Journal of Medicinal Chemistry

Article

Chemically induced degradation of sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (SirReals)

Matthias Schiedel, Daniel Herp, Sören Hammelmann, Sören Swyter, Attila Lehotzky, Dina Robaa, Judit Olah, Judit Ovádi, Wolfgang Sippl, and Manfred Jung

J. Med. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jmedchem.6b01872 • Publication Date (Web): 05 Apr 2017 Downloaded from http://pubs.acs.org on April 6, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of Medicinal Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Chemically induced degradation of sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (SirReals)

Matthias Schiedel,[†]⊽ Daniel Herp,[†] Sören Hammelmann,[†] Sören Swyter,[†] Attila Lehotzky,[§] Dina Robaa[◊], Judit Oláh,[§] Judit Ovádi,[§] Wolfgang Sippl,[◊] Manfred Jung[†]*

† Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104 Freiburg
 im Breisgau, Germany

§ Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, H 1117 Budapest, Hungary

◊ Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany

|| Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19,79104 Freiburg im Breisgau, Germany

KEYWORDS: epigenetics, histone deacetylases, sirtuins, protein degradation, PROTAC

ABSTRACT: Here we report the development of a proteolysis targeting chimera (PROTAC) based on the combination of the unique features of the sirtuin rearranging ligands (SirReals) as highly potent and isotype-selective Sirt2 inhibitors with thalidomide, a bona fide cereblon ligand. For the first time, we report the formation of a PROTAC by Cu(I)-catalyzed cycloaddition of a thalidomide-derived azide to an alkynylated inhibitor. This thalidomide-derived azide as well as the highly versatile linking strategy can be readily adapted to alkynylated ligands of other targets. In HeLa cells, our SirReal-based PROTAC induced isotype-selective Sirt2 degradation that results in the hyperacetylation of the microtubule network coupled with enhanced process elongation. Thus, our SirReal-based PROTAC is the first example of a probe that is able to chemically induce the degradation of an epigenetic eraser protein.

INTRODUCTION

Until today, 18 different lysine deacetylases (KDACs) have been identified in the human genome and grouped into four classes, according to their sequence homology to yeast KDACs.¹ These enzymes are able to remove acyl groups from the ε-amino group of acylated lysine residues. Sirtuins, which had been initially described as class III histone deacetylases (HDACs) or Sir2 proteins,² form a very special class of the KDAC family. Sirtuins use NAD⁺ as a cofactor and constitute the class III KDACs, while the deacetylases of classes I, II, and IV are prime examples of Zn²⁺-dependent metalloproteases. The human genome encodes seven isotypes of sirtuins (Sirt1-7), which differ in their catalytic activity as well as in their subcellular localization.³ Moreover, sirtuins show no sequence homology to the Zn²⁺-dependent KDACs. Owing to their unique NAD⁺-dependent catalytic mechanism, sirtuins are not restricted to

Page 3 of 36

deacetylation. Sirtuins are also able to cut off other acyl groups, such as crotonyl,⁴ glutaryl,⁵ succinyl,⁶ myristoyl,⁷ and palmitoyl⁸ from the ε -amino group of acylated lysines. The deacetylase activity of Sirt6 and Sirt7 was recently shown to be upregulated by long-chain fatty acids and nucleic acids, respectively.^{7,9} Besides histones, a variety of non-histone proteins have been reported as sirtuin substrates in recent years, e.g. α -tubulin,¹⁰ p53,¹¹ BubR1,¹² and NF κ B.¹³ By regulating the acylation state of their protein substrates, sirtuins have been implicated in influencing a multitude of cellular processes such as transcription,¹⁴ metabolic sensing,¹⁵ inflammation,¹⁶ aging,¹⁷ and apoptosis.¹⁵ The isotype Sirt2, which is predominantly localized in the cytoplasm, was shown to have a major impact on cell cycle regulation,¹⁰ autophagy,¹⁸ peripheral myelination,¹⁹ and immune and inflammatory response.²⁰ Furthermore, a number of reports implicate that the overall cellular agenda of Sirt2 is not only dependent on its catalytical activity but also on its protein-protein interactions with binding partners, e.g. KDAC6,10 HOXA10,²¹ and 14-3-3 β/γ .²² A dysregulation of Sirt2 has been associated with the pathogenesis of bacterial infections,^{20b, 20c} type II diabetes,²³ neurodegenerative diseases,²⁴ and cancer,²⁵ which makes Sirt2 a promising target for pharmaceutical intervention. However, for some disease scenarios, e.g. Huntington's disease, it is not perfectly clear if Sirt2 has to be up- or downregulated respectively inhibited to ameliorate specific disease conditions.²⁶ Many cellbased or animal studies have tried to address these unanswered questions. Yet, they have been hampered by the lack of suitable tool compounds, which show sufficient isotype selectivity as well as pharmacokinetic properties. The urgent need for such tool compounds, to further investigate the cellular effects of Sirt2-dependent deacylation as well as their consequences on downstream signaling, led to the discovery of a number of Sirt2-selective small molecule inhibitors.²⁷ However, Sirt2-selective and drug-like inhibitors with an identified binding mode,

that enables the structure-based discovery of molecular tools for Sirt2, are still extremely scarce. Recently, we discovered a new class of Sirt2-selective and highly potent inhibitors (Fig.1).²⁸

Figure 1. Chemical structures and inhibition data of selected SirReals (**1a/b-3a/b**) and the SirReal-based affinity probe for Sirt2 (**4**).

The co-crystal structures of Sirt2 in complex with **1a** or **2a**, which were the first crystal structures of Sirt2 complexed with Sirt2-selective small-molecule inhibitors, revealed a unique mode of inhibition that is characterized by a major rearrangement of Sirt2's active site upon ligand binding. Therefore, these inhibitors were referred to as sirtuin rearranging ligands (SirReals).²⁸ By structure-guided optimization and extensive structure-activity relationship (SAR) studies we were able to discover the SirReal analogues **2b** and **3a/b** with enhanced potency and cellular efficacy.²⁹ The triazole-based SirReals **3a/b**, which additionally show improved water solubility, were initially prepared to validate the design of our Sirt2 affinity probe (**4**). The co-crystal structure of Sirt2 complexed with **3a**, revealed an extended binding mode of the triazole-based SirReals compared to their parent compound **1a** (Fig 2).

Figure 2. Comparison of the binding mode of SirReal1 **1a** (from PDB ID 4RMI, colored cyan) and the triazole-based SirReal **3a** (from PDB ID 5DY5, colored green) at Sirt2 (PDB ID 5DY5). Hydrogen bonds are shown as dashed orange lines, the conserved water molecule bridging the interaction of the SirReals is shown as red ball.

The triazole moiety further extends into the acyllysine binding channel where it forms a hydrogen bond with Arg 97. This results in a more efficient blockade of the substrate binding site. Since the *N*-substituent at the triazole moiety protrudes towards the entry of the acyllysine channel (see Fig. 2), we proceeded to attach larger residues to the triazole moiety aiming to expose certain functional labels to the protein surface. This approach was successfully validated by the development of the biotinylated SirReal-based affinity probe for Sirt2 (**4**), which was shown to be suitable for pull-down experiments as well as biolayer interferometry.^{29b} To probe the cellular effects of Sirt2, not only by occupancy-based small molecule inhibition of its deacylase activity but also by eliminating the protein with all its scaffolding functions from the cellular network, we were highly interested in applying our protocol for the development of Sirt2-selective probes to the concept of chemically induced protein degradation. This concept is based on bifunctional small molecules, so called proteolysis targeting chimeras (PROTACs). These molecular tools are capable to hijacking the cellular quality control by recruiting the

protein of interest (POI) to E3 ubiquitin ligases for polyubiquitinylation and thus to induce its proteasomal degradation.³⁰ Since its first description by Crews and co-workers in the year 2001, the PROTAC concept has been widely applied to induce the degradation of various proteins, such as kinases,³¹ transcription factors,³² and epigenetic reader proteins.³³ However, neither epigenetic writer nor epigenetic eraser proteins have been addressed by PROTACs, yet. In terms of a potential therapeutic application the PROTAC strategy offers several advantages compared to occupancy-based enzyme inhibition. For example, there is no need to maintain high in vivo concentrations to ensure sufficient enzyme inhibition, which reduces the risk of off-target side effects.³⁰ In this study, we report the development of a PROTAC based on the combination of the unique features of the sirtuin rearranging ligands (SirReals) as highly potent and isotypeselective Sirt2 inhibitors with thalidomide, a bona fide ligand for the E3 ubiquitin ligase cereblon. So far, thalidomide has been attached by amide coupling procedures to the target ligand of interest.³⁴ Here, we report for the first time a protocol for the development of a triazolederived PROTAC, which is based on a Cu(I)-catalyzed cycloaddition of an azido-thalidomideconjugate to an alkynylated ligand for the targeted protein, in this case Sirt2. Molecular modelling of the ternary complex of Sirt2, cereblon and the chimera proposes a binding model of the interaction of the bifunctional ligand is with both binding pockets.

RESULTS

For the design of the SirReal-based PROTAC we combined the structural features of the Sirt2-selective and highly potent triazole-based SirReals (see Fig.1) with the cereblon ligand thalidomide. We have based the design of our PROTAC on the cereblon recruiting thalidomide, since this approach has already been used to efficiently induce the depletion of epigenetically active proteins, e.g. the Bromo- and Extra-Terminal domain (BET) family.^{33a, 33b} Furthermore,

thalidomide was chosen over other E3 ubiquitin ligase recruiting moieties such as nutlin³⁵ or VHL ligands^{33c} due to its straightforward synthetic accessibility. Based on our previous work on a SirReal-based affinity probe^{29b} as well as the study of Winter et al.,^{33b} we already had valid information on where to place the linker without losing affinity to Sirt2 and cereblon, respectively. From analysis of a generated model of Sirt2 complexed with cereblon (for details see Methods section), we predicted a *N*-butyl-2-oxyacetamide linker to be suitable to recruit Sirt2 to cereblon with an adequate proximity that allows an efficient ubiquitin transfer (Fig. 3). The Sirt2-cereblon complex generated using program HADDOCK³⁶ was used to dock our PROTAC (12). The docking results show that the SirReal and the thalidomide part of 12 is interacting in a similar way as the original molecules in Sirt2 (PDB ID 5DY5)^{29b} and cereblon (PDB ID 4Cl2)³⁷ (Fig. 3B and Supporting Information, Fig. S2).

Figure 3. (A) Docking pose of the ternary Sirt2-12-cereblon complex. The surface of Sirt2 is displayed in white whereas cereblon is displayed as ribbon model. The PROTAC 12 is colored magenta. (B) Predicted binding mode for 12 (magenta) at the Sirt2-cereblon complex. The surface of the Sirt2 SirReal binding pocket is colored white, whereas the thalidomide binding pocket of cereblon is colored orange. Hydrogen bonds are shown as dashed orange lines.

To realize the envisaged SirReal-based PROTAC (12), we set up a convergent synthesis route depicted in Scheme 1. While planning this synthesis route we focused our efforts on i) generating the SirReal-based PROTAC 12, capable of inducing Sirt2 degradation ii) providing a "clickable" azido-thalidomide-conjugate as a versatile cereblon ligand ready for conjugation with other alkynylated ligands. The first step of our synthesis route was the methanolysis of 3-hydroxyphthalic acid anhydride (5) to generate the dimethylester (6).³⁸ The 4-azidobutan-1aminium chloride (8) was prepared by а nucleophilic substitution of N-(4-bromobutyl)phthalimide (7) with NaN₃ followed by hydrazinolysis.³⁹ Then, 8 was chloroacetylated to obtain compound 9. O-Alkylation of 6 by the alkyl chloride 9 gave compound 10. To synthesize the azido-thalidomide-conjugate (11), the dimethylester 10 was first hydrolyzed to the dicarboxylic acid and then converted into the imide 11, after activation with N,N'-dicyclohexylcarbodiimide. Finally, compound 11 was conjugated with the propargylated SirReal analogue **1b** through a Cu(I)-catalyzed Huisgen cycloaddition⁴⁰ to yield the SirRealbased PROTAC (12).

^{*a*}Reagents and conditions: (a) methanol, thionyl chloride, 0 °C - 80 °C, 4 h, 63% yield; (b) NaN₃, DMF, rt, 12 h, then hydrazine monohydrate, ethanol, 0 °C - rt, 24 h, 99% yield; (c) chloroacetyl chloride, trimethylamine, DMF, 0 °C - rt, 1h, 82% yield; (d) Cs₂CO₃, acetonitrile, reflux, 5h, then rt, 12 h, 88% yield; (e) NaOH, ethanol, rt, 1.5 h, then 3-aminopiperidine-2,6-dione hydrochloride, *N*,*N*-dimethylpyridin-4-amine, trimethylamine, dichloromethane, *N*,*N*'-dicyclohexylcarbodiimide, 0 °C - rt, 22 h, 50% yield; (f) **1b**, sodium ascorbate, CuSO₄, water/tert-BuOH (1:1), 60 °C, 1 h, then rt, 16 h, 33% yield.

The SirReal-based PROTAC (12) was evaluated for its in vitro inhibition of Sirt1-3 in a fluorescence-based deacetylase activity assay as previously described.⁴¹ We detected a highly potent inhibition of Sirt2 with an IC₅₀ value of 0.25 μ M ± 0.02 μ M and as desired the deacetylase activity of isotypes Sirt1 and Sirt3 was only affected at concentrations higher than 100 μ M (Scheme 1). To prove the suitability of our SirReal-based PROTAC (12) for chemically induced Sirt2 degradation, we assessed the cellular levels of Sirt2 in HeLa cells after incubation with 12 via Western blot analyses (Fig 4). To show the isotype selectivity of our probe, we determined the change in cellular levels of Sirt1 as well. As an experiment, to show that the Sirt2 degradation is not induced by the unlabeled ligand alone, we incubated the cells just with 3b.

Indeed, 12 is capable of inducing isotype-selective degradation of Sirt2 (Fig. 4A). Moreover, we were able to show that the effect of 12 on Sirt2 degradation can be counteracted either by competition with the unlabeled ligand **3b** or by the proteasome inhibitor MG132 (Fig. 4B). The dependence of Sirt2 depletion on the concentration of **12** is illustrated in Figure 4C. In the range of 0.05 μ M to 5 μ M we were able to show a concentration-dependent effect of 12. At higher concentrations the efficacy of 12 is limited, which might be due to saturation effects on one of the targets. No effects could be observed in the control experiments with **3b** and thalidomide, neither in single treatment nor in combination (Fig. 4C). A more detailed time course of the chemically induced Sirt2 degradation in HeLa cells due to treatment with 12 is given in Fig. 4D. A maximum effect could be detected after 2 hours of treatment. In addition, the effect of **12** on the level and distribution of Sirt2 was visualized in living HeLa cells expressing EGPF-Sirt2 by fluorescence microscopy. Consistent with Western blot results, these studies indicate that treatment with 12 results in reduced Sirt2 levels as well. Moreover, the dot-like pattern of the fluorescence signal suggests enrichment of Sirt2 in proteasomes (Fig. 5).⁴² To investigate the phenotype variation between cells treated with the Sirt2 enzymatic inhibitor 3b and cells treated with our PROTAC (12), we probed the acetylation levels of tubulin, a well-known Sirt2 substrate,¹⁰ via immunofluorescence microscopy. Depletion of Sirt2 due to treatment with 12 resulted in a more pronounced acetylation of the microtubule network with enhanced process elongation than sole enzymatic inhibition by **3b** (Fig 6, for raw images, see Supporting Information, Fig. S4). By means of these studies we were able to show a successful example for the envisaged superiority of the PROTAC concept with its extended target coverage over occupancy-driven enzymatic inhibition.

Figure 4. Quantification of the effect of **12** on the intracellular Sirt levels in HeLa cells by Western blot analyses. (A) Treatment with **12** (10 μ M) is able to chemically induce Sirt2 degradation. Sirt1 levels are not affected (n = 3). (B) The effect of **12** on the Sirt2 level in HeLa cells expressing EGFP-Sirt2 in the absence and presence of the proteasome inhibitor MG132 (n = 3). (C) Depletion of Sirt2 is dependent on the concentration of **12**. Control experiments with **3b** and thalidomide (Th) showed no significant effects on cellular Sirt2 levels, neither in single treatment nor in combination (n = 3). (D) Time course of Sirt2 depletion induced by **12** (n = 3).

Representative Western blots can be found in the Supporting Information (Fig. S3). Statistics (t-test): * $p \le 0.05$

Figure 5. Effect of **12** on the level and distribution of EGFP-Sirt2 (green) in living HeLa cells as visualized by fluorescence microscopy. (A) Homogeneous distribution of the labelled Sirt2 (green). (B) Reduced Sirt2 level in the **12**-treated cells with dot-like pattern of the fluorescence signal. Nuclei are stained with Hoechst 33342 (blue). Bar: 10 μm.

Figure 6. In cultured HeLa cells, depletion of Sirt2 due to treatment with **12** results in a more pronounced acetylation of the microtubule network than sole enzymatic inhibition by **3b**. Acetylation level of the microtubule network (red) in the presence or absence of sirtuin inhibitor

3b and the SirReal-based PROTAC (**12**), respectively. Tests were performed at a compound concentration of 10 μ M. Nuclei were DAPI-stained (blue). The scale bar represents 10 μ m.

Thus, **12** is suitable to induce Sirt2 degradation with concomitantly increased efficacy of tubulin hyperacetylation and therefore is the first example of a PROTAC targeting an epigenetic eraser protein.

DISCUSSION AND CONCLUSION

In this study, we report the structure-based development of a PROTAC for Sirt2. Based on our previously published work on the sirtuin rearranging ligands (SirReals) and a SirReal-based affinity probe, we developed a highly potent and isotype-selective probe, which is capable of chemically inducing the degradation of Sirt2. While several PROTACs for epigenetic reader proteins have been reported yet, this is the first example of a PROTAC targeting an epigenetic eraser protein. Since the PROTAC concept offers several advantages compared to occupancy-driven enzyme inhibitors or genetic ablation of the enzyme, our novel tool for Sirt2 will open up new avenues to dissect the role of Sirt2 in biology and medicine. Moreover, with our azido-thalidomide-conjugate (**11**) we provide a versatile cereblon ligand building block, ready to be "clicked" to alkynylated ligands of other proteins. Given the broad functional group tolerance of this type of chemistry⁴³ and the availability of alkyne derivatives for many targets that have been used in a large variety of chemical biology studies, this technique will be amenable to a plethora of different targets and inhibitors. Thus, our study will not only help to interrogate Sirt2 biology

and druggability on a new level but also will accelerate the development of novel PROTACs for other enzymes.

EXPERIMENTAL SECTION

1. Cloning, expression and purification of recombinant proteins: Human Sirt1₁₃₃₋₇₄₇ was expressed as a GST-tagged enzyme and purified as described previously.⁴⁴ Sirt2₅₆₋₃₅₆ and Sirt3₁₁₈₋₃₉₅ were expressed and purified as described previously with minor modifications.²⁸ Sirt2₅₆₋₃₅₆ and Sirt3₁₁₈₋₃₉₅ were resuspended in lysis buffer (25 mM KH₂PO₄, 25 mM NaH₂PO₄, 400 mM NaCl, 5% (v/v) glycerol, 5 mM beta-mercaptoethanol, pH 8.0) and purified as described with a final Superdex S75 26/60 gel filtration column (25 mM Hepes, 200 mM NaCl, 5% (v/v) glycerol, pH 8.0). Identity and purity of the produced enzymes was verified using SDS-PAGE.⁴⁵ Protein concentration was determined by the Bradford assay.⁴⁶ Deacetylase activity of sirtuin isotypes was NAD⁺-dependent and could be inhibited by nicotinamide. The eukaryote EGFP-Sirt2 plasmid was a generous gift from Brian J. North (Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA).

2. In Vitro Testing: Inhibition tests for Sirt1, Sirt2 and Sirt3 were performed with a high-throughput fluorescence-based histone deacetylase assay, as previously established by Heltweg et al.⁴¹ Human Sirt1₁₃₃₋₇₄₇, Sirt2₅₆₋₃₅₆ or human Sirt3₁₁₈₋₃₉₅ were mixed with assay buffer (50 mM Tris, 137 mM NaCl, 2.7 mM KCl, pH 8.0), NAD⁺ (final assay concentration 500 μ M), the substrate Z-(Ac)Lys-AMC (ZMAL, final assay concentration 10,5 μ M), the inhibitor dissolved in DMSO at different concentrations or DMSO as a control (final DMSO concentration 5% (v/v)). To assure initial state conditions, total substrate conversion of controls was adjusted to approximately 15% - 30%. The assay was performed in 96-well plates with a reaction volume of

Journal of Medicinal Chemistry

60 µL per well. All determinations were performed in triplicates. After an incubation of 4 h at 37 °C and 140 rpm, deacetylation was stopped by the addition of 60 µL of a solution containing trypsin and nicotinamide (50 mM Tris, 100 mM NaCl, 6.7% (v/v) DMSO, trypsin 5.5 U µL⁻¹, 8 mM nicotinamide, pH 8.0). The microplate was further incubated for 20 min at 37 °C and 140 rpm. Fluorescence intensity was measured in a microplate reader (BMG Polarstar, $\lambda_{ex} = 390$ nm, $\lambda_{em} = 460$ nm). Rates of inhibition were calculated by using the controls, containing no inhibitor, as a reference. Graphpad Prism software (La Jolla, CA) was employed to determine IC₅₀ values.

3. Cell Culture: HeLa (ATCC-2) cells were cultured in Dulbecco's Modified Eagle's Medium (high glucose) supplemented with 10% (v/v) fetal calf serum, 100 μ g/mL kanamycin (all reagents from Sigma, complete medium) in a humidified incubator at 37 °C with 5% CO₂. For immunoblotting of endogenous Sirt2 and Sirt1, 2x10⁵ cells were plated in 6-well plates. A stable EGFP-Sirt2 expressing cell population was generated by transfection of 10⁶ HeLa cell with Turbofect (Thermo Fisher) and EGFP-Sirt2 plasmid in 6 cm diameter petri dish according to the manufacturer's protocol. Next day, the cells were selected by using 500 µg/mL G418 for 4 weeks. Batches of this cell population were frozen for further work. For immunoblotting, 2x10⁴ EGFP-Sirt2-HeLa cells were plated onto 24-well plates. Before adding compounds from DMSO stocks, cycloheximide protein synthesis block was applied on cells (5 µg/ml on 6-well plates, 3 µg/ml on 24-well plates) to detect degradation more effectively. For live microscopic analysis, from the EGFP-Sirt2 expressing cell population, $2x10^4$ cells were seeded onto the glass based middle of 35 mm diameter imaging dishes 1.0 (Mo Bi Tec, Germany) in 1.0 mL complete medium and incubated overnight. 12 (10 μ M) was added into the dish to the treatment of cells, which were incubated for the given incubation time. Unless otherwise stated, we chose an incubation time of 4 hours. Next the complete medium was changed to a phenol red-free one

(Dulbecco's Modified Eagle's Medium, Sigma, D5921). Control cells were treated by DMSO only. Live cell images were acquired with a Zeiss LSCM 710 microscope using an oiled $40 \times$ NA = 1.4 Plan Apo objective. Nuclei were stained by 0.5 µg/mL Hoechst 33342 for 5 minutes. Controls contained the corresponding amount of vehicle (DMSO).

4. Immunoblotting: For the detection of Sirt2, Sirt1 or glyceraldehyde-3-phosphate dehydrogenase (GAPDH) levels in cellular samples, we kept the cells at 37 °C and washed them with pre-warmed PBS. Next, the cells were lysed in 100 (24-well plate) or 300 (6-well plate) μL $1 \times$ reducing sample buffer containing protein inhibitor mix and 2 mM EDTA (Sigma-Aldrich) in situ. Samples were centrifuged at 10000g at 4 °C for 5 min, and the supernatants were stored at -70 °C. Samples were analyzed by 10% SDS-PAGE and blotted onto polyvinylidene difluoride membrane (Millipore). The blot was developed sequentially using a rabbit antibody against Sirt2 (1:5000, affinity-isolated abcam ab67299, or RabMab ab51023), then using an affinity-isolated rabbit antibody against Sirt1 (1:5000, Sigma, S5447) or using an affinity-isolated rabbit antibody against GAPDH (1:5000, Sigma, G9545). Sirt1 could not be detected in the case of 24-well samples, here GAPDH was used as loading control. Antibodies were detected by polyclonal antirabbit IgG-peroxidase conjugate, (1:5000, Thermo Scientific). Peroxidase reaction was detected using Immobilon Western substrate (Millipore) by a Bio-Rad ChemiDoc MP Imaging system and its ImageLab 4.1 software. Intensity of spots was analyzed by ImageJ 1.49 using Measure command and subtracting background values. The intensities were normalized by the average of control values.

5. Immunofluorescence Microscopy: Immunofluorescence microscopy was performed as previously reported.²⁸

Page 17 of 36

Journal of Medicinal Chemistry

6. Computational Methods: The following Sirt2 X-ray structures were used in the current work: human Sirt2-SirReal-triazole probe (PDB ID 5DY5)^{29b} and human DDB1-CRBN E3 ubiquitin ligase-thalidomide (PDB ID 4CI2).³⁷ All protein structures were prepared by using the Structure Preparation module in MOE 2012.10 (Chemical Computing Group, Montreal, Canada). Hydrogen atoms were added, for titratable amino acids the protonation state was calculated using the Protonate 3D module in MOE 2012.10. Water molecules and ligand atoms except the zinc ion and one conserved water molecule bound to Sirt2 Pro94 were removed from the structures.

To generate the Sirt2-cereblon complexes the protein-protein docking program HADDOCK (version 2.2) was used.³⁶ HADDOCK uses an initial rigid-body docking process which generates typically a large number of structures in the order of thousands. From these a number of structures, typically several hundred, are selected for further flexible refinement and scoring using HADDOCK score, van-der-Waals and electrostatic interactions. The following residues located at the entrance of both binding pockets were chosen to define the protein-protein interaction site: Ser100, Phe235, Ser263, Ile300 for Sirt2, Gln86, His103, Phe150, Thr376 for cereblon. HADDOCK calculated eleven different clusters for the Sirt2-cerebon complex. Among the eleven complexes the three best scored complexes were chosen for further analysis and ligand docking studies. The results of the HADDOCK protein-protein docking are provided in the Supplementary Information (Figure S1). Docking studies were performed using program GOLD (version 5.2) and GoldScore.⁴⁷ From each of the three protein-protein clusters provided by HADDOCK, four complexes were chosen for the docking study. The backbone carbonyl oxygen of Sirt2-Phe235 was defined as center of the binding site with 20 Å radius. 50 docking poses were calculated for the ligand. All other options were left at their default values. The retained docking poses were further refined using a MM-GBSA protocol. The AMBEREHT12

force field and the GBSA method implemented in MOE 2012.10 were used to relax the proteininhibitor complexes. During the minimization protein backbone atoms were tethered using a force constant of (3/2) kT / 2 ($\sigma = 0.5$ Å).⁴⁸ Complexes showing the lowest binding free energies values were selected. The docking protocol has already been successfully applied in case of Sirt2.²⁹ For cereblon (PDB ID 4CI2)³⁷ GOLD was correctly reproducing the binding mode of thalidomide with an RMSD value of 0.45 Å.

7. Chemistry: Starting materials and reagents were obtained from commercial suppliers and used without further purification. Thin-layer chromatography (TLC) for reaction monitoring was performed with alumina plates coated with Merck silica gel 60 F₂₅₄ (layer thickness: 0.2 mm) and analyzed under UV-light (254 nm). The composition of the mobile phase was adjusted to compound properties. Yields were not optimized. ¹H NMR and ¹³C NMR spectra were recorded on Bruker Avance III HD spectrometer at 400 MHz and 100 MHz. The spectra are referenced against the NMR solvents and are reported as follows: ¹H: chemical shift δ (ppm), multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, quint = quintet, sex = sextet, m = multiplet, b = broad), integration, coupling constant (J in Hz). ¹³C: chemical shift δ (ppm), abbreviations: (q) = quaternary carbons, quaternary carbons that could not be found in ${}^{13}C$ spectra but in HMBC or HSQC are additionally marked with an asterisk (*). ¹H or ¹³C signals that are partially overlapping with solvent residual signals are marked with a hashtag (#). The assignment resulted from HMBC and HSQC experiments. Purity of the tested compound was determined by HPLC and UV detection ($\lambda = 210$ nm) and was > 95%. HPLC analysis was performed using the following conditions: Eluent A: H₂O containing 0.05% TFA, Eluent B: acetonitrile containing 0.05% TFA, flow rate 1 mL min⁻¹, linear gradient conditions (0-4 min, A = 90%, B = 10%; 4–29 min, linear increase to 100 % of B; 29–31 min, B = 100%; 31–40 min, A

Journal of Medicinal Chemistry

= 10%, B = 90%), Merk LiChrospher 60 RP-select B (5 μ m, 60 Å, 250 x 4 mm) as an analytical column. Melting temperatures were determined in glass capillary tubes with the Stuart Melting Point Apparatus SMP2. Mass spectra with electrospray ionization (ESI) were recorded on an Advion expression CMS spectrometer or on a Exactive device (Thermo Fisher Scientific, for FTMS). The synthesis of compounds **6** and **8** has already been reported.³⁸⁻³⁹ Due to changes in the experimental procedure and to show unpublished characterization data, we have outlined the synthesis and the characterization data for those compound as well.

Dimethyl 3-hydroxyphthalate (6). From 3-hydroxyphthalic acid anhydride (5) according to a modified procedure published by Kristiansen et al.³⁸ Thionyl chloride (5 equiv) was added dropwise to an ice-cold solution of 3-hydroxyphthalic acid anhydride (1 equiv, 3.7 mmol) in methanol (10 mL). Then, the mixture was stirred for 4 h at 80 °C under reflux conditions. After completion, solvents were removed under reduced pressure. The remaining crude product was purified by automated flash chromatography (cyclohexane/EtOAc: gradient 10% - 100% EtOAc). Yield, 63% of a colorless solid; $R_{\rm f}$, 0.46 (cyclohexane/EtOAc, 7:3 (v/v)); ¹H NMR (DMSO- d_6 , δ [ppm]): 10.34 (s, 1H, -O-H), 7.41-7.36 (m, 2H, H-5,6), 7.18-7.14 (m, 1H, H-4), 3.80 (s, 3H, -COO-CH₃ at C-1), 3.77 (s, 3H, -COO-CH₃ at C-2). ¹³C NMR (DMSO- d_6 , δ [ppm]): 167.57 q (-<u>C</u>OO-CH₃ at C-2), 166.02 q (-<u>C</u>OO-CH₃ at C-1), 154.96 q (C-3), 130.93 (C-5), 128.86 q (C-1), 122.96 q (C- 2), 120.85 (C-4), 120.36 (C-6), 52.89 (-COO-<u>C</u>H₃ at C-1), 52.50 (-COO-<u>C</u>H₃ at C-2). ESI-MS(-): 209.2 [M – H]⁻.

4-Azidobutan-1-aminium chloride (8).³⁹ From *N*-(4-bromobutyl)phthalimide (7) according to a modified procedure published by Cunningham et al.³⁹ 7 (1 equiv, 9.9 mmol) was dissolved in DMF (20 mL). After the addition of NaN₃ (1.1 equiv) the reaction mixture was stirred for 12 h at ambient temperature. Water (25 mL) was added and the aqueous layer was extracted with EtOAc

(30 mL, three times). The organic layers were dried over MgSO₄ and evaporated. The residue was dissolved in ethanol (40 mL). The solution was cooled to 0 °C and hydrazine monohydrate (2 equiv) was gradually added in portions while stirring. Then, the mixture was stirred for 24 h at ambient temperature. After completion, the reaction mixture was acidified with concentrated hydrochloric acid. Solvents were evaporated under reduced pressure and water (30 mL) was added to the residue. Potassium hydroxide was added to adjust a basic pH value (pH > 10). The aqueous layer was extracted with dichloromethane (30 mL, four times). The combined organic layers were dried over MgSO₄, acidified with concentrated hydrochloric acid, and evaporated under reduced pressure. Yield, > 99% of a colorless oil; ¹H NMR (DMSO- d_6 , δ [ppm]): 8.10 (bs, 3H, H_3N^+ -), 3.37 (t, 2H, ${}^{3}J = 6.45$ Hz, H_3N^+ -CH₂-CH₂-CH₂-CH₂-N₃), 2.78 (sex, 2H, ${}^{3}J = 6.33$ $H_3N^+-CH_2-CH_2-CH_2-CH_2-N_3)$, 1.69-1.51 (m, 4H, $H_3N^+-CH_2-CH_2-CH_2-CH_2-N_3)$. Hz. 13 C NMR (DMSO- d_6 , 50.52 δ [ppm]): $(H_3N^+-CH_2-CH_2-CH_2-CH_2-N_3),$ (H₃N⁺-CH₂-CH CH₂-CH₂-N₃). ESI-MS(+): 115.2 [M - Cl]⁺. N-(4-azidobutyl)-2-chloroacetamide (9). 8 (1equiv, 9.7 mmol) was dissolved in DMF (15 mL)

and trimethylamine (2 equiv) was added. The mixture was cooled to 0 °C and chloroacetyl chloride was gradually added. The reaction mixture was stirred for 10 min at 0 °C and then for further 60 min at ambient temperature. After the addition of a saturated aqueous solution of sodium bicarbonate (30 mL) the mixture was extracted with EtOAc (30 mL, three times). The combined organic layers were dried over MgSO₄ and evaporated under reduced pressure. Yield, 82% of a yellowish oil; ¹H NMR (DMSO- d_6 , δ [ppm]): 8.33-8.15 (m, 1H, amide-H), 4.04 (s, 2H, Cl-CH₂-CO-NH-), $3.34^{\#}$ (t, 2H, ${}^{3}J = 6.64$ Hz, $-CH_{2}-CH_{2}-N_{3}$), 3.11 (g, 2H, ${}^{3}J =$ 6.31, -CO-NH-CH₂-CH₂-), 1.60-1.40 (m, 4H, -CO-NH-CH₂-CH₂-CH₂-CH₂-N₃). ¹³C NMR

38.60

Journal of Medicinal Chemistry

(DMSO-*d*₆, δ [ppm]): 166.25 (amide-C), 50.71 (-<u>C</u>H₂-N₃), 43.08 (Cl-<u>C</u>H₂-CO-NH-), 38.75 (-CO-NH-<u>C</u>H₂-), 26.52 (-CO-NH-CH₂-<u>C</u>H₂-), 26.09 (-<u>C</u>H₂-CH₂-N₃). FTMS(+): 191.0693 [M + H]⁺.

Dimethyl 3-(2-((4-azidobutyl)amino)-2-oxoethoxy)phthalate (10). 7 (1 equiv, 2.1 mmol) and 9 (1.1 equiv) were dissolved in acetonitrile (20 mL) and Cs₂CO₃ (2 equiv) was added. The reaction mixture was stirred for 5 h at 60 °C under reflux conditions and for further 12 h at ambient temperature. Water (15 mL) was added to the reaction mixture and the aqueous layer was extracted with dichloromethane (15 mL, once) and EtOAc (20 mL, three times). The combined organic layers were dried over MgSO₄ and evaporated under reduced pressure. The remaining crude product was purified by automated flash chromatography (cyclohexane/EtOAc: gradient 10% - 100% EtOAc). Yield, 88% of a colorless oil; $R_{\rm f}$, 0.33 (cyclohexane/EtOAc, 6:4 (v/v)); ¹H NMR (DMSO- d_6 , δ [ppm]): 7.80 (t, 1H, ³J = 6.04 Hz, amide-H), 7.59-7.53 (m, 2H, phthalate H-5,6), 7.38-7.31 (m, 1H, phthalate H-4), 4.62 (s, 2H, -O-CH₂-CO-NH-), 3.85-3.80 (m, 6H, -COO-CH₃), $3.33^{\#}$ (t, 2H, ³J = 6.12 Hz, -CH₂-CH₂-N₃), 3.16 (g, 2H, ³J = 6.04 Hz, -CO-NH-CH₂-CH₂), 1.52-1.47 (m, 4H, -CO-NH-CH₂-CH₂-CH₂-CH₂-N₃). ¹³C NMR (DMSO-*d*₆, δ [ppm]): 167.35 q (amide-C), 167.13 q (-COO-CH₃ at phthalate C-2), 165.59 q (-COO-CH₃ at phthalate C-1), 155.21 q (phthalate C-3), 131.44 (phthalate C-5), 129.01 q (phthalate C-1), 124.81 q (phthalate C-2), 122.60 (phthalate C-6), 118.38 (phthalate C-4), 68.35 (O-CH₂-CO-NH-), 53.13 (-COO-<u>CH</u>₃ at phthalate C-1), 52.90 (-COO-<u>C</u>H₃ at phthalate C-2), 50.71 (-CH₂-N₃), 38.16 (-CO-NH-<u>C</u>H₂-), 26.63 & 26.05 (-CO-NH-CH₂-<u>C</u>H₂-CH₂-CH₂-N₃). ESI-MS(+): 387.1 $[M + Na]^+$.

N-(4-azidobutyl)-2-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)acetamide (11):
10 (1 equiv, 1.85 mmol) was dissolved in ethanol (15 mL) and an aqueous sodium hydroxide solution (2.5 equiv, 3 M) was added. The reaction mixture was stirred for 1.5 h at ambient

temperature. Subsequently, solvents were evaporated under reduced pressure and the residue was dissolved in water (15 mL). The aqueous layer was washed with EtOAc. The organic layer was discarded and the aqueous laver was acidified with diluted hydrochloric acid and extracted with EtOAc (20 mL, three times). The combined organic layers were dried over MgSO₄ and evaporated under reduced pressure. The crude dicarboxylic acid, 3-aminopiperidine-2,6-dione hydrochloride (1.2 equiv), N,N-dimethylpyridin-4-amine (0.2 equiv), and trimethylamine (3.4 equiv) were dissolved in dichloromethane (15 mL). The mixture was cooled to 0 °C and N,N'-dicyclohexylcarbodiimide was added under nitrogen atmosphere. After 15 min of stirring at 0 °C the reaction mixture was stirred for further 22 h at ambient temperature. The precipitate was separated by filtration was dried under reduced pressure. The crude product was purified by automated flash chromatography (dichloromethane/methanol: gradient 1% - 10% methanol). Yield, 50% of a white solid; mp, 165 °C; $R_{\rm f}$, 0.71 (dichlormethane/methanol, 19:1 (v/v)); ¹H NMR (DMSO- d_6 , δ [ppm]): 11.14 (bs, 1H, -CO-NH-CO-), 8.03 (t, 1H, ³J = 6.04 Hz, amide-H), 7.82 (dd, 1H, ${}^{3}J = 8.59$ Hz, ${}^{3}J = 7.33$ Hz, 1,3-dioxoisoindoline H-6), 7.51 (d, 1H, ${}^{3}J =$ 7.33 Hz, 1,3-dioxoisoindoline H-7), 7.40 (d, 1H, ${}^{3}J = 8.59$ Hz, 1,3-dioxoisoindoline H-5), 5.13 (dd, $1H^{3}J = 12.87$ Hz, $^{3}J = 5.43$ Hz, 1H, 2,6-dioxopiperidine H-3), 4.79 (s, 2H, -O-C<u>H₂</u>-CO-NH-), $3.34^{\#}$ (t, 2H, ${}^{3}J$ = 6.55 Hz, -CH₂-C<u>H₂-N₃</u>), 3.17 (q, 2H, ${}^{3}J$ = 6.04 Hz, -CO-NH-CH₂-CH₂), 2.95-2.86 (m, 1H, 2,6-dioxopiperidine H-4), 2.63-2.53[#] (m, 2H, 2,6-dioxopiperidine H-5), 2.06-2.03 (m, 1H, 2,6-dioxopiperidine H-4), 1.58-1.44 (m, -CO-NH-CH₂-CH₂-CH₂-CH₂-CH₂-N₃). 13 C NMR (DMSO- d_6 , δ [ppm]): 173.21 q (2,6-dioxopiperidine C-6), 170.31 g (2,6-dioxopiperidine C-2), 167.19 g (amide-C), 167.15 g (1,3-dioxoisoindoline C-1), 165.92 q (1,3-dioxoisoindoline C-3), 155.49 q (1,3-dioxoisoindoline C-4), 137.35 (1,3-dioxoisoindoline C-6), 133.45 q (1,3-dioxoisoindoline C-7a), 120.80

Journal of Medicinal Chemistry

(1,3-dioxoisoindoline C-5), 117.23 (1,3-dioxoisoindoline C-3a), 116.48 (1,3-dioxoisoindoline C-7), 68.07 (-O-<u>C</u>H₂-CO-NH-), 50.71 (-CH₂-N₃), 49.20 (2,6-dioxopiperidine C-3), 38.20 (-CO-NH-<u>C</u>H₂-), 31.36 (2,6-dioxopiperidine C-5), 26.67 & 26.08 (-CO-NH-CH₂-<u>C</u>H₂-<u>C</u>H₂-CH₂-CH₂-N₃), 22.39 (2,6-dioxopiperidine C-4). ESI-MS(-): 427.2 [M - H]⁻.

2-((4,6-dimethylpyrimidin-2-yl)thio)-N-(5-(3-((1-(4-(2-((2-(2,6-dioxopiperidin-3-yl)-1,3-

dioxoisoindolin-4-yl)oxy)acetamido)butyl)-1H-1,2,3-triazol-4-yl)methoxy)benzyl)thiazol-2-

yl)acetamide (12): 11 (1 equiv, 0.47 mmol) and 2 (1 equiv) were suspended in a water/tertbutanol mixture (10 mL, 1:1). The suspension was sonified for 15 min. An aqueous $CuSO_4$ solution (0.2 equiv, 0.1 M) and an aqueous solution of sodium ascorbate (0.4 equiv, 0.1 M) were added in that order. The resulting reaction mixture was stirred for 1h at 60 °C and for further 16 h at ambient temperature under nitrogen atmosphere. After completion the reaction was quenched by the addition of water (15 mL). The aqueous layer was extracted with dichloromethane (30 mL, three times) and the combined organic layers were dried over MgSO4 and evaporated under reduced pressure. The remaining crude product was purified by automated flash chromatography (dichloromethane/methanol: gradient 1% - 10% methanol). Finally, the product was recrystallized from methanol. Yield, 33% of a white solid; mp, 135 °C; Rf, 0.25 (dichlormethane/methanol, 19:1 (v/v)); ¹H NMR (DMSO- d_6 , δ [ppm]): 12.22 (bs, 1H, -N<u>H</u>-CO-CH₂-S-), 11.13 (bs, 1H, -CO-NH-CO-), 8.19 (s, 1H, triazole-H), 8.03 (t, 1H, ³J = 5.82 Hz, -NH-CO-CH₂-O-), 7.79 (dd, 1H, ${}^{3}J = 8.44$ Hz, ${}^{3}J = 7.36$ Hz, 1,3-dioxoisoindoline H-6), 7.48 (d, 1H, ${}^{3}J = 7.36$ Hz, 1,3-dioxoisoindoline H-7), 7.37 (d, 1H, ${}^{3}J = 8.44$ Hz, 1,3-dioxoisoindoline H-5), 7.27-7.20 (m, 2H, thiazole H-4 & phenyl H-5), 6.94 (s, 1H, pyrimidine H-5), 6.92-6.87 (m, 2H, phenyl H-2,4), 6.84 (d, 1H, ${}^{3}J = 7.51$ Hz, phenyl H-6), 5.16-5.09 (m, 3H, 2,6-dioxopiperidine H-3 & triazole-CH₂-O-), 4.78 (s, 2H, -O-CH₂-CO-NH-),

4.37 (t, 2H, ${}^{3}J = 7.00$ Hz, -CH₂-CH₂-triazole), $4.08^{\#}$ (s, 2H, -NH-CO-CH₂-S-), 4.04 (s, 2H, thiazole-CH₂-phenyl), 3.21-3.12[#] (m, 2H, -CH₂-CH₂-NH-CO-), 2.96-2.79 (m, 1H 2,6-dioxopiperidine H-4), 2.65-2.53[#] (m, 2H, 2,6-dioxopiperidine H-5), 2.28 (s, 6H, pyrimidine -CH₃), 2.09-2.00 (m, 1H, 2,6-dioxopiperidine H-4), 1.86-1.73 (m, 2H, -CO-NH-CH₂-CH₂-CH₂-CH₂-triazole), 1.46-1.35 (m, 2H, -CO-NH-CH₂-CH₂-CH₂-CH₂-triazole) . ¹³C NMR (DMSO- d_6 , δ [ppm]): 172.85 q (2,6-dioxopiperidine C-6), 169.91 q (2,6-dioxopiperidine C-2), 168.91 g (pyrimidine C-2), 167.02 g (pyrimidine C-4,6), 166.84 g (-NH-CO-CH₂-S- & -NH-CO-CH₂-O-), 166.75 g (1,3-dioxoisoindoline C-1), 165.50 g (1,3-dioxoisoindoline C-3), 158.21 g (phenyl C-3), 156.91 g (thiazole C-2), 155.11 g (1,3-dioxoisoindoline C-4), 142.61 g (triazole C-4), 141.90 q (phenyl C-1), 136.93 (1,3-dioxoisoindoline C-6), 134.79 (thiazole C-4), 133.05 q (1,3-dioxoisoindoline C-7a), 131.07 q (thiazole C-5), 129.66 (phenyl C-5), 124.37 (triazole C-5), 120.92 (phenyl C-6), 120.37 (1,3-dioxoisoindoline C-5), 116.82 (1,3-dioxoisoindoline C-3a), 116.13 (pyrimidine C-5), 116.05 (1,3-dioxoisoindoline C-7), 114.95 (phenyl C-2), 112.44 (phenyl C-4), 67.65 (O-CH₂-CO-NH-), 61.06 (-O-CH₂-triazole), 49.01 (triazole-CH₂-), 48.81 (2,6-dioxopiperidine C-3), 37.66 (-CO-NH-CH₂-), 34.07 (-NH-CO-CH₂-S-), 31.90 (thiazole-CH₂-phenyl), 30.96 (2,6-dioxopiperidine C-5), 27.15 (-CO-NH-CH₂triazole), 26.02 (-CO-NH-CH₂-CH₂-CH₂-CH₂-triazole), 23.26 (pyrimidine -CH₃), 22.00 (2,6-dioxopiperidine C-4). Purity: 97.7% (18.8 min). ESI-MS(-): 851.9 [M - H]⁻.

8. PAINS Analysis: Moreover, we assessed whether the compounds possessed any structural features which should render them pan-assay-interferers by applying the PAINS filter.⁴⁹ Screening against PAINS was performed using the program KNIME,⁵⁰ using a workflow downloaded from http://www.myexperiment.org/workflows/1841.html.⁵¹ The target molecule **12**

is not identified as a potential PAINS. Intermediates **8-11** are flagged due the azide function (contain an azo group) but are only used in synthesis and are not evaluated in biological assays.

ASSOCIATED CONTENT

Supporting Information. The Supporting Information is available free of charge on ACS Publications website at DOI:

Supplementary Figures: Fig S1–4 (PDF)

Molecular formular strings (CSV)

AUTHOR INFORMATION

Corresponding Author

*Phone: +497612034896. Fax: +497612036321. E-mail: manfred.jung@pharmazie.unifreiburg.de

Present Addresses

♥ Matthias Schiedel: Department of Chemistry, Chemistry Research Laboratory, University of
 Oxford, Mansfield Road, OX1 3TA Oxford, United Kingdom

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We thank the Deutsche Forschungsgemeinschaft (DFG) for funding (INST 39/931-1 and CRC992 to M.J., Ju 295-13/1 to D.H. and M.J.). This work was supported by the European Concerted Research Action COST Action EPICHEMBIO [CM1406]; and Hungarian National Scientific Research Fund Grants OTKA [K-101039 and K-112144] to J. O.

ABBREVIATIONS

AMC, 7-Amino-4-methylcoumarin; BubR1, budding uninhibited by benzimidazoles related 1 protein; EGFP, enhanced green fluorescent protein; EtOAc, ethyl acetate; HOXA10, Hoxa10 homeobox A10 protein; KDAC, lysine deacetylase; NFκB, nuclear factor 'kappa-light-chain-enhancer' of activated B-cells; p53, tumor suppressor protein p53; POI, protein of interest; PROTAC, proteolysis targeting chimera; SirReal, sirtuin rearranging ligand; SMILES, simplified molecular input line entry specification; VHL, Von Hippel–Lindau tumor suppressor; ZMAL, Z-(Ac)Lys-AMC

Authors will release the atomic coordinates of the protein-protein docking model upon article publication.

REFERENCES

de Ruijter, A. J.; van Gennip, A. H.; Caron, H. N.; Kemp, S.; van Kuilenburg, A. B.
 Histone deacetylases (HDACs): characterization of the classical HDAC family. *Biochem. J.* 2003, *370*, 737-749.

2. Imai, S.; Armstrong, C. M.; Kaeberlein, M.; Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. *Nature* **2000**, *403*, 795-800.

3. (a) Schemies, J.; Uciechowska, U.; Sippl, W.; Jung, M. NAD(+) -dependent histone deacetylases (sirtuins) as novel therapeutic targets. *Med. Res. Rev.* **2010**, *30*, 861-889; (b) Schiedel, M.; Robaa, D.; Rumpf, T.; Sippl, W.; Jung, M. The current state of NAD+ -dependent histone deacetylases (sirtuins) as novel therapeutic targets. *Med. Res. Rev.* **2017**, [Online early access]. DOI: 10.1002/med.21436. Published Online: January 17, 2017.

Bao, X.; Wang, Y.; Li, X.; Li, X. M.; Liu, Z.; Yang, T.; Wong, C. F.; Zhang, J.; Hao, Q.;
Li, X. D. Identification of 'erasers' for lysine crotonylated histone marks using a chemical proteomics approach. *eLife* 2014, *3*, e02999.

5. Tan, M. J.; Peng, C.; Anderson, K. A.; Chhoy, P.; Xie, Z. Y.; Dai, L. Z.; Park, J.; Chen,
Y.; Huang, H.; Zhang, Y.; Ro, J.; Wagner, G. R.; Green, M. F.; Madsen, A. S.; Schmiesing, J.;
Peterson, B. S.; Xu, G. F.; Ilkayeva, O. R.; Muehlbauer, M. J.; Braulke, T.; Muhlhausen, C.;
Backos, D. S.; Olsen, C. A.; McGuire, P. J.; Pletcher, S. D.; Lombard, D. B.; Hirschey, M. D.;
Zhao, Y. M. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. *Cell Metab.* 2014, *19*, 605-617.

6. Du, J.; Zhou, Y.; Su, X.; Yu, J. J.; Khan, S.; Jiang, H.; Kim, J.; Woo, J.; Kim, J. H.; Choi,

B. H.; He, B.; Chen, W.; Zhang, S.; Cerione, R. A.; Auwerx, J.; Hao, Q.; Lin, H. Sirt5 is a NADdependent protein lysine demalonylase and desuccinylase. *Science* **2011**, *334*, 806-809.

7. Feldman, J. L.; Baeza, J.; Denu, J. M. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. *J. Biol. Chem.* **2013**, *288*, 31350-31356.

Jiang, H.; Khan, S.; Wang, Y.; Charron, G.; He, B.; Sebastian, C.; Du, J. T.; Kim, R.; Ge,
 E.; Mostoslavsky, R.; Hang, H. C.; Hao, Q.; Lin, H. N. SIRT6 regulates TNF-alpha secretion
 through hydrolysis of long-chain fatty acyl lysine. *Nature* 2013, *496*, 110-113.

9. (a) Tong, Z.; Wang, Y.; Zhang, X.; Kim, D. D.; Sadhukhan, S.; Hao, Q.; Lin, H. SIRT7 is activated by DNA and deacetylates histone H3 in the chromatin context. *ACS Chem. Biol.* 2016, *11*, 742-747; (b) Tong, Z.; Wang, M.; Wang, Y.; Kim, D. D.; Grenier, J. K.; Cao, J.; Sadhukhan, S.; Hao, Q.; Lin, H. SIRT7 is an RNA-activated protein lysine deacylase. *ACS Chem. Biol.* 2017, *12*, 300-310.

10. North, B. J.; Marshall, B. L.; Borra, M. T.; Denu, J. M.; Verdin, E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. *Mol. Cell* **2003**, *11*, 437-444.

Vaziri, H.; Dessain, S. K.; Ng Eaton, E.; Imai, S. I.; Frye, R. A.; Pandita, T. K.; Guarente,
 L.; Weinberg, R. A. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. *Cell* 2001, 107, 149-159.

North, B. J.; Rosenberg, M. A.; Jeganathan, K. B.; Hafner, A. V.; Michan, S.; Dai, J.;
 Baker, D. J.; Cen, Y.; Wu, L. E.; Sauve, A. A.; van Deursen, J. M.; Rosenzweig, A.; Sinclair, D.
 A. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. *EMBO J.* 2014, *33*, 1438-1453.

Yeung, F.; Hoberg, J. E.; Ramsey, C. S.; Keller, M. D.; Jones, D. R.; Frye, R. A.; Mayo,
M. W. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1
deacetylase. *EMBO J.* 2004, *23*, 2369-2380.

14. Feige, J. N.; Auwerx, J. Transcriptional targets of sirtuins in the coordination of mammalian physiology. *Curr. Opin. Cell Biol.* **2008**, *20*, 303-309.

 Verdin, E.; Hirschey, M. D.; Finley, L. W.; Haigis, M. C. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. *Trends Biochem. Sci.* 2010, *35*, 669-675.

16. Liu, T. F.; Vachharajani, V. T.; Yoza, B. K.; McCall, C. E. NAD+-dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. *J. Biol. Chem.* **2012**, *287*, 25758-25769.

17. Haigis, M. C.; Guarente, L. P. Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. *Genes Dev.* **2006**, *20*, 2913-2921.

18. de Oliveira, R. M.; Sarkander, J.; Kazantsev, A. G.; Outeiro, T. F. SIRT2 as a therapeutic target for age-related disorders. *Front. Pharmacol.* **2012**, *3*, 92-100.

Beirowski, B.; Gustin, J.; Armour, S. M.; Yamamoto, H.; Viader, A.; North, B. J.;
 Michan, S.; Baloh, R. H.; Golden, J. P.; Schmidt, R. E.; Sinclair, D. A.; Auwerx, J.; Milbrandt, J.
 Sir-two-homolog 2 (Sirt2) modulates peripheral myelination through polarity protein Par 3/atypical protein kinase C (aPKC) signaling. *Proc. Natl. Acad. Sci. U. S. A.* 2011, *108*, E952 961.

20. (a) Pais, T. F.; Szego, E. M.; Marques, O.; Miller-Fleming, L.; Antas, P.; Guerreiro, P.; de Oliveira, R. M.; Kasapoglu, B.; Outeiro, T. F. The NAD-dependent deacetylase sirtuin 2 is a suppressor of microglial activation and brain inflammation. *EMBO J.* **2013**, *32*, 2603-2616; (b)

Zhao, T.; Alam, H. B.; Liu, B.; Bronson, R. T.; Nikolian, V. C.; Wu, E.; Chong, W.; Li, Y.
Selective inhibition of SIRT2 improves outcomes in a lethal septic model. *Curr. Mol. Med.* 2015, 15, 634-641; (c) Eskandarian, H. A.; Impens, F.; Nahori, M. A.; Soubigou, G.; Coppee, J. Y.;
Cossart, P.; Hamon, M. A. A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection. *Science* 2013, *341*, 1238858.

Bae, N. S.; Swanson, M. J.; Vassilev, A.; Howard, B. H. Human histone deacetylase
 SIRT2 interacts with the homeobox transcription factor HOXA10. *J. Biochem.* 2004, *135*, 695-700.

22. Jin, Y. H.; Kim, Y. J.; Kim, D. W.; Baek, K. H.; Kang, B. Y.; Yeo, C. Y.; Lee, K. Y. Sirt2 interacts with 14-3-3 beta/gamma and down-regulates the activity of p53. *Biochem. Biophys. Res. Commun.* **2008**, *368*, 690-695.

23. Park, S. H.; Zhu, Y.; Ozden, O.; Kim, H. S.; Jiang, H.; Deng, C. X.; Gius, D.; Vassilopoulos, A. SIRT2 is a tumor suppressor that connects aging, acetylome, cell cycle signaling, and carcinogenesis. *Transl. Cancer Res.* **2012**, *1*, 15-21.

24. Donmez, G.; Outeiro, T. F. SIRT1 and SIRT2: emerging targets in neurodegeneration. *EMBO Mol. Med.* **2013**, *5*, 344-352.

(a) Kim, H. S.; Vassilopoulos, A.; Wang, R. H.; Lahusen, T.; Xiao, Z.; Xu, X.; Li, C.;
Veenstra, T. D.; Li, B.; Yu, H.; Ji, J.; Wang, X. W.; Park, S. H.; Cha, Y. I.; Gius, D.; Deng, C. X.
SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C
activity. *Cancer Cell* 2011, *20*, 487-499; (b) Yang, M. H.; Laurent, G.; Bause, A. S.; Spang, R.;
German, N.; Haigis, M. C.; Haigis, K. M. HDAC6 and SIRT2 regulate the acetylation state and
oncogenic activity of mutant K-RAS. *Mol. Cancer Res.* 2013, *11*, 1072-1077.

Journal of Medicinal Chemistry

26. (a) Luthi-Carter, R.; Taylor, D. M.; Pallos, J.; Lambert, E.; Amore, A.; Parker, A.; Moffitt, H.; Smith, D. L.; Runne, H.; Gokce, O.; Kuhn, A.; Xiang, Z.; Maxwell, M. M.; Reeves, S. A.; Bates, G. P.; Neri, C.; Thompson, L. M.; Marsh, J. L.; Kazantsev, A. G. SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 2010. 107, 7927-7932; (b) Chopra, V.; Quinti, L.; Kim, J.; Vollor, L.; Narayanan, K. L.; Edgerly, C.; Cipicchio, P. M.; Lauver, M. A.; Choi, S. H.; Silverman, R. B.; Ferrante, R. J.; Hersch, S.; Kazantsev, A. G. The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington's disease mouse models. Cell Rep. 2012, 2, 1492-1497; (c) Bobrowska, A.; Donmez, G.; Weiss, A.; Guarente, L.; Bates, G. SIRT2 ablation has no effect on tubulin acetylation in brain, cholesterol biosynthesis or the progression of Huntington's disease phenotypes in vivo. *Plos One* **2012**, *7*, e34805. (a) Cui, H.; Kamal, Z.; Ai, T.; Xu, Y.; More, S. S.; Wilson, D. J.; Chen, L. Discovery of 27. potent and selective sirtuin 2 (SIRT2) inhibitors using a fragment-based approach. J. Med. Chem. , *57*, 8340-8357; (b) Suzuki, T.; Khan, M. N. A.; Sawada, H.; Imai, E.; Itoh, Y.; Yamatsuta, K.; Tokuda, N.; Takeuchi, J.; Seko, T.; Nakagawa, H.; Miyata, N. Design, synthesis, and biological activity of a novel series of human sirtuin-2-selective Inhibitors. J. Med. Chem. 2012, 55, 5760-5773; (c) Di Fruscia, P.; Zacharioudakis, E.; Liu, C.; Moniot, S.; Laohasinnarong, S.; Khongkow, M.; Harrison, I. F.; Koltsida, K.; Reynolds, C. R.; Schmidtkunz, K.; Jung, M.; Chapman, K. L.; Steegborn, C.; Dexter, D. T.; Sternberg, M. J. E.; Lam, E. W. F.; Fuchter, M. J. The discovery of a highly selective 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d] pyrimidin-4(3H)one SIRT2 inhibitor that is neuroprotective in an in vitro Parkinson's disease model. ChemMedChem 2015, 10, 69-82; (d) Outeiro, T. F.; Kontopoulos, E.; Altmann, S. M.; Kufareva, I.; Strathearn, K. E.; Amore, A. M.; Volk, C. B.; Maxwell, M. M.; Rochet, J. C.; McLean, P. J.; Young, A. B.; Abagyan, R.; Feany, M. B.; Hyman, B. T.; Kazantsev, A. G. Sirtuin 2 inhibitors

rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science 2007, 317. 516-519; (e) Lara, E.; Mai, A.; Calvanese, V.; Altucci, L.; Lopez-Nieva, P.; Martinez-Chantar, M. L.; Varela-Rey, M.; Rotili, D.; Nebbioso, A.; Ropero, S.; Montoya, G.; Oyarzabal, J.; Velasco, S.; Serrano, M.; Witt, M.; Villar-Garea, A.; Imhof, A.; Mato, J. M.; Esteller, M.; Fraga, M. F. Salermide, a sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene 2009, 28, 781-791; (f) Peck, B.; Chen, C. Y.; Ho, K. K.; Di Fruscia, P.; Myatt, S. S.; Coombes, R. C.; Fuchter, M. J.; Hsiao, C. D.; Lam, E. W. SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol. Cancer Ther. 2010, 9, 844-855; (g) Taylor, D. M.; Balabadra, U.; Xiang, Z.; Woodman, B.; Meade, S.; Amore, A.; Maxwell, M. M.; Reeves, S.; Bates, G. P.; Luthi-Carter, R.; Lowden, P. A.; Kazantsev, A. G. A brain-permeable small molecule reduces neuronal cholesterol by inhibiting activity of sirtuin 2 deacetylase. ACS *Chem. Biol.* **2011**, *6*, 540-546; (h) Seifert, T.; Malo, M.; Kokkola, T.; Engen, K.; Friden-Saxin, M.; Wallen, E. A.; Lahtela-Kakkonen, M.; Jarho, E. M.; Luthman, K. Chroman-4-one- and chromone-based sirtuin 2 inhibitors with antiproliferative properties in cancer cells. J. Med. Chem. 2014, 57, 9870-9888; (i) Hoffmann, G.; Breitenbucher, F.; Schuler, M.; Ehrenhofer-Murray, A. E. A novel sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-small cell lung cancer. J. Biol. Chem. 2014, 289, 5208-5216.

Rumpf, T.; Schiedel, M.; Karaman, B.; Roessler, C.; North, B. J.; Lehotzky, A.; Olah, J.;
Ladwein, K. I.; Schmidtkunz, K.; Gajer, M.; Pannek, M.; Steegborn, C.; Sinclair, D. A.;
Gerhardt, S.; Ovadi, J.; Schutkowski, M.; Sippl, W.; Einsle, O.; Jung, M. Selective Sirt2
inhibition by ligand-induced rearrangement of the active site. *Nat. Commun.* 2015, *6*, 6263.
(a) Schiedel, M.; Rumpf, T.; Karaman, B.; Lehotzky, A.; Olah, J.; Gerhardt, S.; Ovadi, J.;

Sippl, W.; Einsle, O.; Jung, M. Aminothiazoles as potent and selective Sirt2 inhibitors: A

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

structure-activity relationship study. *J. Med. Chem.* **2016**, *59*, 1599-1612; (b) Schiedel, M.; Rumpf, T.; Karaman, B.; Lehotzky, A.; Gerhardt, S.; Ovadi, J.; Sippl, W.; Einsle, O.; Jung, M. Structure-based development of an affinity probe for sirtuin 2. *Angew. Chem. Int. Ed.* **2016**, *55*, 2252-2256.

30. Toure, M.; Crews, C. M. Small-molecule PROTACS: New approaches to protein degradation. *Angew. Chem. Int. Ed. Engl.* **2016**, *55*, 1966-1973.

(a) Bondeson, D. P.; Mares, A.; Smith, I. E.; Ko, E.; Campos, S.; Miah, A. H.;
Mulholland, K. E.; Routly, N.; Buckley, D. L.; Gustafson, J. L.; Zinn, N.; Grandi, P.;
Shimamura, S.; Bergamini, G.; Faelth-Savitski, M.; Bantscheff, M.; Cox, C.; Gordon, D. A.;
Willard, R. R.; Flanagan, J. J.; Casillas, L. N.; Votta, B. J.; den Besten, W.; Famm, K.;
Kruidenier, L.; Carter, P. S.; Harling, J. D.; Churcher, I.; Crews, C. M. Catalytic in vivo protein
knockdown by small-molecule PROTACs. *Nat. Chem. Biol.* 2015, *11*, 611-617; (b) Lai, A. C.;
Toure, M.; Hellerschmied, D.; Salami, J.; Jaime-Figueroa, S.; Ko, E.; Hines, J.; Crews, C. M.
Modular PROTAC design for the degradation of oncogenic BCR-ABL. *Angew. Chem. Int. Ed.* 2016, *55*, 807-810.

32. (a) Sakamoto, K. M.; Kim, K. B.; Verma, R.; Ransick, A.; Stein, B.; Crews, C. M.;
Deshaies, R. J. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. *Mol. Cell. Proteomics* 2003, *2*, 1350-1358; (b) Okuhira, K.; Demizu, Y.;
Hattori, T.; Ohoka, N.; Shibata, N.; Nishimaki-Mogami, T.; Okuda, H.; Kurihara, M.; Naito, M.
Development of hybrid small molecules that induce degradation of estrogen receptor-alpha and necrotic cell death in breast cancer cells. *Cancer Sci.* 2013, *104*, 1492-1498.

33. (a) Lu, J.; Qian, Y. M.; Altieri, M.; Dong, H. Q.; Wang, J.; Raina, K.; Hines, J.; Winkler,J. D.; Crew, A. P.; Coleman, K.; Crews, C. M. Hijacking the E3 ubiquitin ligase cereblon to

efficiently target BRD4. *Chem. Biol.* **2015,** *22*, 755-763; (b) Winter, G. E.; Buckley, D. L.; Paulk, J.; Roberts, J. M.; Souza, A.; Dhe-Paganon, S.; Bradner, J. E. Phthalimide conjugation as a strategy for in vivo target protein degradation. *Science* **2015,** *348*, 1376-1381; (c) Zengerle, M.;

Chan, K. H.; Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. *ACS Chem. Biol.* **2015**, *10*, 1770-1777.

34. Lohbeck, J.; Miller, A. K. Practical synthesis of a phthalimide-based Cereblon ligand to enable PROTAC development. *Bioorg. Med. Chem. Lett.* **2016**, *26*, 5260-5262.

35. Schneekloth, A. R.; Pucheault, M.; Tae, H. S.; Crews, C. M. Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. *Bioorg. Med. Chem. Lett.* **2008**, *18*, 5904-5908.

36. van Zundert, G. C.; Rodrigues, J. P.; Trellet, M.; Schmitz, C.; Kastritis, P. L.; Karaca, E.; Melquiond, A. S.; van Dijk, M.; de Vries, S. J.; Bonvin, A. M. The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. *J. Mol. Biol.* **2016**, *428*, 720-725.

37. Fischer, E. S.; Bohm, K.; Lydeard, J. R.; Yang, H.; Stadler, M. B.; Cavadini, S.; Nagel,
J.; Serluca, F.; Acker, V.; Lingaraju, G. M.; Tichkule, R. B.; Schebesta, M.; Forrester, W. C.;
Schirle, M.; Hassiepen, U.; Ottl, J.; Hild, M.; Beckwith, R. E.; Harper, J. W.; Jenkins, J. L.;
Thoma, N. H. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. *Nature* 2014, *512*, 49-53.

Kristiansen, M.; Jakobsen, P.; Lundbeck, J. M. Novel aromatic compounds. WO
 2001023347 A1, 2001.

39. Cunningham, C. W.; Mukhopadhyay, A.; Lushington, G. H.; Blagg, B. S. J.; Prisinzano,
T. E.; Krise, J. P. Uptake, distribution and diffusivity of reactive fluorophores in cells:
Implications toward target identification. *Mol. Pharmaceut.* 2010, *7*, 1301-1310.

Journal of Medicinal Chemistry

40. (a) Huisgen, R. Centenary lecture - 1,3-dipolar cycloadditions. *P. Chem. Soc. London*1961, 357-396; (b) Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Polytriazoles as copper(I)-stabilizing ligands in catalysis. *Org. Lett.* 2004, *6*, 2853-2855.

41. Heltweg, B.; Trapp, J.; Jung, M. In vitro assays for the determination of histone deacetylase activity. *Methods* **2005**, *36*, 332-337.

Weisberg, S. J.; Lyakhovetsky, R.; Werdiger, A. C.; Gitler, A. D.; Soen, Y.; Kaganovich,
D. Compartmentalization of superoxide dismutase 1 (SOD1G93A) aggregates determines their toxicity. *Proc. Natl. Acad. Sci. U. S. A.* 2012, *109*, 15811-15816.

43. Kolb, H. C.; Sharpless, K. B. The growing impact of click chemistry on drug discovery. *Drug Discovery Today* **2003**, *8*, 1128-1137.

44. Neugebauer, R. C.; Uchiechowska, U.; Meier, R.; Hruby, H.; Valkov, V.; Verdin, E.; Sippl, W.; Jung, M. Structure-activity studies on splitomicin derivatives as sirtuin inhibitors and computational prediction of binding mode. *J. Med. Chem.* **2008**, *51*, 1203-1213.

45. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* **1970**, *227*, 680-685.

Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* 1976, *72*, 248-254.

47. Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.; Taylor, R. D. Improved protein-ligand docking using GOLD. *Proteins* **2003**, *52*, 609-623.

48. Wang, J. M.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and testing of a general amber force field. *J. Comput. Chem.* **2004**, *25*, 1157-1174.

49. Baell, J. B.; Holloway, G. A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. *J. Med. Chem.* 2010, *53*, 2719-2740.

Berthold, M. C.; Cebron, N.; Dill, F.; Gabriel, T. R.; Kötter, T.; Meinl, T.; Ohl, P.; Thiel,
K.; Wiswedel, B. KNIME-the Konstanz information miner. In *Studies in Classification, Data Analysis, and Knowledge Organization*; Preisach C., Burkhardt H., Schmidt-Thieme L., Decker

R., Eds.; Springer: Berlin: 2007; pp 319-326.

51. Saubern, S.; Guha, R.; Baell, J. B. KNIME Workflow to Assess PAINS Filters in
SMARTS Format. Comparison of RDKit and Indigo Cheminformatics Libraries. *Mol. Inform.*2011, *30*, 847-850.

