

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 15 (2005) 4282–4285

α-Rhamnosidase inhibitory activities of polyhydroxylated pyrrolidine

Jin Hyo Kim,^a Marcus J. Curtis-Long,^b Woo Duck Seo,^a Jin Hwan Lee,^a Byong Won Lee,^a Yong Jin Yoon,^c Kyu Young Kang^a and Ki Hun Park^{a,*}

^aDivision of Applied Life Science (BK21 program), Department of Agricultural Chemistry,

Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea ^bTrout Beck, Wansford, Driffield, East Yorkshire YO25 8NX, UK

^cDepartment of Chemistry, Gyeongsang National University, Jinju 660-701, Republic of Korea

Received 27 May 2005; revised 18 June 2005; accepted 20 June 2005 Available online 21 July 2005

Abstract—We designed and synthesized polyhydroxylated pyrrolidines 1–12 from L-tyrosine, L-phenylalanine, and D-tyrosine through iodine-mediated intramolecular cyclization followed by Woodward–Prevost reaction. The synthetic polyhydroxylated pyrrolidines were identified with structure-based inhibitory activity and selective inhibitory activity against α -rhamnosidase. (2*S*,3*S*,4*R*)-deacetyl anisomycin 7 was the best inhibitor among the 12 polyhydroxylated pyrrolidines because it possesses the same stereoconfiguration at C1, C2, C3 as α -L-rhamnopyranoside. An investigation into the nature of the inhibition showed that the synthetic pyrrolidines are competitive inhibitors. They also did not have remarkable inhibitory activity against seven glycosidases (α -glucosidase, α -mannosidase, α -amylase, β -glucosidase, β -amylase, and invertase). (© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

 α -Rhamnosidase (EC. 3.2.1.40) hydrolyzes both natural and synthetic rhamnosides liberating L-rhamnose. To date, it has been found in Rhamus dahurica seed,¹ Aspergillus niger,² animal tissue,³ and several bacteria.⁴ Furthermore, α -rhamnosidase is involved in both the cleavage O-antigen tetrasaccharides,⁵ the first phase of the bacterial invasion of a host cell, and also hydrolysis of rhamnogalacturonans which have a key role as immunomodulators, enhancing the cytotoxicity of human NK cells.⁶ Hence, inhibitors of this enzyme are considered to be potential therapeutic agents for bacillary dysentery5a and cancer.6b Though the physiological functions of α -rhamnosidase are not completely understood, potent rhamnosidase inhibitors may be used as probes both to investigate the function of rhamnosidase and also for the development of potential therapeutic agents. Nitrogen-in-the-ring carbohydrate mimics (azasugars) have proved to be

highly potent glycosidase inhibitors useful for studies into glycoconjugate function, targeting, and turnover.⁷ The majority of azasugars used as inhibitors have been based on logical designs aimed specifically at a limited range of enzymes: glucosidase, mannosidase, and galactosidase. On the contrary, there are a few reports establishing the synthesis and evaluation of inhibitors of α -rhamnosidase.

Although inhibitors based on piperidine analogues of L-rhamnose⁸ and tetrazole analogues⁹ have been reported, pyrrolidine inhibitors are rarely screened for α-rhamnosidase inhibition.¹⁰ In spite of this, pyrrolidine-based inhibitors are typically much more effective than piperidine analogues of L-rhamnose.¹¹ Recently, pyrrolidine analogues showed a potent inhibitory activity against α -rhamnosidase, which could be explained on the basis of structural similarities and differences between the analogues and L-rhamnose. Chapman et al^{10b} suggested that a stereochemical rational for the inhibition shown by the pyrrolidines could be given in terms of the configurational similarities between OH-3,4 and C5 of L-rhamnose and OH-3,4 and C2 of polyhydroxy pyrrolidines (Fig. 1). These suggestions have some associated doubts because the study was based on only a few stereoisomers. In a preliminary

Keywords: Anisomycin derivatives; α -rhamnosidase; Specific inhibitor; Polyhydroxylated pyrrolidine; Stereodivergent synthesis.

^{*} Corresponding author. Tel.: +82 55 751 5472; fax: +82 55 757 0178; e-mail: khpark@gsnu.ac.kr

R = Ph or *p*-methoxyphenyl (PMP)

Figure 1. Design of stereoisomer of polyhydroxylated pyrrolidine as a potent α -rhamnosidase inhibitor.

study, we have established a new stereodivergent synthetic approach to dihydroxylated pyrrolidines based on the Woodward–Prevost reaction¹² leading to the synthesis of four polyhydroxylated pyrrolidines **1–4** from Dtyrosine.¹³ Such a stereoselective process leading to stereoselective synthesis of a range of stereoisomers of a pyrrolidine is of utmost utility and importance for the development of structure-based glycosidase inhibitors. To further facilitate the discovery of new specific α -rhamnosidase inhibitors, we tried to synthesize polyhydroxylated pyrrolidines through our newly developed stereodivergent synthetic protocols.¹² This approach led to the discovery of the most potent pyrrolidine inhibitors of α -rhamnosidase to date.

2. Synthesis

Recently, we reported a stereodivergent synthesis of anisomycin derivatives 1–4 from D-tyrosine¹³ and these stereoiosmers 5–8 were synthesized from L-tyrosine as the same synthetic protocols using the Woodward–Prevost reaction as a key step.¹² Here we described the syntheses of pyrrolidine 9–12 as shown in Schemes 1 and 2, starting from L-phenylalanine. Compound 13 was obtained in five steps with the final step being a Swern oxidation.¹² The unsaturated ketone 13 was stereoselectively reduced to give either: 14a using (S)-BINAL; or 14b using BH₃-(CH₃)₂S. Each of the enantiomerically pure amino alcohols 14a and 14b was acetylated, and the ensuing stereoselective iodine-mediated intramolecular cyclization gave 16a and 16b, respectively. Finally, the *trans*-iodoacetated pyrrolidine was heated in the presence of

Scheme 1. Reagents and conditions: (a) (*S*)-BINAL, THF, -78 °C; (b) BH₃-(CH₃)₂S, toluene, -78 °C; (c) Ac₂O, Et₃N, CH₂Cl₂, rt; (d) I₂, sat. NaHCO₃/THF/Et₂O (2/1/1), rt.

Scheme 2. Reagents and conditions: (e) AgOCOCF₃, toluene, reflux and H₂, Pd/C, EtOAc, rt; (f) AgOAc, toluene, reflux, LiAlH₄, THF, $0 \,^{\circ}$ C, and H₂, Pd/C, EtOAc, rt; (g) AgBF₄, wet toluene, rt, LiAlH₄, THF, $0 \,^{\circ}$ C, and H₂, Pd/C, EtOAc, rt.

AgOAc under Prevost conditions to afford the corresponding diacetylated pyrrolidine. Subsequent deprotection of the acetyl group and Pf (9-phenyl fluoren-9-yl) group led to *trans*-dihydroxylated pyrrolidine **10**.

Acetylated pyrrolidine 9 was obtained by reaction under Prevost conditions with AgOCOCF₃ followed by hydrogenation with Pd/C. Moreover, **16a** was treated with AgBF₄ under Woodward conditions, followed by reductive cleavage of the acetate with LiAlH₄ and hydrogenation with Pd/C to generate compound **11**.

Pyrrolidine 12, possessing an all-*cis*-configuration, was obtained from *cis*-iodoacetated pyrrolidine 16b through the same set of reactions as compound 11. Structures of the all final compounds 1-12 were confirmed by spectroscopic data. The spectroscopic data of compounds 1-4, 9, and 10 were consistent with previous data.¹²⁻¹⁴

(2*S*,3*S*,4*S*)-Anisomycin (5). $[\alpha]_D$ +19.8 (*c* 0.7, MeOH). ¹H NMR (300 MHz; CDCl₃) δ 1.95 (1H, s), 2.02 (3H, s), 3.03 (1H, dd, *J* = 14.2, 8.7 Hz), 3.24 (1H, dd, *J* = 14.2, 7.2 Hz), 3.32 (2H, m), 3.71 (1H, m), 3.79 (3H, s), 4.31 (1H, m), 4.93 (1H, m), 6.90 (2H, d, *J* = 8.5 Hz), 7.22 (2H, d, *J* = 8.5 Hz).

(2*S*,3*S*,4*S*)-Deacetyl anisomycin (6). $[\alpha]_D$ -20.3 (*c* 1.0, MeOH). ¹H NMR (300 MHz; CDCl₃) δ 2.76 (1H, dd, J = 13.8, 8.1 Hz), 2.96 (2H, m), 3.12 (2H, m), 3.77 (3H, s), 3.79 (1H, m), 4.06 (1H, m), 6.87 (2H, d, J = 8.6 Hz), 7.19 (2H, d, J = 8.6 Hz).

(2*S*,3*S*,4*R*)-Deacetyl anisomycin (7). $[\alpha]_D$ –19.1 (*c* 1.0, MeOH). ¹H NMR (300 MHz; CDCl₃) δ 2.75 (1H, dd, J = 13.8, 8.1 Hz), 2.92 (2H, m), 3.11 (2H, m), 3.76 (4H, m), 4.05 (1H, m), 6.86 (2H, d, J = 8.3 Hz), 7.19 (2H, d, J = 8.6 Hz).

(2*S*,3*R*,4*S*)-Deacetyl anisomycin (8). $[\alpha]_D$ -1.0 (*c* 0.28, MeOH). ¹H NMR (300 MHz; CDCl₃) δ 3.14 (1H, dd, J = 14.1, 8.0 Hz), 3.33 (1H, m), 3.41 (1H, dd, J = 14.0,

6.7 Hz), 3.58 (1H, m), 3.88 (1H, m), 4.01 (3H, s), 4.23 (1H, m), 4.62 (1H, m), 7.13 (2H, d, *J* = 8.5 Hz), 7.49 (2H, d, *J* = 8.5 Hz).

(2*S*,3*S*,4*R*)-2-Benzyl-3,4-dihydroxy pyrrolidine (11). $[\alpha]_D$ -16.5 (*c* 1.0, MeOH). ¹H NMR (300 MHz; CDCl₃) δ 2.81 (1H, dd, *J* = 13.5, 8.1 Hz), 2.89 (1H, m), 3.08 (3H, m), 3.77 (1H, m), 4.05 (1H, m), 7.29 (5H, m).

(2*S*,3*R*,4*S*)-2-Benzyl-3,4-dihydroxy pyrrolidine (12). $[\alpha]_D$ -0.9 (*c* 0.4, MeOH). ¹H NMR (300 MHz; CDCl₃) δ 2.90 (1H, dd, *J* = 13.6, 7.6 Hz), 3.01 (1H, m), 3.17 (2H, m), 3.49 (1H, m), 3.95 (1H, m), 4.32 (1H, m), 7.27 (5H, m).

3. Biological activity

The polyhydroxylated pyrrolidines shown in Figure 2 were assessed as inhibitors of α -rhamnosidase, and the results are listed in Table 1. A comparison of the results for Gp II and Gp III shows that the inclusion of a *p*-methoxy group on the phenyl ring did slightly affect the activity. On the other hand, the potent inhibition of α -rhamnosidase shown by deacetylated pyrrolidine analogues **6** (IC₅₀ = 3.7 μ M) and **10** (IC₅₀ = 4.3 μ M) are in contrast to the weak activity shown by monoacetylated compounds **5** (IC₅₀ = 57.9 μ M) and **9** (IC₅₀ = 11.2 μ M) which possess the same stereochemistry as **6**.

Compounds 5–12 are stronger inhibitors than 1–4. These results suggest that the 2*S*-configuration of pyrrolidines which were synthesized from L-amino acids, showed more inhibitory activity than the corresponding 2*R*-derived pyrrolidines from D-amino acids. However, all-*cis*-configured pyrrolidine 8 (IC₅₀ = 137.3 μ M) and 12 (IC₅₀ =

Figure 2. Target compounds for selective α -rhamnosidase inhibition.

Table 1. Inhibitory activities of pyrrolidines against α-rhamnosidase^a

Compound No.		α-Rhamnosidase	
		$IC_{50}(K_i, \mu M)$	Inhibition type
Group I	1	NI ^b	NT ^c
	2	209.4	NT
	3	183.8	NT
	4	NI	NT
Group II	5	57.9 (51.5)	Competitive
	6	3.7 (2.9)	Competitive
	7	3.2 (2.6)	Competitive
	8	137.3	NT
Group III	9	11.2 (10.0)	Competitive
	10	4.3 (3.4)	Competitive
	11	3.6 (2.9)	Competitive
	12	168.1	NT

^a Inhibitory activity were tested with Ref. 15.

 b NI: no inhibition, less than 30% inhibition at the concentration of 200 $\mu M.$

^c NT: Not tested.

168.1 μ M) both have relatively small inhibitory activity when compared with other 2*S*-configured pyrrolidines.

Compound 7, (2S,3S,4R)-deacetylanisomycin, possessing the same configuration at C1, C2, and C3 as α -L-rhamnopyranoside (Fig. 3), has the best inhibitory activity (IC₅₀ = 3.2 μ M).

These results show that C2 hydrophobic substituents on the pyrrolidine ring have a role as aglycone. And the stereochemistry of C2 and C3 of pyrrolidine were strongly related with the binding affinity in the active site of α -rhamnosidase, while the one of C4 were not.

Figure 3. α -L-Rhamnoside and compound 7 as the best inhibitor.

Figure 4. Lineweaver–Burk plot analysis of the inhibition kinetics of α -rhamnosidase inhibitory effects by compound 7 [\blacksquare , control; \bullet , 5 μ M; \blacktriangle , 10 μ M inhibitor].

We examined the type of inhibition of this enzyme by 5-7 and 9-11 through a Lineweaver–Burk plot of α -rhamnosidase kinetics, which showed that all the tested pyrrolidines were competitive inhibitors of α -rhamnosidase (Fig. 4).

Except for the inhibition of β -amylase by compound **9** that showed 46.6% inhibition at 200 μ M concentration, all synthetic pyrrolidines do not demonstrate inhibitory activity at 200 μ M against seven glycosidases¹⁶ (α -glucosidase from Bakers yeast, α -mannosidase from Jack Beans, α -amylase from *Bacillus licheniformis*, β -glucosidase from Almonds, β -galactosidase from *Escherichia coli*, β -amylase from Barley and invertase from Bakers yeast), using this data we could state that **5–7** and **9–11** are highly selective and potent inhibitors of α -rhamnosidase.

In conclusion, the synthesized 12 polyhydroxylated pyrrolidines were identified with structure-based inhibitory activity and specific inhibitory activity for α -rhamnosidase. The compound 7 (2S,3S,4R)-deacetyl anisomycin, had the best inhibitory activity because it possesses the same stereoconfiguration at C1 and C2 as α -L-rhamnopyranoside.

Acknowledgments

This work was supported by a grant (BioGreen21 Project) from the Rural Development Administration, Korea. We also thank Brain Korea 21 program.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2005. 06.051.

References and notes

- 1. Suzuki, H. Arch. Biochem. Biophys. 1962, 99, 476.
- 2. Kurosawa, Y.; Ikeda, K.; Egami, F. J. Biochem. 1973, 73, 31.
- Rosenfeld, E. L.; Wiederschein, G. Y. Bull. Soc. Chim. Biol. 1965, 47, 1433.
- 4. (a) Barker, S. A.; Somers, P. J.; Stacey, M. Carbohydr. Res. 1965, 1, 106; (b) Bokkenheuser, V. D.; Shackleton, C. H. L.; Winter, J. Biochem. J. 1987, 248, 953; (c) Jang, I. S.; Kim, D. H. Biol. Pharm. Bull. 1996, 19, 1546; (d)

Hashimoto, W.; Muraka, K. Biosci. Biotechnol. Biochem. 1998, 62, 1068.

- (a) Chua, J. E. H.; Manning, P. A.; Morona, R. *Microbiology* 1999, 145, 1649; (b) Wollin, R.; Eriksson, U.; Lindberg, A. A. J. Virol. 1981, 38, 1025; (c) Mavris, M.; Manning, P. A.; Morona, R. *Mol. Microbiol.* 1997, 26, 939.
- (a) Mueller, E. A.; Anderer, F. A. *Immunopharmacology* 1990, 19, 69; (b) Zhu, H.-G.; Zollner, T. M.; Klein-Franke, A.; Anderer, F. A. J. Cancer Res. Clin. Oncol. 1994, 120, 383.
- (a) Legler, G. Adv. Carbohydr. Chem. Biochem. 1990, 48, 319; (b) Sinnott, M. L. Chem. Rev. 1990, 90, 1171; (c) Wong, C.-H.; Halcomb, R. L.; Ichikawa, Y.; Kajimoto, T. Angew. Chem. Int. Ed. Engl. 1995, 34, 521.
- (a) Shilvock, J. P.; Wheatley, J. R.; Davis, B.; Nash, R. J.; Griffiths, R. C.; Jones, M. G.; Muller, M.; Crook, S.; Watkin, D. J.; Smith, C.; Besra, G. S.; Brennan, P. J.; Fleet, G. W. J. *Tetrahedron Lett.* **1996**, *37*, 8569; (b) Shilvock, J. P.; Nash, R. J.; Watson, A. A.; Winters, A. L.; Butters, T. D.; Dwek, R. A.; Winkler, D. A.; Fleet, G. W. J. J. Chem. Soc. Perkin. Trans. **1999**, *1*, 2747.
- Davis, B. G.; Brandstetter, T. W.; Hackett, L.; Winchester, B. G.; Nash, R. J.; Watson, A. A.; Griffiths, R. C.; Smith, C.; Fleet, G. W. J. Tetrahedron 1999, 55, 4489.
- (a) Provencher, L.; Steensma, D. H.; Wong, C.-H. Bioorg. Med. Chem. 1994, 2, 1179; (b) Chapman, T. M.; Courtney, S.; Hay, P.; Davis, B. G. Chem. Eur. J. 2003, 9, 3397.
- (a) Davis, B. G.; Hull, A.; Smith, C.; Nash, R. J.; Watshon, A. A.; Winkler, D. A.; Griffiths, R. C.; Fleet, G. W. J. *Tetrahedron: Asymmetry* **1998**, *9*, 2947; (b) Fairbanks, A. J.; Carpenter, N.; Fleet, G. W. J.; Ramsden, N. G.; Cenci de Bello, I.; Winchester, B. G.; Al-Daher, S. S.; Nagahashi, G. *Tetrahedron* **1992**, *48*, 3365.
- 12. Kim, J. H.; Curtis-Long, M. J.; Kim, J. Y.; Park, K. H. Org. Lett. 2004, 6, 2273.
- Kim, J. H.; Curtis-Long, M. J.; Seo, W. D.; Ryu, Y. B.; Yang, M. S.; Park, K. H. J. Org. Chem. 2005, 70, 4082.
- 14. Jeong, H. J.; Lee, J. M.; Kim, M. K.; Lee, S.-G. *J. Heterocycl. Chem.* **2002**, *39*, 1019.
- 15. Enzyme activity test: α -L-rhamnosidase activity was assayed using *p*-nitrophenyl α -L-rhamnopyranoside (PNLR) as a substrate and α -rhamnosidase from *P*. *decumbens* according to the method of Chapman et al.^{10b} The reaction mixture, containing 50 µL of enzyme solution (33 µg/mL), 100 µL of 2.5 mM *p*-nitrophenyl α -Lrhamnopyranoside, 50 µL of sample solution and 50 µL of 50 mM phosphate buffer (pH 6.7) were incubated at 30 °C for 20 min. After the addition of 100 µL of 0.4 M NaOH to stop the reaction, absorbance of the mixture at 405 nm was determined.
- (a) Ogawa, S.; Fujieda, S.; Sakata, Y.; Ishizaki, M.; Hisamatsu, S.; Okazaki, K.; Ooki, Y.; Mori, M.; Itoh, M.; Korenaga, T. *Bioorg. Med. Chem.* 2004, *12*, 6569; (b) Gao, H.; Kawabata, J. *Bioorg. Med. Chem.* 2005, *13*, 1661.