Synthesis of a glycopeptide with phytoalexin elicitor activity I. Syntheses of a triglycosyl L-serine and a triglycosyl L-seryl-L-proline dipeptide

Tadahiro Takeda ^{a,*}, Takuya Kanemitsu ^a, Motohiro Ishiguro ^a, Yukio Ogihara ^a and Machiko Matsubara ^b

^a Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya, 467 (Japan)

^b Kobe Women's College of Pharmacy, Motoyama-kita-machi, Higashinada-ku, Kobe, 658 (Japan)

(Received August 13th, 1993; accepted September 25th, 1993)

ABSTRACT

A stereocontrolled synthesis of the model compound for the phytoalexin elicitor-active glycoprotein is described. Glycosylation of the disaccharide, 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl- $(1 \rightarrow 6)$ -2,3,4tri-O-acetyl- α -D-mannopyranosyl trichloroacetimidate, with N-(carbobenzoxy)-(2,3,4-tri-O-acetyl- α -D-mannopyranosyl)- $(1 \rightarrow 3)$ -L-serine methyl ester or N-(carbobenzoxy)-(2,3,4-tri-O-acetyl- α -D-mannopyranosyl)- $(1 \rightarrow 3)$ -L-seryl-L-proline methyl ester by use of AgOTf gave the desired trisaccharideserine or trisaccharide-seryl-proline derivatives, which were transformed into β -D-glucopyranosyl- $(1 \rightarrow 3)$ -L-seryl-Lproline via removal of the N-carbobenzoxy group, followed by deacylation.

INTRODUCTION

It is generally known that some plants synthesize antimicrobial substances as a defense mechanism against invasive microorganisms¹. These antimicrobial substances synthesized are called phytoalexins, and their inducer is called an elicitor. When peas synthesize pisatin as a phytoalexin, it is reported that several substances secreted in the germination of fungal conidia^{2,3}, compounds found in culture filtrates of fungal mycelia^{4,5}, and cell-wall polysaccharides of the mycelia^{3,4} work as elicitors. Matsubara and Kuroda found elicitor activity on a glycoprotein in a culture filtrate of germinating *Mycospharella pinodes* conidia and determined its structure to be a glycosyl chain ⁶. The glycoprotein gave a single spot in high-pressure paper electrophoresis and also gave a single band at the same position on disk electrophoresis after being stained with Schiff's reagent or with 15 Amide Black

^{*} Corresponding author.

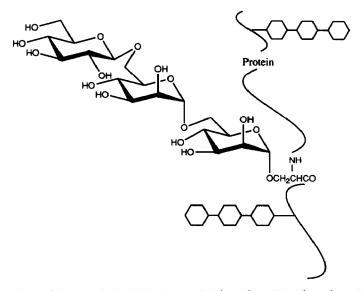


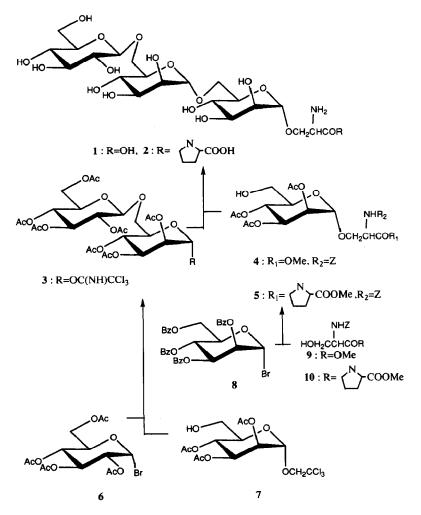
Fig. 1. Glycoprotein in which the β -D-Glc- $(1 \rightarrow 6)$ - α -D-Man- $(1 \rightarrow 6)$ - α -D-Man is glycosidically linked via an O-Ser residue.

10B, respectively. The molecular weight is ca. 1.3×10^6 by gel filtration. The optical rotation was $[\alpha]_D^{25} - 122^\circ$ (c 1, H₂O). The ratio of the sugar moiety to the protein moiety of this glycoprotein was determined to be 1:2.8. Of the composition ratios of amino acids in the glycoprotein, proline is contained in the largest quantity, followed by leucine, glycine, serine, and alanine in the order given. The glycoprotein has a partial structure in which a reducing terminal mannosyl residue of a trisaccharide, β -D-Glc-(1 \rightarrow 6)- α -D-Man-(1 \rightarrow 6)-D-Man, is *O*-glycosidically attached to serine in the protein portion as illustrated in Fig. 1. It has been reported that mannosyl-serine linkages can be found in yeast cell-wall mannan and yeast invertase, whereas a mannosyl-threonine linkage is present in a mycotoxin peptide⁷. Pazur et al.⁸ and Lineback⁹ have also reported the presence of mannose-serine or mannose-threonine linkages in a fungal glycoamylase.

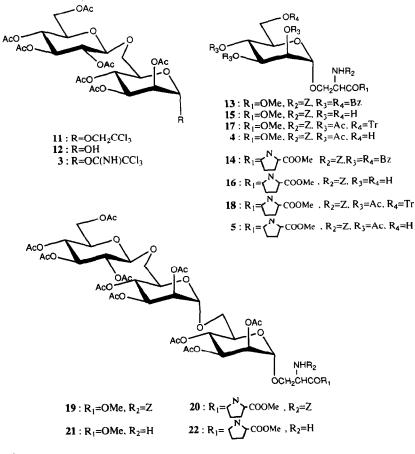
In order to investigate the structural requirements for bioactive glycoprotein in detail, we have carried out synthetic studies and describe here a synthesis of triglycosyl-serine and/or triglycosyl dipeptide derivatives of a model of the glycopeptide.

RESULTS AND DISCUSSION

Synthesis of the target compounds 1 or 2 was carried out by employing disaccharide trichloroacetimidate 3 as glycosyl donor and mannosyl-serie or mannosyl-seriel proline derivatives 4 or 5 as glycosyl acceptors. Compound 3 was prepared from readily available tetra-O-acetyl- α -D-glucopyranosyl bromide (6) and the 6-OH-free trichloroethyl mannoside derivative 7. Glycosylation of compound 7


61

with donor 6 in the presence of $Hg(CN)_2$ and $HgBr_2$ in benzene at room temperature gave 70.1% of the disaccharide 11. The β -D-linked anomer showed a signal at δ 4.51 (J 7.6 Hz). Removal of the trichloroethyl group was achieved with zinc-copper reagent in acetate buffer, and the resultant alcohol 12 was transformed into the trichloroacetimidate 3 (ref 10). To obtain the mannosyl-serine derivative 4, as well as the mannosyl-seryl proline derivative 5, glycosylation between mannose and the corresponding amino acid derivatives were required. Coupling the mannosyl bromide 8 and corresponding amino acid derivatives 9 and 10 in the presence of Hg(CN)₂ and HgBr₂ in dichloromethane afforded 13 and 14 in 39.9 and 52.3% yield, respectively. The dipeptide, N-(carbobenzoxy)-L-seryl-Lproline methyl ester (10), was synthesized by coupling of N-(carbobenzoxy)-L-serine with L-proline methyl ester. The configuration of the α anomer 13 and 14 were confirmed by ¹H NMR spectroscopy, the signals for H-1 being observed at δ 5.08 (J 1.7 Hz), 5.12 (J 1.7 Hz), respectively. Removal of the benzoyl groups of 13 with NaOMe in MeOH gave 15 (60.7%), and the resultant compound 15 was tritylated and acetylated to give compound 17 (88.0%). Detritylation gave the 6-OH free *N*-(carbobenzoxy)-(2,3,4-tri-*O*-acetyl- α -D-mannopyranosyl-(1 \rightarrow 3)-L-serine methyl ester 4 (87.0%). The reaction of disaccharide trichloroacetimidate 3 with alcohol 4, promoted by AgOTf (silver trifluoromethanesulfonate) gave the α -(1 \rightarrow 6)-linked trisaccharide derivative 19 (47.8%), from which N-decarbobenzoxylation followed by removal of the acetyl groups and methyl ester, afforded the desired trisaccharide serine compound 1 (Schemes 1 and 2). The anomeric configuration of compound 1 was confirmed by ¹H NMR spectroscopy, the signals for H-1, H-1', and H-1" being observed at δ 4.78 (J 1.3 Hz), 4.84 (J 1.2 Hz), and 4.44 (J 7.9 Hz), respectively. The carbon signals were identified by carbon-13-proton correlation spectroscopy (¹³C-¹H COSY) and by analysis of a detailed heteronuclear multiple-bond correlation (HMBC) experiment¹¹. The HMBC experiment showed a correlation between H-1 (4.78 ppm) of the reducing end mannose and β carbon (69.0 ppm) of L-serine. A cross peak between C-6 (68.6 ppm) of the mannose and H-1' of the inner mannose (4.84 ppm) was observed. We also observed correlations between 6-substituted mannose C-6' (71.4 ppm) and the nonreducing end glucose H-1" (4.44 ppm). The ¹³C NMR data were in accordance with the proposed structure (see Table I).


Next, we synthesized the triglycosyl dipeptide 2. The synthesis of 2 followed a procedure analogous to that described for the preparation of 1. Thus the reaction of the disaccharide trichloroacetimidate 3 with alcohol 5 (prepared from 14 in three steps), also promoted by AgOTf, gave the α -(1 \rightarrow 6)-linked triglycosyl dipeptide derivative 20 (56.9%), which was converted to the free triglycosyl serylproline 2 in two steps, in a manner analogous to that described for deprotection of compound 19. The ¹³C NMR data were also in accordance with the proposed structure (see Table I). Preliminary evaluation of the triglycosyl series and the triglycosyl dipeptides 1 and 2 shows that they, as expected, possess potential elicitor activity. These biological results will be reported in detail elsewhere.

EXPERIMENTAL

General methods. —Melting points were measured with a Yanagimoto micro melting-point apparatus and are uncorrected. Optical rotations were determined with a Jasco DIP-140 digital polarimeter. ¹H NMR and ¹³C NMR spectra were recorded with Jeol GSX-400 and JNM A 500 FTNMR spectrometers, Me₄Si was the internal standard for solutions in CDCl₃, and sodium 4,4-dimethyl-4-silapentane-1-sulfonate for solutions in D₂O. TLC was performed on Silica Gel-60-F₂₅₄ (E. Merck) with detection by quenching of UV fluorescence and by spraying with either 10% H₂SO₄ or 5% methanolic ninhydrin solution. Column chromatography was carried out on Silica Gel-60 (E. Merck). 2,2,2,-Trichloroethyl 2,3,4-tri-O-

Scheme 1.

Scheme 2.

acetyl- α -D-mannopyranoside (7) (ref 12), 2,3,4,6-tetra-O-benzoyl- α -D-mannopyranosyl bromide (8) (ref 13), N-(carbobenzoxy)-L-serine methyl ester (9) (ref 14) were prepared by literature methods.

Synthesis of the disaccharide donor. 2,2,2,-Trichloroethyl (2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)- $(1 \rightarrow 6)$ -2,3,4,-tri-O-acetyl- α -D-mannopyranoside (11).—To a solution of 7 (1.8 g, 3.89 mmol) in dry benzene (10 mL) were added Hg(CN)₂ (0.74 g), HgBr₂ (0.32 g), and Drierite (3.89 g). To the resulting mixture was added the tetra-O-acetyl- α -D-glycopyranosyl bromide (6) (5.19 g, 12.6 mmol). The mixture was stirred at room temperature for 10 h. The mixture was diluted CHCl₃ and filtered through Celite. The filtrate was washed with water and then dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography using 10:1 benzene-acetone as eluent to provide 11 (2.1 g, 70.1%); R_f 0.54 (4:1 benzene-acetone); $[\alpha]_D^{21} + 29.5^{\circ}$ (c 1.0, CHCl₃); ¹H NMR data (CDCl₃): δ 5.11 (d, 1 H, J 2.0 Hz, H-1), 4.51 (d, 1 H, J 7.6 Hz, H-1'), 4.25. 4.12 (each d, 2 H, J 11.6 Hz, Cl₃CCH₂), 2.19, 2.10, 2.09, 2.06, 2.03, 2.00, 1.99 (each s, 21 H, 7 × OAc); ¹³C

Carbon atom	Compound					
	19	21	1	20	22	2
C-1	97.7	97.6	103.5	97.7	98.4	102.9
2	69.3 ª	69.4	72.7	69.1 ^a	69.4	72.8 ^a
2 3	69.0 ^b	69.1	73.3 ª	68.5 ^b	69.0	73.3 ^b
4	66.1	66.3	69.2	66.4 ^c	66.2 ^a	69.2 ^c
5	69.2	69.3 ª	74.1	69.3 ^a	69.2 ^b	74.3 ^d
6	65.9	66.1	68.6	65.9	66.0	68.6
C-1′	97.3	97.3	102.6	96.6	97.4	102.6
2'	69.4 a	69.4 ^a	72.5	69.1 ^a	69.3 ^b	72.6 ª
3'	69.1 ^b	69.1	73.4 ª	68.8 ^b	69.0	73.7 ^b
4'	66.1	66.2	69.2	66.3 ^c	66.1 ^a	69.1 °
5'	69.6	69.4	74.6	69.5 ^a	69.2 ^b	74.6 ^d
6'	68.2	68.2	71.4	68.2	68.2	71.4
C-1″	101.1	101.1	105.6	101.1	101.1	105.6
2″	70.9	70.9	76.0	70.9	70.9	76.0
3″	72.6	72.7	78.4	72.7	72.6	78.4
4″	68.5	68.4	72.4	68.3	68.4	72.5
5″	71.9	71.9	78.8	71.9	71.9	78.8
6″	61.9	61.8	63.6	61.9	61.8	63.6
Ser-a	53.9	54.4	57.4	52.1	50.8	59.9
β	68.1	70.4	69.0	67.0	69.9	68.6
Pro-α				59.1	59.0	61.9
β				29.3	28.5	31.4
γ				24.7	22.4	24.1
$\gamma \\ \delta$				47.4	45.3	48.6
OMe	52.8	52.3		53.8	55.0	
Z-CH ₂	67.1			66.9		

TABLE I

¹³C NMR data (δ) for selected compounds

^{*a,b,c,d*} These values in each column may be interchanged.

NMR data (CDCl₃): δ 97.9 (C-1), 69.0 (C-2), 68.7 (C-3), 66.1 (C-4), 70.2 (C-5), 68.0 (C-6), 101.1 (C-1'), 70.9 (C-2'), 72.6 (C-3'), 68.4 (C-4'), 71.2 (C-5'), 61.8 (C-6'). Anal. Calcd for C₂₈H₃₇Cl₃O₁₉: C, 43.79; H, 4.86. Found: C, 43.59; H, 4.79.

2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosyl- $(1 \rightarrow 6)$ -2,3,4-tri-O-acetyl- α -Dmannopyranose (12).—A solution of compound 11 (418 mg, 0.54 mmol) in a mixture of AcOH (1 mL) and Ac₂O (0.05 mL) was added with stirring to a Zn-Cu reagent that was prepared by addition of Zn dust (1.8 g) to acetate buffer [AcONa (3.0 g)/AcOH (3.3 mL)-H₂O (4.7 mL)] containing CuSO₄ · 5H₂O (180 mg) solution (in 0.7 mL of H₂O). The solution was stirred at room temperature for 12 h. The mixture was diluted with acetone and filtered through Celite, and CHCl₃ and water were added to the filtrate. The organic layer was separated, washed with water, dried over Na₂SO₄, and then concentrated to give compound 12 (344 mg, 99.2%); R_f 0.29 (4:1 benzene-acetone); mp 85-87°C; $[\alpha]_{D}^{21}$ + 15.6° (c 0.4, CHCl₃); ¹H NMR data (CDCl₃): δ 5.21 (br s, 1 H, H-1), 4.58 (d, 1 H, J 7.9 Hz, H-1'), 2.17, 2.10, 2.09, 2.06, 2.03, 2.01, 1.99 (each s, 21 H, 7 × OAc); ¹³C NMR data (CDCl₃): δ 92.0 (C-1), 70.1 (C-2), 68.9 (C-3), 66.6 (C-4), 69.3 (C-5), 68.8 (C-6), 101.1 (C-1'), 71.3 (C-2'), 72.6 (C-3'), 68.3 (C-4'), 71.9 (C-5'), 61.8 (C-6'). Anal. Calcd for C₂₆H₃₆O₁₈: C, 49.06; H, 5.70. Found: C, 48.88; H, 5.45.

2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl- $(1 \rightarrow 6)$ -2,3,4-tri-O-acetyl-α-Dmannopyranosyl trichloroacetimidate (3).—To a stirred solution of 12 (207 mg, 0.33 mmol) in CH₂Cl₂ (1.5 mL) were added CCl₃CN (0.3 mL) and DBU (60 µL) at 0°C. The mixture was stirred for 16 h at room temperature, then directly chromatographed on silica gel in CHCl₃ to give 3 (216 mg, 85.0%); R_f 0.48 (4:1 benzene–acetone); mp 79–81°C; $[\alpha]_D^{21}$ +21.0° (c 0.2, CHCl₃); ¹H NMR data (CDCl₃): δ 6.27 (d, 1 H, J 1.7 Hz, H-1), 4.55 (d, 1 H, J 7.9 Hz, H-1'), 2.21, 2.09, 2.07, 2.06, 2.02, 2.00, 1.99 (each s, 21 H, 7 × OAc); ¹³C NMR data (CDCl₃): δ 94.3 (C-1), 68.8 (C-2), 67.8 (C-3), 65.6 (C-4), 72.2 (C-5), 67.6 (C-6), 100.7 (C-1'), 70.9 (C-2'), 72.1 (C-3'), 68.4 (C-4'), 71.8 (C-5'), 61.8 (C-6'), 159.8 [OC(NH)], 90.5 (CCl₃). Anal. Calcd for C₂₈H₃₆Cl₃NO₁₈: C, 43.06; H, 4.65; N, 1.79. Found: C, 42.64; H, 4.56; N, 1.43.

Preparation of the mannosyl-serine and mannosyl-seryl proline acceptors. N- $(Carbobenzoxy) - (2,3,4,6-tetra-O-benzoyl-\alpha-D-mannopyranosyl) - (1 \rightarrow 3) - L-serine$ methyl ester (13).—Glycosylation of N-(carbobenzoxy)-L-serine methyl ester (1.10 g, 4.33 mmol) using 2,3,4,6-tetra-O-benzoyl- α -D-mannopyranosyl bromide (17.92 g, 7.11 mmol) was carried out in the presence of Hg(CN)₂ (0.83 g), HgBr₂ (0.36 g), and 4A molecular sieves (1.22 g) in dry CH₂Cl₂ (12 mL). The mixture was stirred at room temperature for 16 h. The mixture was then diluted with CHCl₃ and filtered through Celite. The filtrate was washed sequentially with 0.5% HCl, satd NaHCO₃, and water, and then dried over Na_2SO_4 , filtered, and concentrated. The residue was purified by column chromatography using $10:1 \rightarrow 4:1$ benzeneacetone gradient as eluent to provide 13 (1.44 g, 39.9%); R_f 0.51 (10:1 benzeneacetone); mp 52–54°C; $[\alpha]_{D}^{22}$ – 32.6° (c 0.5, CHCl₃); ¹H NMR data (CDCl₃): δ 8.12-7.21 (m, 25 H, Ar), 6.11 (t, 1 H, J 9.9 Hz, H-4), 5.85 (dd, 1 H, J 3.4, 9.9 Hz, H-3), 5.63 (dd, 1 H, J 1.7, 3.4 Hz, H-2), 5.16–5.14 (m, 2 H, Z-CH₂), 5.08 (d, 1 H, J 1.7 Hz, H-1), 4.66–4.62 (m, 2 H, H-6), 4.47–4.46 (m, 1 H, Ser α), 4.43–4.35 (m, 1 H, H-5), 4.12, 4.08 (m, 2 H, Ser β), 3.87 (s, 3 H, OMe); ¹³C NMR data (CDCl₃): δ 98.1 (C-1), 70.2 (C-2), 69.8 (C-3), 66.6 (C-4), 69.4 (C-5), 62.6 (C-6), 54.4 (Ser α), 69.2 (Ser β), 53.1 (OMe), 67.3 (Z-CH₂). Anal. Calcd for C₄₆H₄₁NO₁₄: C, 66.42; H, 4.97; N, 1.68. Found: C, 66.31; H, 4.88; N, 1.48.

N-(*Carbobenzoxy*)- α -D-mannopyranosyl-(1 → 3)-L-serine methyl ester (15).—To a solution of 13 (2.8 g, 3.36 mmol) in MeOH (64 mL) was added NaOMe powder (0.35 g). The mixture was stirred for 6.5 h at 0°C, made neutral with Amberlite IR-120 (H⁺), and evaporated in vacuo to give 15 (846 mg, 60.7%); R_f 0.28 (5:1 CHCl₃-MeOH); $[\alpha]_D^{22}$ +42.9°; ¹H NMR data (CDCl₃): δ 7.31–7.26 (m, 5 H, Ar), 4.76 (br s, 1 H, H-1), 3.84 (s, 3 H, OMe); ¹³C NMR data (CDCl₃): δ 100.6 (C-1), 71.2 (C-2), 70.6 (C-3), 66.1 (C-4), 72.8 (C-5), 60.8 (C-6), 54.3 (Ser α), 67.7 (Ser β),

52.8 (OMe), 67.1 (Z-CH₂). Anal. Calcd for $C_{18}H_{25}NO_{10}$: C, 50.94; H, 6.18; N, 3.30. Found: C, 50.37; H, 6.06; N, 2.85.

N-(*Carbobenzoxy*)-(2,3,4,-tri-O-acetyl-6-O-trityl- α -D-mannopyranosyl)-(1 → 3)-Lserine methyl ester (17).—To a solution of 15 (800 mg, 1.92 mmol) in pyridine (10 mL) was added triphenylmethyl (trityl)chloride (966 mg), and the mixture was stirred for 30 h at 70°C. After the starting material disappeared, Ac₂O (12.8 mL) was added at 0°C and allowed to warm to room temperature. The mixture was extracted with CHCl₃, washed with water, dried with Na₂SO₄, and evaporated. The residue was chromatographed on silica gel using 10:1 benzene-acetone as eluent to provide 17 (1.33 g, 88.0%); R_f 0.48 (10:1 benzene-acetone); mp 74–76°C; $[\alpha]_D^{22}$ +44.4° (c 0.9, CHCl₃); ¹H NMR data (CDCl₃): δ 7.46–7.21 (m, 20 H, Ar), 4.85 (d, 1 H, J 1.7 Hz, H-1), 3.79 (s, 3 H, OMe), 2.17, 1.96, 1.71 (each s, 9 H, 3 × OAc). Anal. Calcd for C₄₃H₄₅NO₁₃: C, 65.89; H, 5.79; N, 1.79 Found: C, 65.61; H, 5.70; N, 1.70.

N-(*Carbobenzoxy*)-(2,3,4-tri-O-acetyl- α -D-mannopyranosyl)-(1 → 3)-L-serine methyl ester (4).—A solution of compound 17 (1.2 g, 1.53 mmol) in aq 80% AcOH was stirred for 6 h at 55°C. The resultant solution was poured into ice–water, the precipitate was filtered and the filtrate was extracted with CHCl₃, washed with water and evaporated to give 4 (720 mg, 87.0%); R_f 0.25 (4:1 benzene–acetone); $[\alpha]_D^{24} - 26.8^\circ$ (c 0.6, CHCl₃); ¹H NMR data (CDCl₃): δ 7.36–7.26 (m, 5 H, Ar), 4.81 (br s, 1 H, H-1), 3.80 (s, 3 H, OMe), 2.13, 2.05, 1.99 (each s, 9 H, 3 × OAc); ¹³C NMR data (CDCl₃): δ 98.1 (C-1), 71.3 (C-2), 69.4 (C-3), 66.3 (C-4), 69.2 (C-5), 61.1 (C-6), 54.3 (Ser α), 68.7 (Ser β), 52.9 (OMe), 67.2 (Z-CH₂). Anal. Calcd for C₂₄H₃₁NO₁₃ · 0.5H₂O: C, 52.36; H, 5.86; N, 2.54 Found: C, 52.18; H, 5.68; N, 2.29.

N-(*Carbobenzoxy*)-L-seryl-L-proline methyl ester (10).—To a solution of N-(carbobenzoxy)-L-serine (25 g, 0.1 mol), L-proline methyl ester hydrochloride (17.4 g, 0.1 mol) in 10:1 CH₂Cl₂–DMF (152 mL) were added Et₃N (17.1 mL) and diethylphosphorocyanidate (DEPC) (19.8 mL) at 0°C for 30 min, and the mixture was allowed to warm to room temperature for 24 h. The mixture was diluted with CHCl₃, and the CHCl₃ solution was washed sequentially with 0.5% HCl, satd NaHCO₃ and water, and then dried over Na₂SO₄, filtered, and concentrated. The residue was purified by column chromatography using 20:1 CHCl₃–MeOH as eluent, to give 10 (13.29 g, 36.3%); R_f 0.57 (10:1 CHCl₃–MeOH); mp 106–108°C; $[\alpha]_{25}^{25}$ – 49.0° (c 0.3, CHCl₃); ¹H NMR data (CDCl₃): δ 7.29 (m, 5 H, Ar), 5.06 (s, 2 H, Z-CH₂), 3.67 (s, 3 H, OMe), 2.15–1.91 (m, 4 H, Pro β , γ); ¹³C NMR data (CDCl₃): δ 54.2 (Ser α), 63.1 (Ser β), 58.9 (Pro α), 28.8 (Pro β), 24.8 (Pro γ), 47.1 (Pro δ), 52.4 (OMe), 66.8 (Z-CH₂). Anal. Calcd for C₁₇H₂₂N₂O₆ · 0.5H₂O: C, 56.81; H, 6.45; N, 7.80. Found: C, 57.15; H, 6.34; N, 7.56.

N-(Carbobenzoxy)-(2,3,4,6-tetra-O-benzoyl- α -D-mannopyranosyl)-(1 \rightarrow 3)-L-seryl-L-proline methyl ester (14).—Glycosylation of 10 (1 g, 2.85 mmol) using 8 (5 g, 7.58 mmol) was carried out in the presence of Hg(CN)₂ (563.8 mg), HgBr₂ (240 mg), and 4A molecular sieves (822 mg) in dry CH₂Cl₂ (16 mL). The mixture was stirred at room temperature for 42 h. Compound 14 was prepared as described for 13; yield 1.38 g (52.3%); R_f 0.71 (50:1 CHCl₃-MeOH); mp 92–94°C; $[\alpha]_D^{23}$ – 31.7° (*c* 0.4, CHCl₃); ¹H NMR data (CDCl₃): δ 7.37–7.26 (m, 25 H, Ar), 5.14–5.07 (m, 2 H, Z-CH₂), 5.12 (d, 1 H, *J* 1.7 Hz, H-1), 4.96–4.90 (m, 1 H, Ser α), 3.81–3.75 (m, 2 H, Ser β), 3.73 (s, 3 H, OMe), 2.34–2.04 (m, 4 H, Pro β , γ); ¹³C NMR data (CDCl₃): δ 98.2 (C-1), 70.3 (C-2, C-3), 67.1 (C-4), 69.1 (C-5), 62.3 (C-6), 51.6 (Ser α), 69.2 (Ser β), 59.3 (Pro α), 29.3 (Pro β), 25.1 (Pro γ), 47.9 (Pro δ), 52.1 (OMe), 67.1 (Z-CH₂). Anal. Calcd for C₅₁H₄₈N₂O₁₅: C, 65.90; H, 5.21; N, 3.02. Found: C, 65.75; H, 5.24; N, 2.83.

N-(*Carbobenzoxy*)- α -D-mannopyranosyl-(1 → 3)-L-seryl-L-proline methyl ester (16).—This compound was prepared as described for 15; yield 327 mg (67.4%); R_f 0.33 (5:1 CHCl₃–MeOH); $[\alpha]_D^{24}$ – 13.4° (c 1.0, CHCl₃); ¹H NMR data (CDCl₃): δ 7.53–7.26 (m, 5 H, Ar), 5.06 (br s, 1 H, H-1), 3.66 (s, 3 H, OMe); ¹³C NMR data (CDCl₃): δ 100.1 (C-1), 71.3 (C-2), 70.6 (C-3), 66.0 (C-4), 67.0 (C-5), 61.0 (C-6), 51.9 (Ser α), 67.0 (Ser β), 58.4 (Pro α), 29.0 (Pro β), 24.9 (Pro γ), 47.3 (Pro δ), 52.7 (OMe), 67.2 (Z-CH₂). Anal. Calcd for C₂₃H₃₂N₂O₁₁ · 0.5H₂O: C, 52.97; H, 6.38; N, 5.37. Found: C, 52.70; H, 6.50; N, 5.08.

N-(*Carbobenzoxy*)-(2,3,4-tri-O-acetyl-6-O-trityl-α-D-mannopyranosyl)-(1 → 3)-Lseryl-L-proline methyl ester (**18**).—This compound was prepared as described for **17**; yield 412 mg (83.9%); R_f 0.32 (10:1 benzene–acetone); $[\alpha]_D^{24}$ +23.4° (c 1.0, CHCl₃): ¹H NMR data (CDCl₃): δ 7.46–7.18 (m, 20 H, Ar), 5.18 (d, 1 H, J 1.7 Hz, H-1), 3.63 (s, 3 H, OMe), 2.19, 1.95, 1.72 (each s, 9 H, 3 × OAc); ¹³C NMR data (CDCl₃): δ 98.1 (C-1), 70.3 (C-2), 69.6 (C-3), 66.3 (C-4), 69.5 (C-5), 62.2 (C-6), 51.9 (Ser α), 67.0 (Ser β), 59.2 (Pro α), 29.0 (Pro β), 24.8 (Pro γ), 47.5 (Pro δ), 52.0 (OMe), 68.5 (Z-CH₂), 86.5 (Ph₃-C). Anal. Calcd for C₄₈H₅₂N₂O₁₄: C, 65.44; H, 5.95; N, 3.18. Found: C, 65.59; H, 6.05; N, 3.09.

N-(*Carbobenzoxy*)-(2,3,4-tri-O-acetyl-α-D-mannopyranosyl)-(1 → 3)-L-seryl-Lproline methyl ester (5).—This compound was prepared as described for 4; yield 89 mg (79.3%); R_f 0.62 (10:1 CHCl₃–MeOH); $[\alpha]_D^{25}$ +4.6° (c 0.8, CHCl₃); ¹H NMR (CDCl₃): δ 7.36–7.34 (m, 5 H, Ar), 5.10 (br s, 1 H, H-1), 3.71 (s, 3 H, OMe), 2.14, 2.05, 1.98 (each s, 9 H, 3 × OAc); ¹³C NMR data (CDCl₃): δ 98.6 (C-1), 70.9 (C-2), 69.5 (C-3), 66.5 (C-4), 68.9 (C-5), 61.4 (C-6), 52.0 (Ser α), 67.1 (Ser β), 59.1 (Pro α), 29.3 (Pro β), 24.9 (Pro γ), 47.5 (Pro δ), 52.1 (OMe), 69.1 (Z-CH₂). Anal. Calcd for C₂₉H₃₈N₂O₁₄: C, 54.54; H, 6.00; N, 4.39. Found: C, 54.40, H, 5.93; N, 4.20.

Synthesis of the triglycosyl serine. N-(Carbobenzoxy)-(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl)- $(1 \rightarrow 6)$ -(2,3,4-tri-O-acetyl- α -D-mannopyranosyl)- $(1 \rightarrow 6)$ -(2,3,4-tri-O-acetyl- α -D-mannopyranosyl)- $(1 \rightarrow 3)$ -L-serine methyl ester (19).—To a solution of 4 (200 mg, 0.37 mmol) in dry CH₂Cl₂ (20 mL) was added AgOTf (150 mg). To the resulting mixture was added the disaccharide trichloroacetimidate 3 (376 mg, 0.48 mmol), and the mixture was stirred for 2 days at room temperature. The mixture was then diluted with CHCl₃ and filtered through Celite. The filtrate was washed with water, and then dried over Na₂SO₄, filtered, and concentrated. The residuc was chromatographed on silica gel using 100:1 CHCl₃-MeOH as eluent to provide 19 (200 mg, 47.8%); R_f 0.30 (4:1 benzene-acetone); R_f 0.79 (15:1)

CHCl₃-MeOH); mp 82-84°C; $[\alpha]_D^{18}$ +25.2° (*c* 0.72, CHCl₃); ¹H NMR data (CDCl₃): δ 7.37-7.28 (m, 5 H, Ar), 4.86 (br s, 1 H, H-1'), 4.79 (br s, 1 H, H-1), 4.49 (d, 1 H, *J* 8.0 Hz, H-1"), 3.80 (s, 3 H, OMe), 2.17, 2.16, 2.09, 2.08, 2.06, 2.04, 2.02, 1.99 (3 × OAc) (each s, 30 H, 10 × OAc). Anal. Calcd for C₅₀H₆₅NO₃₀: C, 51.77; H, 5.65; N, 1.21. Found: C, 51.14; H, 5.66; N, 1.06.

(2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosyl)- $(1 \rightarrow 6)$ -(2,3,4,-tri-O-acetyl- α -Dmannopyranosyl)- $(1 \rightarrow 6)$ -(2,3,4-tri-O-acetyl- α -D-mannopyranosyl)- $(1 \rightarrow 3)$ -L-serine methyl ester (21).—To a solution of 19 (42 mg, 0.037 mmol) in EtOH (2 mL) was added 10% Pd-C (12 mg). The mixture was stirred for 3 h under H₂ and then filtered and concentrated to dryness. The residue was chromatographed on silica gel with 10:1 CHCl₃-MeOH. The eluate was evaporated to dryness to give 21 (34 mg, 88.5%); R_f 0.70 (10:1 CHCl₃-MeOH); mp 85-87°C; $[\alpha]_D^{23}$ +44.4° (c 0.3, CHCl₃); ¹H NMR data (CDCl₃): δ 4.87 (d, 1 H, J 1.7 Hz, H-1'), 4.82 (d, 1 H, J 1.6 Hz, H-1), 4.49 (d, 1 H, J 7.9 Hz, H-1"), 3.77 (s, 3 H, OMe), 2.18, 2.16, 2.10, 2.09, 2.06, 2.05, 2.02, 2.00, 1.99, 1.96 (each s, 30 H, 10 × OAc). Anal. Calcd for C₄₂H₅₉NO₂₈: C, 49.17; H, 5,80; N, 1.37. Found: C, 49.35; H, 5.59; N, 1.04.

β-D-Glucopyranosyl-(1 → 6)-α-D-mannopyranosyl-(1 → 6)-α-D-mannopyranosyl-(1 → 3)-L-serine (1).—Compound 21 (43 mg, 0.042 mmol) was treated with Et₃N (0.1 mL) in 5:2 MeOH-H₂O (0.7 mL) at room temperature for 12 h. The solution was taken to dryness in vacuo. The residue was chromatographed on silica gel using CHCl₃-MeOH-H₂O (65:35:10, upper layer) to give 1 (15 mg, 59.5%); R_f 0.42 (1:2:1 CHCl₃-MeOH-H₂O); $[\alpha]_D^{23}$ +37.8° (c 0.1, H₂O); ¹H NMR data (D₂O): δ 4.84 (d, 1 H, J 1.2 Hz, H-1'), 4.78 (d, 1 H, J 1.3 Hz, H-1), 4.44 (d, 1 H, J 7.9 Hz, H-1"). Anal. Calcd for C₂₁H₃₇NO₁₈ · 2H₂O: C, 40.19; H, 6.58; N, 2.23, Found: C, 40.20; H, 6.67; N, 1.96.

Synthesis of the triglycosyl dipeptide. N-(*Carbobenzoxy*)-(2,3,4,6-tetra-O-acetyl- β -O-glucopyranosyl)-($1 \rightarrow 6$)-(2,3,4-tri-O-acetyl- α -D-mannopyranosyl)-($1 \rightarrow 6$)-(2,3,4-tri-O-acetyl- α -D-mannopyranosyl)-($1 \rightarrow 3$)-L-serine-L-proline methyl ester (**20**).—To a solution of **5** (85 mg, 0.13 mmol) in dry CH₂Cl₂ (1 mL) was added AgOTf (65 mg). To the resulting mixture was added **3** (160 mg, 0.20 mmol), and the mixture was stirred for 2 days at room temperature. The mixture was then diluted with CHCl₃ and filtered through Celite. The filtrate was washed with water, and then dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was chromatographed on silica gel using 100:1 CHCl₃-MeOH as eluent to provide **20** (93 mg, 56.9%); R_f 0.29 (4:1 benzene-acetone); R_f 0.80 (15:1 CHCl₃-MeOH); mp 97–99°C; $[\alpha]_{25}^{D}$ + 27.8° (c 0.4, CHCl₃); ¹H NMR data (CDCl₃): δ 7.38–7.27 (m, 5 H, Ar), 4.85 (d, 1 H, J 1.3 Hz, H-1'), 4.79 (br s, 1 H, H-1), 4.49 (d, 1 H, J 7.9 Hz, H-1''), 3.73 (s, 3 H, OMe), 2.17, 2.16, 2.09, 2.08, 2.05, 2.04, 2.02, 2.00, 1.99, 1.98, (each s, 30 H, 10 × OAc). Anal. Calcd for C₅₅H₇₂N₂O₃₁: C, 52.55; H, 5.77; N, 2.23. Found: C, 52.63; H, 5.69; N, 2.12.

(2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosyl)- $(1 \rightarrow 6)$ -(2,3,4-tri-O-acetyl- α -D-mannopyranosyl)- $(1 \rightarrow 6)$ -(2,3,4-tri-O-acetyl- α -D-mannopyranosyl)- $(1 \rightarrow 3)$ -L-seryl-L-proline methyl ester (22).—This compound was prepared as described for 21: yield (31.7 mg, 78.9%); R_f 0.56 (8:1 CHCl₃-MeOH); mp 82-84°C; $[\alpha]_D^{23}$ + 28.4° (c 0.2, CHCl₃); ¹H NMR data (CDCl₃): δ 4.91 (br s, 1 H, H-1'), 4.85 (br s, 1 H, H-1), 4.49 (d, 1 H, J 7.9 Hz, H-1"), 3.48 (s, 3 H, OMe), 2.18, 2.16, 2.10, 2.09, 2.08, 2.07, 2.02, 2.00, 1.99, 1.96 (each s, 30 H, 10 × OAc). Anal. Calcd for C₄₇H₆₆N₂O₂₉: C, 50.27; H, 5.92; N, 2.49. Found: C, 50.15; H, 5.63; N, 2.36.

β-D-Glucopyranosyl-(1 → 6)-α-D-mannopyranosyl-(1 → 6)-α-D-mannopyranosyl-(1 → 3)-L-seryl-L-proline (2).—This compound was prepared as described for 1; yield (8.6 mg, 71.4%); R_f 0.81 (1:2:1 CHCl₃-MeOH-H₂O); $[\alpha]_D^{22}$ + 25.3° (c 0.1, H₂O); ¹H NMR data (D₂O): δ 4.91 (d, 1 H, J 1.7 Hz, H-1'), 4.87 (d, 1 H, J 1.7 Hz, H-1), 4.53 (d, 1 H, J 8.1 Hz, H-1"). Anal. Calcd for C₂₆H₄₄N₂O₁₉: C, 45.35; H, 6.44; N, 4.07. Found: C, 45.88; H, 6.57; N, 3.85.

ACKNOWLEDGMENTS

We thank Miss S. Kato for recording the NMR spectra and Miss T. Naito for performing the microanalyses. This work was supported by a Grant-in-Aid for Scientific Research (No. 04671302) from the Ministry of Education, Science and Culture of Japan. We also gratefully acknowledge financial assistance from Hoansha.

REFERENCES

- 1 J.L. Ingham, Bot. Rev. 38 (1972) 343-424.
- 2 Y. Yamamoto, H. Oku, T. Shiraishi, S. Ouchi, and K. Koshizawa, J. Phytopathol., 117 (1986) 136-143.
- 3 I.A.M. Cruickshank and M.M. Smith, J. Phytopathol., 116 (1986) 48-59.
- 4 P.J.G.M. de Wit and P.H.M. Roseboom, Physiol. Plant Pathol., 16 (1980) 391-408.
- 5 D.L. Daniels and L.A. Hadwiger, Physiol. Plant Pathol., 8 (1976) 9-19.
- 6 M. Matsubara and H. Kuroda, Chem. Pharm. Bull., 35 (1987) 249-255.
- 7 N. Sharon (translated into Japanese by T. Osawa), Fukugo Toshitsu, Gakkai Shupansenta, Tokyo, 1977, pp. 39-49.
- 8 J.H. Pazur, H.R. Knull, and D.L. Simpson, Biochem. Biophys. Res. Commun., 40 (1970) 110-118.
- 9 D.R. Lineback, Carbohydr. Res., 7 (1968) 106-108.
- 10 R.R. Schmidt and J. Michel, Angew. Chem. Int. Ed. Engl., 19 (1980) 731-732; R.R. Schmidt, J. Michel, and M. Roos, Liebigs Ann. Chem., (1984) 1343-1357.
- 11 A. Bax and M.F. Summers, J. Am. Chem. Soc., 108 (1986) 2093-2094.
- 12 F.M. Winnik, J.P. Carver, and J.J. Krepinsky, J. Org. Chem., 47 (1982) 2701-2707.
- 13 O. Kanie, T. Takeda, N. Hada, and Y. Ogihara, J. Carbohydr. Chem., 10 (1991) 561-581.
- 14 S. Guttman, Helv. Chim. Acta., 44 (1961) 721-744.