calcd for C₂₆H₂₇NO₃: C, 77.78; H, 6.78; N, 3.49. Found: C, 77.74, H, 6.93; N, 3.30. Compound 1c: ¹H NMR (CDCl₃) (approx. 2:1 ratio of A:B rotomers, respectively): δ 7.34 (rotomers A and B, m, 10H), 6.60 (rotomers A and B, s, 1H), 6.52 (rotomer A, s, 1H), 6.30 (rotomer B, s, 1H), 5.69 (rotomer B, t, 1H), 4.64 (rotomer A, m, 1H), 4.10 (rotomer B, t, 1H), 4.01 (rotomer A, q, 1H), 3.90 (rotomer A, s, 3H), 3.87 (s, 3H), 3.71 (rotomer B, s, 2H), 3.44 (rotomer B, m, 2H), 2.80 (rotomers A and B, m, 4H), 2.33 (rotomer A, m, 2H), 2.17 (rotomer B, m, 2H), 1.80 (rotomer A, m, 4H), 1.14 (rotomer B, t, 3H), 0.91 (rotomer A, t, 3H). Mass spec. 430 (MH)⁺. Anal. Calcd for C₂₈H₃₁NO₃: C, 78.29; H, 7.27; N, 3.26. Found: C, 78.12; H, 7.23; N, 3.15. Compound 1d: ¹H NMR

(CDCl₃) (approx. 2:1 ratio of rotomers): δ 7.32 (rotomers A and B, m, 10H), 6.58 (rotomers A and B, s, 1H), 6.51 (rotomer A, s, 1H), 6.30 (rotomer B, s, 1H), 5.67 (rotomer B, t, 1H), 4.66 (rotomer A, s, 1H), 4.15 (rotomer B, t, 1H), 4.00 (rotomer A, q, 1H), 3.90 (rotomer A, s, 3H), 3.85 (rotomers A and B, s, 3H), 3.68 (rotomer B, s, 3H), 3.43 (rotomer B, m, 2H), 2.80 (rotomers A and B, m, 4H), 2.31 (rotomer A, m, 2H), 2.15 (rotomer B, m, 2H), 1.78 (rotomer A, m, 1H), 1.18 (rotomers A and B, m, 2H), 1.05 (rotomer B, t, 3H), 0.87 (rotomer A, t, 3H). Mass spec. 442 (MH)⁺. Anal. Calcd for C₂₉H₃₃NO₃-1/3H₂O: C, 77.55; H, 7.55; N, 3.12. Found: C, 77.38; H, 7.50; N, 3.19. Compound 1f: ¹H NMR (CDCl₃): δ 7.30 (m, 10H), 6.59 (s, 1H), 6.29 (s, 1H), 5.50 (q, 1H), 4.07 (t, 1H), 3.83 (s, 3H), 3.77 (s, 3H), 3.62 (m, 1H), 2.83 (m, 4H), 2.45 (m, 1H). Mass spec. 470 (MH)⁺. Anal. Calcd for $C_{27}H_{26}NO_3F_3$: C, 69.07; H, 5.58; N, 2.98. Found: C, 68.90; H, 5.58; N, 2.91.