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Abstract—We designed and synthesized polyhydroxylated pyrrolidines 1-12 from vr-tyrosine, L-phenylalanine, and D-tyrosine
through iodine-mediated intramolecular cyclization followed by Woodward-Prevost reaction. The synthetic polyhydroxylated
pyrrolidines were identified with structure-based inhibitory activity and selective inhibitory activity against o-rhamnosidase.
(2S5,3S.,4R)-deacetyl anisomycin 7 was the best inhibitor among the 12 polyhydroxylated pyrrolidines because it possesses the same
stereoconfiguration at C1, C2, C3 as a-L-rhamnopyranoside. An investigation into the nature of the inhibition showed that the
synthetic pyrrolidines are competitive inhibitors. They also did not have remarkable inhibitory activity against seven glycosidases
(a-glucosidase, a-mannosidase, a-amylase, B-glucosidase, B-galactosidase, B-amylase, and invertase).

© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

o-Rhamnosidase (EC. 3.2.1.40) hydrolyzes both natural
and synthetic rhamnosides liberating L-rhamnose. To
date, it has been found in Rhamus dahurica seed,! Asper-
gillus niger,” animal tissue,? and several bacteria.* Fur-
thermore, o-rhamnosidase is involved in both the
cleavage O-antigen tetrasaccharides,® the first phase of
the bacterial invasion of a host cell, and also hydrolysis
of rhamnogalacturonans which have a key role as
immunomodulators, enhancing the cytotoxicity of
human NK cells.® Hence, inhibitors of this enzyme
are considered to be potential therapeutic agents for
bacillary dysentery®® and cancer.®® Though the
physiological functions of o -rhamnosidase are not
completely understood, potent rhamnosidase inhibitors
may be used as probes both to investigate the function
of rhamnosidase and also for the development of
potential therapeutic agents. Nitrogen-in-the-ring
carbohydrate mimics (azasugars) have proved to be
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highly potent glycosidase inhibitors useful for studies
into glycoconjugate function, targeting, and turnover.’
The majority of azasugars used as inhibitors have been
based on logical designs aimed specifically at a limited
range of enzymes: glucosidase, mannosidase, and galac-
tosidase. On the contrary, there are a few reports estab-
lishing the synthesis and evaluation of inhibitors of
a-rhamnosidase.

Although inhibitors based on piperidine analogues of
L-rhamnose® and tetrazole analogues® have been
reported, pyrrolidine inhibitors are rarely screened for
a-rhamnosidase inhibition.!® In spite of this, pyrroli-
dine-based inhibitors are typically much more effective
than piperidine analogues of L-rhamnose.'! Recently,
pyrrolidine analogues showed a potent inhibitory activ-
ity against o-rhamnosidase, which could be explained
on the basis of structural similarities and differences be-
tween the analogues and L-rhamnose. Chapman et
al'%® suggested that a stereochemical rational for the
inhibition shown by the pyrrolidines could be given
in terms of the configurational similarities between
OH-3,4 and C5 of r-rhamnose and OH-3,4 and C2
of polyhydroxy pyrrolidines (Fig. 1). These suggestions
have some associated doubts because the study was
based on only a few stereoisomers. In a preliminary
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a-L-rhamnose

R = Ph or p-methoxyphenyl (PMP)

Figure 1. Design of stereoisomer of polyhydroxylated pyrrolidine as a
potent a-rhamnosidase inhibitor.

study, we have established a new stereodivergent syn-
thetic approach to dihydroxylated pyrrolidines based
on the Woodward-Prevost reaction'? leading to the syn-
thesis of four polyhydroxylated pyrrolidines 1-4 from D-
tyrosine.'> Such a stereoselective process leading to
stereoselective synthesis of a range of stereoisomers of a
pyrrolidine is of utmost utility and importance for the
development of structure-based glycosidase inhibitors.
To further facilitate the discovery of new specific a-rham-
nosidase inhibitors, we tried to synthesize polyhydroxy-
lated pyrrolidines through our newly developed
stereodivergent synthetic protocols.'? This approach led
to the discovery of the most potent pyrrolidine inhibitors
of a-rhamnosidase to date.

2. Synthesis

Recently, we reported a stereodivergent synthesis of
anisomycin derivatives 1-4 from D-tyrosine!? and these
stereoiosmers 5-8 were synthesized from L-tyrosine as
the same synthetic protocols using the Woodward—Pre-
vost reaction as a key step.!? Here we described the syn-
theses of pyrrolidine 9-12 as shown in Schemes 1 and 2,
starting from L-phenylalanine. Compound 13 was ob-
tained in five steps with the final step being a Swern oxida-
tion.'? The unsaturated ketone 13 was stereoselectively
reduced to give either: 14a using (S)-BINAL; or 14b using
BH;-(CH3),S. Each of the enantiomerically pure amino
alcohols 14a and 14b was acetylated, and the ensuing
stereoselective iodine-mediated intramolecular cycliza-
tion gave 16a and 16b, respectively. Finally, the trans-
iodoacetated pyrrolidine was heated in the presence of
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Scheme 1. Reagents and conditions: (a) (S)-BINAL, THF, —78 °C; (b)
BH;3-(CH;),S, toluene, —78 °C; (c) Ac,0, Et;N, CH,Cl,, rt; (d) I, sat.
NaHCO5/THF/Et,O (2/1/1), rt.
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Scheme 2. Reagents and conditions: (e) AgOCOCFj3, toluene, reflux
and H,, Pd/C, EtOAc, rt; (f) AgOAc, toluene, reflux, LiAlH,, THF,
0°C, and H,, Pd/C, EtOAc, rt; (g) AgBF,, wet toluene, rt, LiAlH,,
THF, 0 °C, and H,, Pd/C, EtOAc, rt.

AgOAc under Prevost conditions to afford the corre-
sponding diacetylated pyrrolidine. Subsequent deprotec-
tion of the acetyl group and Pf (9-phenyl fluoren-9-yl)
group led to trans-dihydroxylated pyrrolidine 10.

Acetylated pyrrolidine 9 was obtained by reaction un-
der Prevost conditions with AgOCOCF; followed by
hydrogenation with Pd/C. Moreover, 16a was treated
with AgBF, under Woodward conditions, followed
by reductive cleavage of the acetate with LiAlH,
and hydrogenation with Pd/C to generate compound

Pyrrolidine 12, possessing an all-cis-configuration, was
obtained from cis-iodoacetated pyrrolidine 16b through
the same set of reactions as compound 11. Structures
of the all final compounds 1-12 were confirmed by
spectroscopic data. The spectroscopic data of com-
pounds 1-4, 9, and 10 were consistent with previous
data.!>14

(25,35,4S8)-Anisomycin (5). [«]p +19.8 (¢ 0.7, MeOH).
'"H NMR (300 MHz; CDCl5)  1.95 (1H, s), 2.02 (3H,
s), 3.03 (1H, dd, J=14.2, 8.7Hz), 3.24 (1H, dd,
J=142, 72 Hz), 3.32 (2H, m), 3.71 (1H, m), 3.79
(3H, s), 431 (1H, m), 493 (1H, m), 6.90 (2H, d,
J=8.5Hz), 7.22 (2H, d, /= 8.5 Hz).

(25,35,4S5)-Deacetyl anisomycin (6). [¢]p —20.3 (c 1.0,
MeOH). 'H NMR (300 MHz; CDCl3) ¢ 2.76 (1H, dd,
J=13.8, 8.1Hz), 296 (2H, m), 3.12 (2H, m), 3.77
(3H, s), 3.79 (1H, m), 4.06 (1H, m), 6.87 (2H, d,
J=8.6Hz), 7.19 (2H, d, J = 8.6 Hz).

(25,35,4R)-Deacetyl anisomycin (7). [¢]p —19.1 (¢ 1.0,
MeOH). '"H NMR (300 MHz; CDCl3) 6 2.75 (1H, dd,
J=13.8, 8.1 Hz), 2.92 (2H, m), 3.11 (2H, m), 3.76
(4H, m), 4.05 (1H, m), 6.86 (2H, d, J=28.3 Hz), 7.19
(2H, d, J= 8.6 Hz).

(25,3R,45)-Deacetyl anisomycin (8). [o¢]p —1.0 (c 0.28,
MeOH). '"H NMR (300 MHz; CDCl;) 6 3.14 (1H, dd,
J=14.1, 8.0 Hz), 3.33 (1H, m), 3.41 (1H, dd, J = 14.0,
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6.7 Hz), 3.58 (1H, m), 3.88 (1H, m), 4.01 (3H, s), 4.23
(1H, m), 4.62 (IH, m), 7.13 (2H, d, J = 8.5 Hz), 7.49
(2H, d, J = 8.5 Hz).

(25,35,4R)-2-Benzyl-3,4- dlhydroxy pyrrolidine (11). [«]p
—16.5 (¢ 1.0, MeOH). '"H NMR (300 MHz; CDCls)
2.81 (1H, dd, J=13.5, 8.1Hz), 2.89 (1H, m), 3.08
(3H, m), 3.77 (1H, m), 4.05 (1H, m), 7.29 (5H, m).

(25,3R,45)-2-Benzyl-3, 4 -dihydroxy pyrrolidine (12). [«]p
—0.9 (¢ 0.4, MeOH). 'H NMR (300 MHz; CDCl;) o
290 (1H, dd, J=13.6, 7.6 Hz), 3.01 (1H m), 3.17
(2H, m), 3.49 (1H, m), 3.95 (1H, m), 4.32 (1H, m),
7.27 (5H, m).

3. Biological activity

The polyhydroxylated pyrrolidines shown in Figure 2
were assessed as inhibitors of a-rhamnosidase, and the
results are listed in Table 1. A comparison of the results
for Gp II and Gp III shows that the inclusion of a p-
methoxy group on the phenyl ring did slightly affect
the activity. On the other hand, the potent inhibition
of a-rhamnosidase shown by deacetylated pyrrolidine
analogues 6 (ICso=3.7uM) and 10 (ICsq=4.3 uM)
are in contrast to the weak activity shown by monoacet-
ylated compounds 5 (IC50=57.9uM) and 9
(ICs59 = 11.2 uM) which possess the same stereochemis-
try as 6.

Compounds 5-12 are stronger inhibitors than 1-4. These
results suggest that the 2S-configuration of pyrrolidines
which were synthesized from L-amino acids, showed more
inhibitory activity than the corresponding 2R-derived
pyrrolidines from p-amino acids. However, all-cis-config-
ured pyrrolidine 8 (ICso=137.3 uM) and 12 (ICso =

Groupl
HO  OH HQO  OH

PMP_, Zz > PMP\\\\\ZNg PMP\\\\[NB
R=Ac 1 3 1 4 H
R=H 2
Groupll
R=Ac 5 7
R=H 6
GroupIII

ﬂ 3 ﬂH
R=Ac 9 11 12
R=H 10

Figure 2. Target compounds for selective a-rhamnosidase inhibition.

Table 1. Inhibitory activities of pyrrolidines against o-rhamnosidase®

Compound No. o-Rhamnosidase

1Cso (K;, uM) Inhibition type
Group I 1 NI® NT®
2 209.4 NT
3 183.8 NT
4 NI NT
Group 11 5 57.9 (51.5) Competitive
6 3.7 (2.9) Competitive
7 3.2 (2.6) Competitive
8 137.3 NT
Group 111 9 11.2 (10.0) Competitive
10 4.3 (3.4) Competitive
11 3.6 (2.9) Competitive
12 168.1 NT

#Inhibitory activity were tested with Ref. 15.

®NI: no inhibition, less than 30% inhibition at the concentration of
200 uM.

°NT: Not tested.

168.1 uM) both have relatively small inhibitory activity
when compared with other 2S-configured pyrrolidines.

Compound 7, (25,3S,4R)-deacetylanisomycin, possess-
ing the same configuration at Cl, C2, and C3 as
o-L-thamnopyranoside (Fig. 3), has the best inhibitory
activity (ICsp = 3.2 uM).

These results show that C2 hydrophobic substituents on
the pyrrolidine ring have a role as aglycone. And the ste-
reochemistry of C2 and C3 of pyrrolidine were strongly
related with the binding affinity in the active site of
o-rhamnosidase, while the one of C4 were not.

HO,, \@\/g_>

Aglycone—O" " O

|||O

a-L-rhamnopyranoside

Figure 3. o-L-Rhamnoside and compound 7 as the best inhibitor.
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Figure 4. Lineweaver-Burk plot analysis of the inhibition kinetics of

a-rhamnosidase inhibitory effects by compound 7 [M, control; @, 5 pM;
A, 10 uM inhibitor].
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We examined the type of inhibition of this enzyme by 5-7
and 9-11 through a Lineweaver—Burk plot of a-rhamnos-
idase kinetics, which showed that all the tested pyrroli-
dines were competitive inhibitors of o-rhamnosidase
(Fig. 4).

Except for the inhibition of B-amylase by compound 9
that showed 46.6% inhibition at 200 uM concentration,
all synthetic pyrrolidines do not demonstrate inhibitory
activity at 200 uM against seven glycosidases'® (a-gluco-
sidase from Bakers yeast, o-mannosidase from Jack
Beans, a-amylase from Bacillus licheniformis, B-glucosi-
dase from Almonds, B-galactosidase from Escherichia
coli, B-amylase from Barley and invertase from Bakers
yeast), using this data we could state that 5-7 and
9-11 are highly selective and potent inhibitors of
a-rhamnosidase.

In conclusion, the synthesized 12 polyhydroxylated
pyrrolidines were identified with structure-based inhibi-
tory activity and specific inhibitory activity for a-rham-
nosidase. The compound 7 (25,35,4R)-deacetyl
anisomycin, had the best inhibitory activity because it
possesses the same stereoconfiguration at C1 and C2
as o-L-rhamnopyranoside.
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