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A novel cyclic enkephalin analogue with potent opioid
antagonist activity
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Abstract—2 0,6 0-Dimethyl substitution of the Tyr1 residue in opioid agonist peptides and deletion of the N-terminal amino group, as
achieved by replacement of Tyr1 with 3-(2,6-dimethyl-4-hydroxyphenyl)propanoic acid (Dhp), have been shown to produce opioid
antagonists. To examine the effect of b-methylation of Dhp1 in opioid peptides on the activity profile, stereoselective syntheses of
(3S)- and (3R)-3-methyl-3-(2,6-dimethyl-4-hydroxyphenyl)propanoic acid [(3S)- and (3R)-Mdp] were carried out. In comparison
with the cyclic parent antagonist peptide Dhp-c[D-Cys-Gly-Phe(pNO2)-D-Cys]NH2, the methylated analogue (3S)-Mdp-c[D-Cys-
Gly-Phe(pNO2)-D-Cys]NH2 showed higher l, d and j antagonist potencies in functional assays and higher binding affinities
for l, d and j opioid receptors (Ki

l=2.03nM; Ki
d=2.34nM; Ki

j=49.5nM), whereas the corresponding (3R)-Mdp1-analogue was
less potent by 1–2 orders of magnitude.
� 2004 Elsevier Ltd. All rights reserved.
2 0,6 0-Dimethyl substitution of the Tyr1 residue of opioid
agonist peptides and deletion of the positively charged
N-terminal amino group have recently been shown to
represent a general structural modification to convert
opioid peptide agonists into antagonists.1–3 This conver-
sion requires the synthesis of opioid peptide analogues
containing 3-(2,6-dimethyl-4-hydroxyphenyl)propanoic
acid (Dhp) in place of Tyr1.1 The cyclic enkephalin ana-
logue Dhp-c[D-Cys-Gly-Phe(pNO2)-D-Cys]NH2 (8)
turned out to be a quite potent l and d opioid receptor
antagonist and a somewhat less potent j antagonist2

(Tables 1 and 2). In this study, we examine the effect
of b-methylation of Dhp1 in Dhp-c[D-Cys-Gly-Phe(p-
NO2)-D-Cys]NH2 (8) on the in vitro opioid activity pro-
file. This requires replacement of Dhp in the cyclic
peptide with (3S)- or (3R)-3-methyl-3-(2,6-dimethyl-4-
hydroxyphenyl)propanoic acid [(3S)- or (3R)-Mdp (6a
or 6b)]. The presence of a b-methyl group might either
enhance or decrease opioid receptor binding affinity
and it will be of interest to determine the stereochemical
requirements for receptor binding. Therefore, both (3S)-
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and (3R)-Mdp-c[D-Cys-Gly-Phe(pNO2)-D-Cys]NH2 (7a
and 7b) were prepared. These compounds will also allow
for an interesting comparison with b-methylated
Tyr(2 0,6 0-Me2)

1-containing opioid peptide agonists4 in
terms of potency changes and stereochemical
requirements.

The stereoselective synthesis of (3S)-Mdp (6a) is out-
lined in Scheme 1, which is based on a published ap-
proach to the synthesis of chiral b-branched carboxylic
acids.5 Basic hydrolysis of methyl-3-(4-tert-butoxycar-
bonyloxy-2,6-dimethylphenyl)propenoate 16 afforded
acid 2. Incorporation of the chiral auxiliary (S)-(+)-4-
phenyl-2-oxazolidinone5 was carried out in the standard
manner7 to yield 3a.8 Asymmetric Michael addition was
performed using the organocuprate prepared from
methylmagnesium bromide in THF/(CH3)2S to furnish
4a8 with a diastereomeric excess of 48%. It should be
noted that the diastereoselectivity of the Michael addi-
tion to 3a was less than that reported in the literature,5

even though the reaction was carried out in an analo-
gous manner. The diastereomers were easily separated
by flash column chromatography (silica gel) to yield chi-
rally pure 4a in 55% yield. Removal of the chiral auxil-
iary9 and Boc group then gave 6a.8 Compound 6b8 was
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Scheme 1. Reagents and conditions: (i) 1N aq NaOH/THF, 81%; (ii) Et3N, PvCl, THF,�78 to 0 �C, then treated with n-BuLi, Xc, THF,�78 to 0 �C,
70%; (iii) CuBr–Me2S complex, THF, CH3MgBr, ether, 0 �C, 55%; (iv) LiOH, H2O2, THF/H2O, 90%; (v) 95% TFA/H2O, 0 �C, 98%. Xc=(S)-(+)-4-

phenyl-2-oxazolidinone.

Table 2. GPI and MVD assay of opioid peptide analogues

Compound GPI MVD

Ke
l [nM]a,b Ke

j [nM]a,c Ke
d [nM]a,d

7a (3S)-Mdp-c[D-Cys-Gly-Phe(pNO2)-D-Cys]NH2 1.40±0.25 5.81±1.20 55.0±5.4

7b (3R)-Mdp-c[D-Cys-Gly-Phe(pNO2)-D-Cys]NH2 845±135 1630±290 3280±430

8 Dhp-c[D-Cys-Gly-Phe(pNO2)-D-Cys]NH2 3.68±0.45 22.6±3.0 63.3±10.5

9 H-Dmt-c[D-Cys-Gly-Phe(pNO2)-D-Cys]NH2
e IC50=0.541±0.125nM IC50=0.182±0.030nM

aMean of 3–5 determinations±SEM.
bDetermined with TAPP (H-Tyr-D-Ala-Phe-Phe-NH2) as agonist.
c Determined with U50,488 as agonist.
d Determined with DPDPE as agonist.
e Agonist.

Table 1. Receptor binding affinities of opioid peptide analogues

Compound Ki
l [nM]a Ki

d [nM]a Ki
j [nM]a

7a (3S)-Mdp-c[D-Cys-Gly-Phe(pNO2)-D-Cys]NH2 2.10±0.21 2.03±0.09 49.5±2.1

7b (3R)-Mdp-c[D-Cys-Gly-Phe(pNO2)-D-Cys]NH2 94.4±13.6 497±112 6970±820

8 Dhp-c[D-Cys-Gly-Phe(pNO2)-D-Cys]NH2 4.79±0.39 11.6±1.1 299±57

9 H-Dmt-c[D-Cys-Gly-Phe(pNO2)-D-Cys]NH2 0.247±0.026 0.704±0.042 3.77±0.72

aMean of 3–4 determinations±SEM.
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prepared in an analogous manner, using (R)-(�)-4-phen-
yl-2-oxazolidinone as chiral auxiliary and following the
same sequence of reactions.

The target peptides (3S)- and (3R)-Mdp-c[D-Cys-Gly-
Phe(pNO2)-D-Cys]NH2 (7a,b) were prepared by a com-
bination of manual solid-phase and solution techniques.
The linear precursor peptide of H-c[D-Cys-Gly-Phe(p-
NO2)-D-Cys]NH2 was assembled on a p-methylbenz-
hydrylamine resin using Boc protection of the a-amino
function and acetamidomethyl (Acm) protection of the
Cys side chain. After cleavage from the resin by HF/an-
isole treatment, disulfide bond formation was carried
out in MeOH/H2O using iodine as oxidation agent
and the resulting cyclic peptide was purified by prepara-
tive reversed-phase HPLC. (3S)-Mdp or (3R)-Mdp were
attached to the N-terminal amino group of H-c[D-Cys-
Gly-Phe(pNO2)-D-Cys]NH2 using 2-(1H-benzotriazole-
1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
(HBTU) as coupling agent. The final peptide products
7a and 7b were purified by preparative reversed-phase
HPLC and their purity and structural identity were
established by TLC, analytical HPLC and FAB-MS.10

In comparison with the Dhp-c[D-Cys-Gly-Phe(pNO2)-
D-Cys]NH2 parent peptide (8), the (3S)-Mdp1-analogue
(7a) showed significantly higher l-, d- and j-receptor
binding affinities (Table 1). This result is in contrast to
the observation made with the (2S,3R)-Tmt1-analogue
of the d agonist DPDPE (H-(2S,3R)-Tmt-c[D-Pen-Gly-
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Phe(pNO2)-D-Pen]OH; Tmt=2 0,6 0-dimethyl-b-methyl-
tyrosine),4 which has the same stereochemistry at the
methylated b-carbon of the N-terminal residue as 7a.
[(2S,3R)-Tmt1]DPDPE showed significantly lower l
and d receptor binding affinities and lower d agonist
potency in the mouse vas deferens (MVD) assay as
compared to the parent peptide H-Dmt-c[D-Pen-Gly-
Phe(pNO2)-D-Pen]OH; Dmt=2 0,6 0-dimethyltyrosine).11

Obviously, the b-methyl group of (3S)-Mdp in 7a is able
to effectively interact with a lipophilic binding site at all
three opioid receptors to strengthen binding, whereas
the b-methyl group of (2S,3R)-Tmt in [2S,3R)-Tmt1]
DPDPE decreases binding affinity, most likely due to
some steric interference. The ability of the b-methyl
group of (3S)-Mdp to enhance receptor binding affinity
may be due to the greater conformational flexibility of
the (3S)-Mdp residue as compared to the (2S,3R)-Tmt
residue. It is also possible that the conformational
requirements of the active and inactive receptor confor-
mations differ from one another with regard to the inter-
action of the N-terminal residue of the agonist peptide
and the antagonist peptide.

In agreement with the receptor binding data, the
(3S)-Mdp1-analogue 7a also showed higher l-, d- and
j-antagonist potencies than the Dhp1-parent 8 in the
functional guinea pig ileum (GPI) and MVD assays
(Table 2). In comparison with the (3S)-Mdp1-analogue
7a, the diastereomeric (3R)-Mdp1-analogue 7b displayed
drastically lower binding affinities and antagonist poten-
cies at all three receptors. This result is in agreement
with observations that (2S,3R)-Tmt1-analogues of opi-
oid agonist peptides generally showed higher opioid
receptor binding affinities and higher agonist potencies
in functional assays than their corresponding (2S,3S)-
Tmt1-analogues.4 It thus appears that the stereochemi-
cal requirements at the b-carbon of the 1-position side
chain of b-methylated Dhp1-antagonist peptides and b-
methylated Dmt1-agonist peptides for opioid receptor
binding are the same. Furthermore, these results indi-
cate that the overall mode of opioid receptor binding
of these agonists and antagonists is similar but not
identical.
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