

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 6593-6601

Macrocyclic ureas as potent and selective Chk1 inhibitors: An improved synthesis, kinome profiling, structure-activity relationships, and preliminary pharmacokinetics

Zhi-Fu Tao,* Zehan Chen, Mai-Ha Bui, Peter Kovar, Eric Johnson, Jennifer Bouska, Haiying Zhang, Saul Rosenberg, Thomas Sowin and Nan-Horng Lin

Cancer Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA

Received 27 August 2007; revised 14 September 2007; accepted 18 September 2007 Available online 22 September 2007

Abstract—A new series of potent macrocyclic urea-based Chk1 inhibitors are described. A detailed SAR study on the 4-position of the phenyl ring of the 14-member macrocyclic ureas **1a** and **d** led to the identification of the potent Chk1 inhibitors **2**, **5**–**7**, **10**, **13**, **14**, **19–21**, **25**, **27**, and **31–34**. These compounds significantly sensitize tumor cells to the DNA-damaging antitumor agent doxorubicin in a cell-based assay and efficiently abrogate the doxorubicin-induced G2/M and camptothecin-induced S checkpoints, indicating that the potent biological activities of these compounds are mechanism-based through Chk1 inhibition. Kinome profiling analysis of a representative macrocyclic urea **25** against a panel of 120 kinases indicates that these novel macrocyclic ureas are highly selective Chk1 inhibitors. Preliminary PK studies of **1a** and **b** suggest that the 14-member macrocyclic inhibitors may possess better PK properties than their 15-member counterparts. An improved synthesis of **2** and **20** by using 2-(trimethylsilyl)ethoxycarbonyl (Teoc) to protect the amino group not only readily provided the desired compounds in pure form but also facilitated the scale up of potent compounds for various biological studies.

© 2007 Elsevier Ltd. All rights reserved.

Since nitrogen mustards were developed for cancer chemotherapy more than six decades ago,¹ DNA-damaging agents have been a mainstay of cancer treatment. However, their clinical use is increasingly limited by their severe toxicity to normal cells and resistance by tumor cells.² To overcome this limitation, the development of adjuvant therapeutics that improve the efficacy and selectivity of DNA-damaging agents in the clinic has recently attracted much attention.^{3,4} Such treatments may either sensitize tumor tissue or protect normal tissue from DNA damage.

Checkpoint kinase 1 (Chk1) is a serine/threonine protein kinase which plays a critical role in DNA damage-induced checkpoints, and Chk1 has emerged as an attractive chemosensitization target.^{5,6} In response to DNA damage, ATM and ATR kinases activate Chk1 through phosphorylation in the SQ/TQ domain to arrest cells at various DNA-damaging checkpoints (G1, S, G2) to initiate the DNA repair process.^{7,8} Since p53-deficent tumor cells lack the G1 checkpoint, they are selectively arrested at the S or G2 checkpoint after DNA damage. The inhibition of Chk1 abrogates the S and G2 checkpoints and disrupts the DNA repair process, resulting in premature chromosome condensation, leading to cell death. Tumor cells, especially p53-null cells, are thereby preferentially sensitized to various DNA-damaging agents by inhibition of Chk 1.^{9,10} In contrast, normal cells can still arrest in the G1 phase and are less affected by S and G2 checkpoint abrogation, suggesting that a favorable therapeutic window may be achieved for G2 and/or S abrogators.¹¹

Several classes of Chk1 inhibitors have been reported.⁶ However, it still remains a great challenge to identify ideal Chk1 inhibitors that significantly potentiate DNA-damaging antitumor agents without showing single agent activity. Based on the crystallographic analysis of a urea–Chk1 complex and molecular modeling, we have recently discovered a class of macrocyclic Chk1 inhibitors (1).^{12–14} SAR studies based on 1b, a 15-member macrocycle, have led to the identification of several compounds that not only potently inhibit Chk1 in an enzymatic assay, but also significantly potentiate the

Keywords: Checkpoint kinase 1; Chk1; Ureas; Kinase inhibitors; Macrocycles; Ring-closure metathesis; DNA damage.

^{*} Corresponding author. Tel.: +1 847 938 6772; fax: +1 847 935 5165; e-mail: Zhi-Fu.Tao@abbott.com

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2007.09.063

cytotoxicity of DNA-damaging agents to tumor cells.¹² Preliminary SAR on the ring size revealed that the enzymatic potency of 1a-c decreased in the order of 1a $(IC_{50} = 6 \text{ nM}, 14\text{-member}) \ge 1b (IC_{50} = 7 \text{ nM}, 15\text{-mem-})$ ber) > 1c (IC₅₀ = 28 nM, 16-member). This indicates that the additional conformational flexibility resulting from the presence of more rotatable bonds in the carbon chain linker is detrimental. This is consistent with other literature examples that show that the restriction of conformation produces more potent inhibitors.¹⁵ We therefore further elaborated the more constrained macrocycle 1a. Described herein are: (1) SAR based on the 14-member macrocycle 1a and its olefin counterpart 1d; (2) the kinome profiling of a representative compound; (3) preliminary pharmacokinetics (PK); (4) an improved synthesis of macrocyclic ureas.

Examination of an X-ray co-crystal structure of a macrocyclic urea-Chk1 complex¹² reveals that the 4-position of the phenyl ring is very open to a solvent accessible region, which should be able to accommodate a variety of groups for further optimization. Thus, an extensive SAR on the 4-position of the phenyl ring was performed. The substituents at the 4-position were selected based on our previous SAR results of the macrocyclic urea-based Chk1 inhibitors.¹² These groups may improve the cellular activity or physical properties. Table 1 shows the analogues (2–18) derived from 1d. As predicted, all the analogues exhibited potent activity for Chk1 inhibition.¹⁶ Compounds 2-12 are macrocyclic ureas in which a substituent is linked to the phenyl ring by a nitrogen linker. The amino analogue 2 exhibits a subnanomolar IC₅₀ against Chk1 (Table 1). The dimethylamino (3) and mono-methylamino analogues (4) are equally potent to one another. Analogues 5 and 6, with extended alkyl tails, not only fully retain low single digit nanomolar potency but also potentially have better solubility due to the presence of the terminal polar hydroxyl groups. The introduction of an aromatic group such as a thiazolyl group (7) to the terminal position of the substituent gave Chk1 inhibition activity comparable to 4. Amides (8–10) and carbamates (11 and 12) are also very potent but are slightly weaker than the alkyl amino analogues. Compounds 13-18 are macrocyclic ureas in which a substituent is linked to the phenyl ring by an oxygen atom. All these compounds have polar moieties on the terminus of the substituent that are intended to point into the solvent exposed area. The polar moieties may be solvated and therefore may boost the potency as previously observed.¹² Indeed, compounds 13-18 are very potent Chk1 inhibitors with IC50 values ranging from subnanomolar to low single digital nanomolar.

Table 2 summarizes the SAR results at the 4-position of the phenyl ring based on macrocyclic urea 1a. These compounds (19-36) were also found to be potent Chk1 inhibitors, and the SAR based on 1a is very similar to that based on 1d (Table 1); for the same substituent at the 4-position of the phenyl ring, analogues derived from the saturated core 1a exhibit the same or very comparable potency as those derived from the olefin core 1d (3 vs 21, 4 vs 22, 7 vs 25, 18 vs 36, etc.). Notably, the diethylamino analogue 23 is 11-fold less potent than the dimethylamino analogue 21, indicating that the larger ethyl groups may clash with the Chk1 protein. Compound 31 is a phosphate derivative of 30. Although the enzymatic activity of 31 is weaker than that of its parent compound 30, the cellular potency of 31 shows dramatic improvement. Furthermore, the phosphate group of **31** should improve the aqueous solubility.

All the potent Chk1 inhibitors identified in the enzymatic assay were further evaluated in an MTS assay using HeLa cells, a p53-null human cervical cancer cell line. The EC_{50} values for the compounds were determined either alone or in the presence of 150 nM of doxorubicin (Dox), a clinical topoisomerase II inhibitor known to arrest the G2/M checkpoint at this concentration in HeLa cells. The EC₅₀ values for Chk1 inhibitors in combination with Dox were calculated from the percentage of inhibition by Chk1 inhibitors at various concentrations above the background inhibition by 150 nM Dox. The ability of Chk1 inhibitors to potentiate Dox is represented by the ratio of the EC_{50} value of the inhibitor with Dox to that of the inhibitor alone. As shown in Tables 1 and 2, these compounds fit into three categories: the first class of compounds show no cellular activity at all (4, 8, 11, 12, 15, 22-24, and 28-30) or show little or no potentiation of the cytotoxicity of Dox (9, 16-18, 26, 35, and 36); the second class of compounds show significant potentiation but also have single agent activity (20); the third class of compounds show little or no antiproliferative activity alone but significantly potentiate Dox (2, 5-7, 10, 13, 14, 19, 21, 25, 27, and 31–34). This latter class of compounds fit the definition of ideal Chk1 inhibitors. The lack of a good correlation between Chk1 enzymatic inhibition potency and cellular antiproliferative activity may be due to variation in physicochemical properties such as cellular permeability and potential off-target activity.

To confirm the cellular activity obtained in the abovedescribed MTS assay, and to make sure the biological activity of the Chk1 inhibitors is truly expressed through the abrogation of DNA damage-induced checkpoints, fluorescence-activated cell sorting (FACS) analysis of cell cycle profiles was performed. H1299 cells were treated with Chk1 inhibitors in the presence and absence of Dox and their detailed cell cycle kinetics were assessed by FACS analysis. As predicted, Dox itself induced a remarkable G2/M-phase arrest at a concentration of 500 nM. The EC₅₀ values for abrogation of the G2/M checkpoint caused by Dox in the presence of various concentrations of Chk1 inhibitors are shown in Tables 1 and 2. FACS analysis charts of H1299 cells treated with Dox in the presence or absence of Chk1 inhibitor

Table 1. SAR and cellular activities of unsaturated macrocyclic Chk1 inhibitors

Compound	R=	Chk1 inhibition (IC ₅₀ , nM)	MTS EC ₅₀ (μM) compound + Dox/ (compound alone)	Potentiation ratio	FACS EC ₅₀ (µM) compound + Dox/ (compound alone)	
2	NH ₂	0.3	1.2/>59.3	>49	<0.03/>10	
3	N-ξ-	2	1.9/18.7	10	1.7/>10	
4	HN-ξ- /	2	>5.9/>59.3	NA	>10/>10	
5	HO HO	1	1.5/34.1	22	NA	
6	HO V	2	2.3/>59.3	>26	1.3/>10	
7	N NH	4	0.59/13.6	25	0.2/>10	
8	N O	6	>5.9/>59.3	NA	>10/>10	
9	CI NH	6	2.9/5.4	2	>10/>10	
10	H ₂ N O	3	1.9/>59.3	>31	0.09/>10	
11		3	>5.9/>59.3	NA	>10/>10	
12	Ο Ν−ξ-	10	>5.9/>59.3	NA	NA	
13	ОН	0.3	0.93/45.7	49	0.7/>10	
14	HOO ^{32,}	1	2.3/>59.3	>26	1.9/>10	
15	HO	2	>5.9/>59.3	NA	NA	
16		1	4.2/14.1	3	>10/>10	
17		0.3	1.1/1.9	2	>10/>10	
18	N N O ⁵	1	0.7/1.2	2	>10/>10	

Table 2. SAR and cellular activities of saturated macrocyclic Chk1 inhibitors

Compound	R=	Chk1 inhibition (IC ₅₀ , nM)	MTS EC ₅₀ (μM) compound + Dox/ (compound alone)	Potentiation ratio	FACS EC ₅₀ (μM) compound + Dox/ (compound alone)	
19	Н	6	3.08/57.6	19	1.3/>10	
20	NH ₂	1	0.2/3.4	28	<0.03/2.6	
21	N-ξ-	2	1.8/54.5	30	0.54/>10	
22	HN-⋛- ∕	2	>5.9/>59.3	NA	>10/>10	
23	N-§-	23	>5.9/>59.3	NA	>10/>10	
24	∕~N ^{x,x} , H	3	>5.9/>59.3	NA	NA	
25	N S	4	1.0/59.3	>59	NA	
26	NH NN O	4	5.1/24.3	5	NA	
27		4	2.6/>59.3	23	NA	
28		3	>5.9/>59.3	NA	>10/>10	
29	Ο Ν-ξ-	6	>5.9/>59.3	NA	NA	
30	ОН	0.3	>5.9/>59.3	NA	NA	
31	О НО-Р- <u></u> - НО	8	0.23/17.4	78	NA	
32	HOO ³	8	2.0/>59.3	>30	3.2/>10	
33	HO	1	1.5/>59.3	>40	2.5/>10	
34	H ₃ CO	3	0.9/13.9	18	NA	
35		1	2.1/5.0	2	>10/>10	
36		1	1.2/2.8	2	>10/>10	

2 are shown in Figure 1a. Ideal Chk1 inhibitors (2, 6, 7, 10, 13, 14, 19, 21, 32, and 33) did not affect the regular cell cycle profile even at high concentrations (up to 10μ M), but efficiently abrogated the Dox-induced-G2/M checkpoint with subnanomolar to low single digital

micromolar EC₅₀ values. Notably, compounds that do not show cellular activity at all (4, 8, 11, 22, 23, and 28) or only show little or no potentiation of the cytotoxicity of Dox (9, 16–18, 35, and 36) do not abrogate the Dox-induced-G2/M checkpoint even at 10 μ M concentration.

Figure 1. FACS profiles of cancer cells treated with DNA-damaging agents in the presence or absence of Chk1 inhibitor **2**. The cells were stained with propidium iodide for DNA contents. G0/G1 cells contain 2N DNA while cells in G2/M phase have 4N DNA. S phase cells have DNA content between 2N and 4N. Apoptotic cells contain less than 2N DNA. (a) H1299 cells treated with Dox. (b) SW620 cells treated with CPT.

Table 3. Kinase selectivity of macrocyclic Chk1 inhibitor 25

Kinase	K_{i}^{a} (μ M)	Kinase	K_i^a (µM)	Kinase	$K_{i}^{a}(\mu M)$	Kinase	$K_i^a (\mu M)$
CHK1	0.004	CDK7	>1.525	ΙΚΚα	>3.75	ΡΚϹγ	>8.750
GSK3α	0.911	CDK9	>1.644	ΙΚΚβ	>2.338	ΡΚϹζ	>8.333
PLK3	1.085	CHK2	>5.578	INSR	>5.238	PKG1A	>1.777
SRPK1	2.307	CLK2	>8.753	JAK2	>1.453	PKG1B	>1.683
AUR1	2.025	CLK4	>8.951	JAK3	>1.722	PKN2	>8.195
CDK2	3.088	CTAK-1	>6.667	JNK1a1	>3.056	PRAK	>1.525
IRAK1	3.011	CAMK1	>1.677	JNK2a2	>4.118	PRKX	>1.488
AKT1	3.698	CAMK4	>8.571	KDR	>8.876	PIM2	>1.424
MK2	3.886	CK2	>5.833	LCK	>2.701	PKD2	>8.980
DYRK1A	3.401	CK1a 1	>6.916	LIMK1	>9.546	PRKCN	>9.217
MSK2	0.949	CK1δ	>7.826	LYN	>1.667	ROCK1	>9.105
EMK	4.266	CK1γ2	>7.166	MINK1	>8.493	ROCK2	>7.500
AKT2	4.800	DCAMKL2	>9.570	MK3	>9.234	RSK2	>7.368
AMPK	1.539	DYRK3	>5.804	MLK1	>1.667	STK31	>1.442
PBK	5.195	EGFR	>1.803	MNK2	>9.350	STK33	>1.638
AUR2	1.911	EPHA2	>8.000	MSK1	>1.892	SRC	>1.936
PLK1	6.560	ERBB2	>1.438	MSSK1	>1.736	TAK1-TAB1	>1.606
AKT3	7.157	ERBB4	>3.750	MUSK	>1.650	TAOK2	>9.334
SGK	8.176	ERK2	>8.750	MAP4K2	>6.516	TBK1	>1.525
PDK1	3.482	FGFR3	>1.863	NLK	>1.611	TSSK1	>1.596
CKIT	1.119	FGFR	>4.737	NEK11	>1.549	TSSK2	>1.526
FLT4	6.846	FLT1	>0.440	NEK2	>9.242	TYK2	>1.936
Ρ38δ	6.812	FLT3	>2.481	NEK3	>1.667	TRKA	>2.481
PIM1	9.182	FYN	>0.809	NEK4	>6.711	TRKB	>4.536
ARK5	>1.503	GSK3β	>7.059	P70S6K	>6.668	WNK2	>1.518
ABL	>0.706	HIPK2	>3.338	PAK1	>9.727	ZAK	>8.573
BLK	>1.453	HIPK4	>7.664	PAK4	>5.454	ZIPk	>1.391
CDC42BPA	>9.524	IGF1R	>0.991	ΡΗΚλ2	>4.902	CMET	>2.857
CDK5	>9.275	IRAK4	>9.921	PKA	>7.500	CDC2	>8.913
CDK6	>1.549	ITK	>1.525	ΡΚCδ	>8.889	p38γ	>7.500

^a The inhibition constant (K_i) values are calculated from the Cheng-Prusoff equation, $K_i = IC_{50}/1 + ([ATP]/K_m)$.

The results obtained from the MTS assays are very consistent with those derived from FACS analysis. In addition, we found that the Chk1 inhibitors efficiently abrogate camptothecin (CPT)-induced S arrest. CPT damages DNA through the inhibition of topoisomerase I and is known to cause S phase arrest. As shown in Figure 1b, compound **2** alone did not alter the regular cell cycle profile, but it efficiently abrogated CPT-induced S arrest and forced the cells further into the G2/M phase. The subG0/G1 population indicates the resulting apoptosis.

The macrocyclic urea Chk1 inhibitor **25** was tested against a panel of 120 kinases to obtain a selectivity profile, and excellent selectivity was observed. As shown in Table 3, the compound exhibited no inhibitory activity toward a majority of kinases in this panel even at the highest concentration tested. Moreover, compound **25** does not inhibit Chk2, an important DNA damageinvolving checkpoint kinase, or Cdk7, a cyclin-dependent kinase that is critical in the regulation of cell cycle

Figure 2. Plasma levels of compounds 1a and b with intraperitoneal (IP) dosing in CD-1 mice.

transition. Recently it has been reported that selectivity for Chk1 over Cdk7 is essential for the abrogation of DNA damage-induced checkpoint arrests.¹⁷

To investigate how the ring size affects PK, compounds 1a and b were intraperitoneally administered to mice with a dosage of 10 mg/kg. As shown in Figure 2, both compounds show moderate plasma exposure with AUC values of 3.8 µmol h/L for 1a and 1.5 µmol h/L for 1b. It is very interesting to note that the 14-member macrocycle 1a exhibits over 2-fold more exposure than the 15-member 1b.

Scheme 1 outlines the syntheses of 2 and 20, which are the key intermediates toward macrocyclic ureas in which a nitrogen atom links the substituent to the phenyl ring. Compound 39 was prepared in high yield by the coupling of 37 and 38, both of which were prepared as previously described,¹⁸ followed by reduction of the nitro group. The macrocyclization of 39 was first attempted with Grubbs catalysts (1st and 2nd generation) in DCM under reflux. LCMS indicated a 40-60% conversion of **39** to **2**. Hoveyda-Grubbs catalyst (2nd) was then tried and gave better conversion (70-90%). However, it was very difficult to obtain 2 in pure form due to contaminants of dark green color originating from the catalysts. Attempts to remove the color by using reported methods¹⁹⁻²¹ were not successful. In addition, the conversion of 2 to 20 by hydrogenation also proved to be problematic. We therefore decided to protect the amino group of **39**. After screening several protecting groups, 2-(trimethylsilyl)ethoxycarbonyl (Teoc)²² stood out as the best. Thus, 39 was coupled with Teoc-Cl in the presence of pyridine to give 40 in quantitative yield. Cyclization of 40 in the presence of Hoveyda-Grubbs catalyst (2nd) provides 41 in 90% isolated yield. Deprotection of 41 in TFA at 0 °C quantitatively produced 2. Saturation of olefin 41 in the presence of Wilkinson's catalyst smoothly gave 42. Compound 20 was obtained by the deprotection of 42 in quantitative yield. This improved

Scheme 1. Reagents and conditions: (a) i—DMF, 50 °C; ii—iron powder, NH₄Cl, EtOH, H₂O, 80 °C; (b) Hoveyda-Grubbs catalyst, CH₂Cl₂, reflux; (c) RCl, THF, pyridine; (d) H₂, Wilkinson's catalyst, THF, rt; (e) TFA, 0 °C.

synthetic sequence not only readily provided **2** and **20** in pure form, but also facilitated the scale up of potent compounds for various biological studies.

Scheme 2 depicts the synthesis of compounds 3–12. Compounds 3–7 were prepared by the reductive amination of 2 in moderate to good yield. The coupling of 2 with the corresponding acyl chlorides gave amides 8 and 9. Compound 43, obtained through the coupling of 2 with

bromoethyl chloroformate, was treated with morpholine to provide 11 and 12 concurrently. Amidation of 39 gave 44, which was readily cyclized to provide 45. Removal of the Fmoc group in piperidine produced 10. Compounds 21–29 were prepared using routes similar to those in Scheme 2.

Scheme 3 shows the synthetic routes to macrocyclic ureas in which an oxygen atom links the substituent to the

Scheme 2. Reagents and conditions: (a) RCHO, H_2SO_4 , THF, then NaBH₄, 0 °C; (b) RCOCl, pyridine, CH₂Cl₂, rt; (c) bromoethyl chloroformate, pyridine, DMF–THF; (d) morpholine, DMF–THF; (e) Fmoc-L-Ala-Cl, aqueous Na₂CO₃ (1 M), DCM; (f) Hoveyda-Grubbs catalyst (2nd), DCM, rt; (g) piperidine, DMF.

Scheme 3. Reagents and conditions: (a) DMF, 50 °C; (b) Hoveyda-Grubbs catalyst, CH₂Cl₂, reflux; (c) HCl, dioxane–CH₂Cl₂–EtOH; (d) H₂, Wilkinson's catalyst, THF, rt; (e) RBr, Cs₂CO₃, DMF; (f) HOAc, THF–H₂O; (g) ROH, polymer-supported PPh₃, DBAD, THF; (h) 1,4'-bipiperidine-1'-carbonyl chloride, pyridine, DMF–THF.

Scheme 4. Reagents and conditions: (a) HCl, dioxane-CH₂Cl₂-EtOH; (b) P(H)(O)(OBn)₂, CCl₄, DIEA, DMAP, CH₃CN; (c) Hoveyda-Grubbs catalyst, CH₂Cl₂, reflux; (d) H₂, Wilkinson's catalyst, THF, rt.

4-position of the phenyl ring. Compound 46 was prepared according to a literature procedure.¹⁸ Macrocyclic precursor 48 was synthesized by the olefin metathesis of 47 in the presence of Hoveyda-Grubbs catalyst (2nd). Deprotection of 48 under acidic conditions gave 13 in excellent yield. Hydrogenation of 48 smoothly produced 49, which was deprotected to provide 30. Alkylation of 13 with organic bromides gave ethers 50, which were treated with acetic acid to provide alcohols 14 and 15. Alternatively, alkylation of 13 by alcohols under Mitsunobu's conditions gave 16 and 17 in good yield. Compound 18 was obtained by the pyridine-catalyzed coupling of 13 with 1,4'-bipiperidine-1'-carbonyl chloride. Compounds 32-36 were prepared using routes similar to those in Scheme 3.

The synthesis of **31** is shown in Scheme 4. Compound **51**, obtained by the deprotection of **47**, was phosphorylated with dibenzyl phosphate using a recently reported procedure²³ to give **52** in excellent yield. The ring-closure olefin metathesis of **52** was effected by Hoveyda-Grubbs catalyst to provide **53**. The debenzylation and olefin saturation of **53** were effected simultaneously in the presence of Wilkinson's catalyst under a hydrogen atmosphere to give the final product **31**.

In summary, a new series of potent macrocyclic ureabased Chk1 inhibitors are described. A detailed SAR study on the 4-position of the phenyl ring of 1a and d led to the identification of the potent Chk1 inhibitors 2, 5-7, 10, 13, 14, 19, 21, 25, 27, and 31-34. These compounds significantly sensitize tumor cells to the DNAdamaging antitumor agent Dox in a cell-based assay and efficiently abrogate the Dox-induced G2/M and CPT-induced S checkpoints, indicating that their potent biological activities are mechanism-based through Chk1 inhibition. Kinome profiling analysis of a representative macrocyclic urea 25 against a panel of 120 kinases indicates that these novel macrocyclic ureas are highly selective Chk1 inhibitors. The preliminary PK (IP) studies of 1a and b suggest that the 14-member macrocyclic inhibitors may possess better PK properties than their 15-member counterparts. The improved synthesis of 2 and 20 by using Teoc as an amine protecting group not only readily provided the desired compounds in pure form but also facilitated the scale up of potent compounds for various biological studies.

Acknowledgments

The authors thank Drs. Zhenping Tian and Daniel Plata for scaling up a pyrazine-containing intermediate, Drs. Le Wang, Kent D. Stewart, and Chang Park for helpful discussion on the design of macrocyclic kinase inhibitors. The authors also thank the Department of Structural Chemistry for measuring NMR and MS spectra, the High-Through-Put Purification Group for analytical LC–MS.

References and notes

- Goodman, L. S.; Wintrobe, M. M.; Dameshek, W.; Goodman, J. J.; Gilman, A. JAMA 1946, 132, 126.
- 2. Hurley, L. H. Nat. Rev. Cancer 2002, 2, 188.
- Goldhirsch, A.; Coates, A. S.; Colleoni, M.; Castiglione-Gertsch, M.; Gelber, R. D. J. Clin. Oncol. 1998, 16, 1358.
- 4. Ding, J.; Miao, Z.-H.; Meng, L.-H.; Geng, M.-Y. Trends Pharmacol. Sci. 2006, 27, 338.
- 5. Zhou, B.-B.; Bartek, J. Nat. Rev. Cancer 2004, 4, 216.
- 6. Tao, Z.-F.; Lin, N.-H. Anticancer Agents Med. Chem. 2006, 6, 377.
- 7. Sancar, A.; Lindsey-Boltz, L. A.; Unsal-Kacmaz, K.; Linn, S. Annu. Rev. Biochem. 2004, 73, 39.
- 8. Kastan, M. B.; Bartek, J. Nature 2004, 432, 316.
- Chen, Z.; Xiao, Z.; Chen, J.; Ng, S. C.; Sowin, T. J.; Sham, H.; Rosenberg, S.; Fesik, S.; Zhang, H. *Mol. Cancer Ther.* 2003, 2, 543.
- Xiao, Z.; Chen, Z.; Gunasekera, A. H.; Sowin, T. J.; Rosenberg, S. H.; Fesik, S.; Zhang, H. J. Biol. Chem. 2003, 278, 21767.
- 11. Chen, Z.; Xiao, Z.; Gu, W.-Z.; Xue, J.; Bui, M.; Kovar, P.; Li, G.; Wang, G.; Tao, Z.-F.; Tong, Y.; Lin, N.-H.; Sham,

H. L.; Wang, J. Y.; Sowin, T. J.; Rosenberg, S. H.; Zhang, H. Y. Int. J. Cancer 2006, 2784.

- Tao, Z.-F.; Wang, L.; Stewart, K. D.; Chen, Z.; Gu, W.; Bui, M.; Merta, P.; Zhang, H.; Kovar, P.; Johnson, E.; Park, C.; Judge, R.; Rosenberg, S.; Sowin, T.; Lin, N.-H. *J. Med. Chem.* **2007**, *50*, 1514.
- Tao, Z.-F.; Lin, N.-H.; Wang, L.; Sowin, T. J. Macrocyclic kinase inhibitors. US20050215556, 2005.
- Tao, Z.-F.; Lin, N.-H.; Wang, L.; Sowin, T. J.; Sullivan, G. M.; Tong, Y.; Przytulinska, M.; Li, G. Macrocyclic kinase inhibitors. WO 2005047294, 2005.
- 15. Chen, X.; Wang, W. Annu. Rep. Med. Chem. 2003, 38, 333.
- 16. The Chk1 enzymatic assay was carried out using recombinant Chk1 kinase domain protein covering amino acids from residue 1 to 289 and a polyhistidine tag at the C-terminal end. Human Cdc25c peptide substrate contained a sequence from amino acid residue 204–225. The reaction mixture contained 25 mM of Hepes at pH 7.4,

10 mM MgCl₂, 0.08 mM Triton X-100, 0.5 mM DTT, 5μ M ATP, 4 nM ³³P ATP, 5 μ M Cdc25c peptide substrate, and 6.3 nM of the recombinant Chk1 protein. For more details, see Refs. 11 and 12.

- Fraley, M. E.; Steen, J. T.; Brnardic, E. J.; Arrington, K. L.; Spencer, K. L.; Hanney, B. A.; Kim, Y.; Hartman, G. D.; Stirdivant, S. M.; Drakas, B. A., et al. *Bioorg. Med. Chem. Lett.* 2006, 16, 6049.
- 18. Tao, Z.-F.; Sowin, T. J.; Lin, N.-H. Synlett. 2007, in press.
- 19. Ahn, Y. M.; Yang, K.; Georg, G. I. Org. Lett. 2001, 3, 1411.
- Maynard, H. D.; Grubbs, R. H. Tetrahedron Lett. 1999, 40, 4137.
- Paquette, L. A.; Schloss, J. D.; Efremov, I.; Fabris, F.; Gallou, F.; Mendez-Andino, J.; Yang, J. Org. Lett. 2000, 2, 1259.
- 22. Shute, R. E.; Rich, D. H. Synthesis 1987, 4, 346.
- 23. Silverberg, L. J.; Dillon, J. L.; Vemishetti, P. *Tetrahedron Lett.* **1996**, *37*, 771.