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The total synthesis of the interleukin-1 £ converting enzyme inhibitor EI-1941-2 was achieved utilizing tandem oxidation/oxa-electrocyclization/
oxidation to access a key a-pyrone intermediate. Support for the tandem reaction mechanism was obtained by evaluation of a stepwise
oxidation protocol.

Koizumi and co-workers recently reported the isolatiand enantioselective synthesis of EI-194112 (tilizing a tandem
structure elucidatiochof the interleukin-B converting en- oxidation/oxa-electrocyclization/oxidation cascade to access
zyme (ICE) inhibitors EI-1941-21) and EI-1941-1 %) a keya-pyrone intermediate.

(Figure 1). ICE is a cysteine protease which functions to  Our synthetic approach tbarose serendipitously during
cleave the biologically inactive precursor of interleukifi-1  studies toward the synthesis of epoxyquinol 2°{ and
an enzyme implicated in inflammatory disedda.light of related natural products (Scheme®1)n these studies,
our interest in the synthesis of epoxyquinoid natural selective oxidation of primary alcohdlto the corresponding
products’ we have targeted these compounds for synthesis.aldehyde5 was attempted. Previous work in our group
Recently, the Hayashi grotipeported the enantioselective showed that dienab should readily undergo s6oxa-
synthesis of botd and2, and Mehta and R&ycompleted electrocyclizatioh'to the corresponding diastereomerid-2
an enantioselective synthesis bf Herein, we report the  pyrans 6/6) and further dimerization t8.5¢f However, when
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Scheme 1. Serendipitousx-Pyrone Formation Scheme 2. Proposed Mechanism far-Pyrone Formation
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4 was treated with oxoammonium s@l{Bobbitt's Reagent,
Scheme 1, inset},a-pyroné?138 was obtained unexpectedly
in 85% yield* AGHN

A proposed mechanism for the formation afpyrone8
involves initial oxidation of primary alcohat to aldehyde
5 followed by oxa-electrocyclization to afford2pyrans6/6 generated in the initial oxidation step £ 5),1° may then
(Scheme 2). The electrophilic oxoammonium 3attay then  condens® with 11, resulting in formation of intermediate
react with the Bi-pyrart> moiety, resulting in intermediate 12 followed by eliminatiod! to provide the observed
10which may undergo elimination generating pyrylium salt o-pyrone 8. Mehta and Ro% have proposed an alternate
11 Alternate pathways for pyrylium generation may entail mechanism for a relateg-pyrone formation involving initial
an ene-type mechanidfor direct hydride abstractioti:'® oxidation with an oxoammonium species to a carboxylic acid
Nucleophilic hydroxylamine9, the reduced form of7 followed by electrophilic cyclizatiorelimination.

. On the basis of the oxa-electrocyclization/oxidativ@y-
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Scheme 4. Forward Synthesis of Intermediat Scheme 5. Formation of a Novel, Polycyclic Dimer
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DibalH ment was based on single-crystal X-ray analy3i4.The

| (15 equiv) formation of these dimeric compounds supports our initial
7% | Thr, -78°C mechanistic rationalization far-pyrone formation (Scheme
10 min 2) and the intermediacy of bothHzpyrans 20/20 and
OH o QM pyrylium 22.
HO™ ™ g % ] ) A rationalization for the formation of polycyclic dimer
HyC X i m,3h  HsC x 21 is shown in Scheme 52H-pyrans 20/20 undergo
14 0 (5253;@ o pyrylium formation (Scheme 2) generating intermedi2e
(antiayn) + Dimerization of22 through attack of the pyrylium by the

19 (20%) secondary alcohol of another molecule2s provides bis-

2-alkoxy-H-pyran 23, which may undergo intramolecular
3 o L [4 + 2]-cycloadditiord* to polycyclic dimer21. The facial
cl_eoph|I|c epOX|d_at|o?P of 16 using d!lsopropyID-tartrate, selectivity of the [4+ 2]-cycloaddition appears to be
trityl hydroperoxide, and NaHMDS in toluene 50 °C governed by thesyn 1,3-ether tether, which directs the
for 18 h produced the desiragtepoxidel5 in 70% yield cycloaddition away from the epoxide moiety.

(97% ee). Stille cross—cogpliﬁ@vith E-vinyltributylstannane We postulated that the suppressed formatioa-pfyrone
17, Pd(dba}, and AsPB in toluene afforded the protected 13 gpserved in the two-step reaction sequence may be due
epoxyquinone r_nonoketaB(SQ%). Global deproteptlon with  +9 reduced amounts of hydroxylamirge (Scheme 2). In
48% HE prowqed epc')xqu|n(.)n<19.(80%) which was preliminary experiments, treatment of diastereometit 2
reduced in a regioselective fashion with DIBAL-H to provide pyrans20/20 with 1.0 equiv of 2,2,6,6,-tetramethylpiperidin-
14in 77% yield with 9:1anti:syndiastereoselectivity. For 1. oxyP5 24 and 3.0 equiv of7 afforded13 in 76% yield

a-pyrone formation, we employed the oxa-electrocyclization/ \yithout formation of polycyclic dime21 (Scheme 633 This
oxidation sequence (Scheme 1) which afforded a 56% yield

of a-pyrone 13 along with 20% of secondary alcohol
oxidation productl9.
To further investigate our proposed mechanismofegpy-

Scheme 6. Alternate Synthesis afi-Pyronel3

rone formation (Scheme 2), we considered whether Hie 2 ﬁ:H

pyran derived from alcohdl4 may undergo further oxidation U

with 7 to afford a-pyronel3. Accordingly, treatment ot4 (O_f:qoiiv) 24

with TEMPO and CuCl under an oxygen atmosphere in TEMPO H (1.0 equiv), O OH
DMF5¢/23 resulted in the formation of diastereomerigl-2 ~ 14-G2 5~ NN lsoramer 9T Yo
pyrans20/20 (Scheme 5). Immediate treatment 20/20 m30min - \H,c 7 272;,/3 HsC = ‘
with oxoammonium sal? resulted in the formation of the 20/20° o

desireda-pyronel13in 8% yield along with21 (30%). An
analogous dimer was formed wheh (Scheme 1) was

subjected to this series of conditions; the structural assign-result highlights the likely importance of hydroxylamine
byproduct9 in the a-pyrone formation pathway.
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Completion of the synthesis dfrelied on our ability to oxidation/oxa-electrocyclization/oxidation cascade for gen-
effect the selective reduction of the €86 olefin of 13. eration of a keya-pyrone intermediate. A two-step oxidation
Protection of the secondary alcohol 18 was achieved by  sequence helped to elucidate the mechanism of this trans-
treatment with TBSOTf/2,6-diert-butyl-4-methyl pyridine formation while also providing access to a novel polycyclic
(80%, Scheme 7). As was the case in prior efforts by both dimer via [4+ 2]-dimerization. Further applications of the
oxa-electrocyclization/oxidation process are ongoing in our
laboratory and will be reported in due course.

Scheme 7. Completion of the EI-1941-2 Synthesis
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Hayashi and Meht& we were unable to effect this reduction for providing a sample of natural EI-1941-2.

in the presence of the C7 carbonyl and thus completed our
synthesis in an analogous fashigisynthetic EI-1941-21)
was found to be spectroscopically identical to the natural
product?

In conclusion, the total synthesis EI-19414) bas been
achieved utilizing an oxoammonium salt-mediated tandem OL060954F
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