

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 14 (2004) 1023-1026

4-Substituted anilides as selective melatonin MT₂ receptor agonists

James R. Epperson,* Jeffrey A. Deskus, Anthony J. Gentile, Lawrence G. Iben, Elaine Ryan and Nathan S. Sarbin

Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT 06492-7660, USA

Received 15 September 2003; revised 7 November 2003; accepted 14 November 2003

Abstract—A series of 4-substituted anilides with human melatonergic affinity is reported. Butyramides 26, 39, 42, 52, 57, and 58 all demonstrated subnanomolar MT_2 binding affinity and MT_2 selectivity of at least 70-fold over the MT_1 receptor. Compound 26 demonstrated full agonism at the MT_2 receptor. \bigcirc 2003 Elsevier Ltd. All rights reserved.

Melatonin (1) is a pineal hormone involved in circadian and photoperiodic behavior and helps regulate the sleep/wake cycle.¹ Melatonin transmits its effects, in part, through G-protein coupled receptors.² In humans, the MT₁ and MT₂ melatonin receptors have been identified in the brain.^{3,4} The MT₂ receptor now appears to play a major role in mammalian circadian entrainment.⁵ In mice lacking the MT₁ receptor,⁶ melatonin produced phase shifts, and the MT₂ selective antagonist 4-P-PDOT (2) blocked this effect.⁷

Recently, structurally rigid *N*-acyl-4-indanylpiperazines **3** were reported to be MT_2 selective agonists.⁸ In contrast to these indanylpiperazines, conformationally flexible *N*-acyl benzylpiperazines **4** possessed only modest melatonergic affinity. We now report a series of 4-substituted anilides which are potent and selective agonists at the human melatonin MT_2 receptor. These anilides have similar conformational flexibility to benzylpiperidines **4** and demonstrate that structural rigidity is not an absolute requirement for either potency or selectivity.

The synthesis of the anilides consisted of two parts: (1) assembly of a substituted nitrobenzene intermediate by one of five methods (Scheme 1) and (2) reduction and acylation of that intermediate to form the anilide (Scheme 2). 4-Aryloxy- and 4-arylthio- intermediates 7 were prepared by nucleophilic displacement of 4-fluoro-

0960-894X/\$ - see front matter \odot 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2003.11.030

nitrobenzene (6) with a phenol or thiophenol 5 under basic conditions (method a). 3-Aryloxy intermediate 10 was prepared in modest yield by a modified Ullmann procedure⁹ employing PhCCCu to couple 3-nitrophenol (9) with 3-methoxybromobenzene (8) (method b). 4-Ketoaryl intermediate 13 was prepared under Stille conditions¹⁰ to couple 4-nitrobenzoyl chloride (12) with 3-methoxyphenyltributyl stannane (11) (method c). 4-Benzyl intermediate 16 was prepared under Suzuki

^{*} Corresponding author. Tel.: + 1-203-677-6974; fax: + 1-203-677-6900; e-mail: james.epperson@bms.com

Scheme 1. Synthesis of nitrobenzene intermediates. Reagents and conditions: (a) K_2CO_3 , CH_3CN , reflux; (b) PhCCCu, pyridine, reflux; (c) $Bn(Cl)(Ph_3P)_2Pd$, CH_2Cl_2 , $25 \,^{\circ}C$; (d) $PdCl_2$, dppf, K_2CO_3 , THF, reflux; (e) $Pd(OAc)_2$, BINAP, Cs_2CO_3 , toluene, $80 \,^{\circ}C$; (f) MeI, solid KOH, THF, reflux.

Scheme 2. Synthesis of anilides. Reagents and conditions: (a) H_2 , Pd/C, EtOAc or EtOH; (b) RCOCl, TEA, cat. DMAP, CH_2Cl_2 ; (c) RNCO, CH_2Cl_2 .

conditions reported by Liebeskind¹¹ (method d). In this method, 4-nitrobenzyl chloride was reacted with tetrahydrothiophene to form the stable sulfonium salt **15**.¹² This salt then underwent Suzuki coupling with 3-methoxyphenylboronic acid (**14**) employing a Pd/dppf catalyst system. Finally, 4-anilinyl intermediate **19** was prepared under improved Buchwald conditions for coupling aryl triflate **17** with aniline **18** under mild basic conditions (method e).¹³ Intermediate **19** was also methylated to afford methylamino intermediate **20**.

The intermediate nitrophenyl compounds 21 were then hydrogenated to afford penultimate anilines 22 and subsequently acylated with acid chlorides or isocyanates to afford anilides 23–53 (Scheme 2).¹⁴

Additionally, thioether **38** was cleanly oxidized to provide sulfone **39**. Keto compounds **13** and **53**, however, could not be reduced to methylene compound **52** under a variety of conditions (acidic, basic, and neutral pH) either directly or through the reduced hydroxy compounds. This led to the Liebeskind modified Suzuki coupling to obtain methylene bridged analogues.

Cyclic isosteres of the 3-methoxy moiety were also prepared (compounds 54–59). Thus, 2,3-dihydro-4hydroxybenzofuran¹⁵ and 5-hydroxybenzodioxane¹⁶ were coupled with 4-fluoronitrobenzene to form intermediates analogous to 7. 2,3-Dihydro-4-hydroxybenzofuran was also coupled to 4-nitroaniline by Buchwald coupling via the triflate to form intermediates analogous to 19 and 20. These intermediates were then converted to N-acylanilides 54-57 by the methods of Scheme 2. The syntheses of compounds 58 and 59 were prepared from (benzofuran-4-yl)methanol and (2,3dihydrobenzofuran-4-yl)methanol¹⁷ by conversion to the benzyl sulfonium salt (allyl bromide, CDI, followed by THT, NaClO₄, 30% for two steps) and coupling with 4-formylphenylboronic acid.¹⁸ The resulting aldehyde was oxidized to the acid (Ag₂O, 87%) and converted to the aniline by Curtius rearrangement (DPPA, TEA, tBuOH followed by HCl, EtOH, 25% for two steps) before acylation as in Scheme 2.

Compounds 23–59 were evaluated for human melatonin MT_1 and MT_2 receptor binding using published methods.^{3,19,20} The regiochemical optimization of (methoxy)phenoxybutyranilides is summarized in Table 1. Compound 26 had the optimum placement of substituents for this pharamacophore.²¹ Compounds 23, 24, and 26 show the preferred phenoxy group orientation is para to the anilide moiety for MT_2 binding and selectivity. Compounds 25–27 demonstrate the preferred location for the methoxy substituent on the phenoxy group is the 3-position. In these regioisomers, compound 26 was clearly unique and possessed excellent MT_2 binding affinity of 0.75 nM and 84-fold selectivity for the MT_2 receptor.

Using compound **26** as a lead pharmacophore, a variety of related amides were evaluated and are summarized in Table 2 (compounds **28–37**). Although butyramide **26** had the most potent MT_2 binding and highest MT_2 selectivity, acetamide **28**, propionamide **29**, crotonamide **34**, and methoxyacetamide **35** were also potent MT_2 ligands, albeit with less MT_2 selectivity. Valeramide **30** did not possess melatonergic affinity and demonstrated the limits for binding activity in linear alkanamides.

Table 1. Melatonin receptor binding of regioisomers 23–27

MeO								
Compd	Methoxy	Aryloxy	MT_1	MT_2	MT_1/MT_2			
	substitution	substitution	K_{i} (nM)	$K_{\rm i}({\rm nM})$				
1			0.53	0.32	1.6			
23	3-MeO	2-	> 500	130	3.9			
24	3-MeO	3-	> 500	26.8	19			
25	2-MeO	4-	> 500	108	4.6			
26	3-MeO	4-	63	0.75	84			
27	4-MeO	4-	> 500	> 400	na			

Table 2. Melatonin receptor binding of compounds 28-53

0

MeC

	H H					
Compd	Х	R	MT_1	MT_2	MT_1/MT_2	
			K_{i} (nM)	K_{i} (nM)		
1			0.53	0.32	1.6	
28	0	Me	84	4.1	20	
29	0	Et	300	6.8	44	
26	0	nPr	63	0.75	84	
30	0	nBu	> 500	>400	na	
31	0	iPr	> 500	122	4	
32	0	iBu	> 500	15	30	
33	0	cPr	99	13	13	
34	0	1-propenyl	98	2.1	47	
35	0	CH ₂ OMe	180	5.9	31	
36	0	propargyl	> 500	110	5	
37	0	NHEt	> 500	250	2	
38	S	nPr	29	0.19	150	
39	SO_2	nPr	> 500	10	50	
40	NH	Me	84	4.2	20	
41	NH	Et	61	1.8	34	
42	NH	nPr	31	0.39	81	
43	NH	iPr	> 500	84	6	
44	NH	cPr	61	64	1	
45	NH	OEt	> 500	150	3	
46	NMe	Me	0.05	0.23	0.22	
47	NMe	Et	1	0.17	6.1	
48	NMe	nPr	1.1	0.1	11	
49	NMe	iPr	106	5.5	19	
50	NMe	cPr	12	4.8	3	
51	NMe	OEt	34	7.2	5	
52	CH_2	nPr	10.9	0.12	91	
53	CO	nPr	> 500	33	15	

Isovalerylamide 32 and cyclopropylcarboxamide 33 had some MT_2 binding with little MT_1 binding, while isobutyramide 31 had poor binding at both receptors. 2-Butynamide 36 and ethyl urea 37 were also poor ligands at both receptors.

In addition to ether compounds 23–37, a number of analogues replacing the diaryl ether oxygen were also evaluated (Table 2, compounds 38–53). Compounds replacing the ether oxygen with electron-donating groups (S, NH, and NMe) or electron-neutral groups (CH₂) were potent and selective MT_2 ligands, whereas

compounds with electron-withdrawing groups (SO_2, CO) had attenuated melatonergic activity.

Thus, thioether 38,²² the compound which proved to be the most selective of this study, had MT₂ binding of 0.19 nM and MT₂ selectivity of 150. Sulfone 39, on the other hand, was 50-fold less active at the MT₂ receptor, but still had MT₂ selectivity of 50.

Diarylamines 40–51 were also evaluated. In this class, butyramides were again the most potent MT_2 ligands (42 and 48). Compound 42, with a bridging NH group, had MT_2 affinity of 0.39 nM and MT_2 selectivity of 81. Conversely, compound 48, with an NMe bridge, had good binding at both MT_1 and MT_2 receptors (1.1 and 0.10 nM, respectively). Consequently, the MT_2 selectivity of 48 was only 11. As a result, isobutyramide 49 had the best selectivity (19-fold) among the NMe compounds.

Finally, carbon-bridged compounds were evaluated. Methylene bridged butyramide 52^{23} demonstrated excellent MT₂ affinity and selectivity of 91. Keto bridged compound 53 had attenuated MT₂ affinity and selectivity relative to 52 (MT₂ K_i =33, MT₁/MT₂=15).

In all of these cases, the most potent MT_2 binding resided with butyramides. When optimally bridged, these compounds had subnanomolar affinity, and except for one compound (48), the highest MT_2 selectivity also resided with butyramides, with a selectivity range of 81- to 150-fold over the MT_1 receptor.

Compounds in which the 3-methoxy moiety was replaced with a variety of cyclic ethers were evaluated in four differently bridged series: O, NH, NMe, and CH₂ (Table 3). Except for NH-bridged compound 56, all compounds in this series had potent MT₂ affinity (all but 55 had subnanomolar affinity), and all possessed some MT_2 selectivity. Ether compounds 54 and 55 had selectivity of 27 and 19. NH Compound 56 had selectivity of 12 while NMe compound 57 had selectivity of 73. This situation is the reverse of the NH- and NMebridged methoxy analogues, 42 and 48, where the NH compound had selectivity of 81 and the NMe compound had selectivity of 11. Methylene bridged compounds 58 and 59²⁴ also had good selectivity, 118 and 57 respectively, with 58 having the highest selectivity of the cyclic ether series.

Compound **26** was selected for functional evaluation at the MT_2 receptor and demonstrated full agonism in an assay measuring the inhibition of forskolin-stimulated cAMP accumulation in NIH-3T3 cells stably expressing the MT_2 receptor (EC₅₀=1.07 nM; intrinisic activity = 1.09).⁸

In summary, we have discovered a series of anilides, the butyramides of which are often potent and selective human MT_2 ligands. In particular, butyramides 26, 39, 42, 52, 57, and 58 all demonstrated subnanomolar MT_2 binding affinity and MT_2 selectivity of at least 70-fold over the MT_1 receptor. Compound 26 of this series demonstrated full agonism at the MT_2 receptor.

Table 3. Melatonin receptor binding of cyclic compounds 54-59

Compd	Ar	Х	MT_1	MT_2	MT ₁ /MT
			K_{i} (nM)	K_{i} (nM)	
1			0.53	0.32	1.6
54	0 23:	0	18	0.68	27
55		О	92	4.7	19
56	0	NH	> 500	39	12
57	0	NMe	36	0.49	73
58	0	CH ₂	92	0.78	118
59	0 	CH ₂	41	0.71	57

References and notes

- 1. (a) Vanacek, J. Physiol. Rev. 1998, 78, 687. (b) Cassone, V. M. Chronobiol. Int. 1998, 15, 457.
- 2. Li, P.-K.; Witt-Enderby, P. A. Drugs Fut. 2000, 25, 945.
- 3. (a) Reppert, S. M.; Weaver, D. R.; Ebisawa, T. Neuron 1994, 13, 1177. (b) Reppert, S. M.; Godson, C.; Mahle, C. D.; Weaver, D. R.; Slaugenhaupt, S. A.; Gusella, J. F. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 8734.
- 4. IUPHAR reclassified the Mel 1a and Mel 1b receptors to MT₁ and MT₂, The IUPHAR compendium of receptor Characterization and Classification, IUPHAR media, London, 2000, 271-277.
- 5. Liu, C.; Weaver, D. R.; Jin, X.; Shearman, L. P.; Pieschl, R. L.; Gribkoff, V. K.; Reppert, S. M. Neuron 1997, 19, 91.
- 6. Nonno, R.; Pannacci, M.; Lucini, V.; Angeloni, D.; Fraschini, F.; Stankov, B. Brit. J. Pharmacol. 1999, 127, 1288.
- 7. Dubocovich, M. L.; Yun, K.; Al-Ghoul, W. M.; Benlowcif, S.; Masana, M. I. FASEB J. 1998, 12, 1211.
- 8. Mattson, R. J.; Catt, J. D.; Keavy, D.; Sloan, C. P.; Epperson, J.; Gao, Q.; Hodges, D. B.; Iben, L.; Mahle, C. D.; Ryan, E.; Yocca, F. D. Bioorg. Med. Chem. Lett. 2003, 13, 1199.

- 9. Afzali, A.; Firouzabaki, H.; Khalafi-Nejad, A. Synth. Commun. 1983, 13, 335.
- 10. Labadie, J. W.; Tueting, D.; Stille, J. K. J. Org. Chem. 1983, 48, 4634.
- 11. Srogl, J.; Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1997, 119, 12376.
- 12. Aggarwal, V. K.; Thompson, A.; Jones, R. V. H. Tetrahedron Lett. 1994, 35, 8659.
- 13. Ahman, J.; Buchwald, S. L. Tetrahedron Lett. 1997, 38, 6363.
- 14. All final compounds were characterized by LC/MS, ¹H NMR, ¹³C NMR, and combustion analysis.
- 15. Takaki, K. S.; Luo, H.; Bertenshaw, S. B. U.S. Patent 6,211,225, 2001.
- 16. Munk, S. A.; Harcourt, D. A.; Arasasingham, P. N.; Burke, J. A.; Kharlamb, A. B.; Manlapaz, C. A.; Padillo, E. U.; Roberts, D.; Runde, E.; Williams, L.; Wheeler, L. A.; Garst, M. E. J. Med. Chem. 1997, 40, 18.
- 17. Catt, J. D.; Johnson, G. J.; Keavy, D. J.; Mattson, R. J.; Parker, M. F.; Takaki, K. S.; Yevich, J. P. U.S. Patent 5,856,529 1999.
- 18. Suzuki coupling of the triflate of either 4-hydroxybenzofuran or 4-hydroxydihydrobenzofuran with 4-nitrophenylboronic acid was unsuccessful.
- 19. Takaki, K. S.; Sun, L.-Q.; Johnson, G.; Epperson, J. R.; Bertenshaw, S. B. U.S. Patent 6,569,894, 2003.
- 20. K_i values were the mean of at least three determinations run at five concentrations with the radioligand at the $K_{\rm d}$ concentration. Standard errors were typically $\pm 20\%$ of the mean value.
- 21. N-[4-(3-Methoxyphenoxy)phenyl] butanamide (26). Mp 45-47°C; ¹H NMR (CDCl₃) δ 7.76 (bs, 1H), 7.46 (d, J=8.9 Hz, 2H), 7.15 (t, J=7.6 Hz, 1H), 6.94 (d, J=8.9Hz, 2H), 6.60 (d, J=7.6 Hz, 1H), 6.51 (m, 2H), 3.73 (s, 3H), 2.30 (t, J = 7.3 Hz, 2H), 1.72 (sex, J = 7.3 Hz, 2H), 0.96 (t, J = 7.3 Hz, 3H). Anal. calcd for $C_{17}H_{19}NO_3$: C, 71.56; H, 6.71; N, 4.91. Found: 71.39; H, 6.62; N, 4.80.
- 22. N-[4-(3-Methoxyphenyl)thiophenyl] butanamide (38). Mp 48-49°C; ¹H NMR (CDCl₃) δ 7.80 (bs, 1H), 7.50 (d, J=8.6 Hz, 2H), 7.33 (d, J=8.6 Hz, 2H), 7.15 (t, J=7.9Hz, 1H), 6.73 (m, 3H), 3.72 (s, 3H), 2.32 (t, J=7.3 Hz, 2H), 1.73 (sex, J = 7.3 Hz, 2H), 0.96 (t, J = 7.3 Hz, 3H). Anal. calcd for C₁₇H₁₉SNO₂: C, 67.75; H, 6.35; N, 4.65. Found: 67.69; H, 6.30; N, 4.89.
- 23. N-[4-(3-Methoxybenzyl)phenyl] butanamide (52). Mp 73-75°C; ¹H NMR (CDCl₃) δ 7.40 (d, J=8.4 Hz, 2H), 7.18 (t, J=7.7 Hz, 1H), 7.12 (d, J=8.4 Hz, 3H), 6.73 (m, 3H), 3.90 (s, 2H), 3.75 (s, 3H), 2.31 (t, J=7.3 Hz, 2H), 1.74 (sex, J = 7.3 Hz, 2H), 0.99 (t, J = 7.3 Hz, 3H). Anal. calcd for C₁₈H₂₁NO₂•0.425H₂O: C, 71.56; H, 6.71; N, 4.91. Found: 74.30; H, 7.99; N, 4.21.
- 24. N-[4-(4-Benzofuranyloxy)phenyl] butanamide. (58). Mp 110–113 °C; ¹H NMR (CDCl₃) δ 7.56 (d, J = 2.2 Hz, 1H), 7.45 (m, 3H), 7.29 (m, 2H), 7.18 (d, J = 11 Hz, 1H), 7.06 (d, J=7.3 Hz, 1H), 6.68 (d, J=2.2 Hz, 1H), 4.18 (s, 2H), 2.31 (t, J=7.3 Hz, 2H), 1.75 (q, J=14.9, 7.4 Hz, 2H), and 0.99 (t, J = 7.4 Hz, 3H); MS: 292.3 (M-H)⁻. Anal. calcd for C₁₉H₁₉NO₂•0.20H₂O: C, 76.84; H, 6.59; N, 4.72. Found: 76.90; H, 6.64; N, 4.70.