

Bioorganic & Medicinal Chemistry Letters 10 (2000) 2397-2401

Synthesis and Structure–Activity Relationships of a New Class of 1-Oxacephem-Based Human Chymase Inhibitors

Yasunori Aoyama,^{a,*} Masaaki Uenaka,^a Toshiro Konoike,^{b,*} Yasuyoshi Iso,^a Yasuhiro Nishitani,^a Akiko Kanda,^a Noriyuki Naya^c and Masatoshi Nakajima^c

^aShionogi Research Laboratories, Shionogi & Co., Ltd, Fukushima-ku, Osaka 553-0002, Japan ^bShionogi Research Laboratories, Shionogi & Co., Ltd, Amagasaki, Hyogo 660-0813, Japan ^cShionogi Research Laboratories, Shionogi & Co., Ltd, Futaba-cho, Toyonaka, Osaka 561-0825, Japan

Received 29 June 2000; accepted 9 August 2000

Abstract—1-Oxacephem derivatives were synthesized and evaluated as a novel series of chymase inhibitors. Structure–activity relationship studies of 1-oxacephems led to compound **34**, which exhibited 6 nM inhibition of human chymase and high selectivity for human chymase compared to other serine enzymes. © 2000 Elsevier Science Ltd. All rights reserved.

Introduction

Human chymase is a chymotrypsin-like serine protease that is stored in the secretory granules of mast cells.¹ Although the physiological and pathological roles of chymase have not been fully elucidated, this enzyme has been shown to convert angiotensin I to angiotensin II with greater efficiency than angiotensin I converting enzyme.² Chymase has also been shown to participate in histamine release from mast cells,³ activation of precursor interleukin- 1β ,⁴ and cleavage of type I procollagen⁵ and progelatinase B.⁶ Thus, chymase is speculated to play an important role in cardiovascular diseases and chronic inflammation following fibrosis such as cardiac, renal, and pulmonary fibrosis.⁷ Chymase inhibitors⁸ are thought to be potentially useful as tools for elucidating the physiological function of chymase and therapeutic agents.

Screening of the Shionogi compound collection led to identification of the 1-oxacephem derivative 1^9 as a chymase inhibitor (IC₅₀ 0.25 μ M, Fig. 1), which was prepared for a project on Latamoxef,¹⁰ an antibacterial agent developed at our company. This is the first report of β -lactam compounds inhibiting human chymase. We describe herein the structure–activity relationships by chemical modifications at the 3'-, 4- and 7 β -positions of the 1-oxacephem nucleus.

*Corresponding authors. Tel.: +81-6-6458-5861; fax: +81-6-6458-0987; e-mail: yasunori.aoyama@shionogi.co.jp (Y. Aoyama); e-mail: toshiro. konoike@shionogi.co.jp (T. Konoike).

Chemistry

1-Oxacephem derivatives were prepared as shown in Schemes 1 and 2. Amine 2 was prepared by a procedure established in our laboratories.¹¹ First, 7β-substituted 1oxacephems 3-13 were obtained by treatment with amine 2 and a variety of acid chlorides prepared from the corresponding acids by a usual method (oxalyl chloride, DMF), in the presence of pyridine. Next, 4-substituents 15–25 were prepared in the following way. Deprotection (AlCl₃, anisole, CH₂Cl₂ 99%) of diphenylmethylester 1 provided compound 14. Esterification of Na salt of 14 with a variety of alkyl halides and amidation of mixed anhydride prepared from 14 with three amines gave 4substituted 1-oxacephem esters 15, 16, 20-25 and amides 17-19, respectively. Next, 3'-substituents 27-32 were obtained by the following procedures. Reduction of 21 (Mg, CH₂Cl₂-AcOH) gave exomethylene 26 (47%) and 3-methyl 27 (32%). Protection of phenol 26 (CCl₃COCl, pyridine, CH_2Cl_2), dichlorination of exomethylene (Cl_2 , CCl₄, hv) followed by dehydrochlorination and deprotection (NaHCO₃, H_2O , 100% from 26) provided chloromethyl 28.¹² 3'-Substituted 1-oxacephems 29–32 were obtained by treatment with 28 and the corresponding thiols or tetrazol in the presence of *i*-Pr₂NEt. The most potent compound 34 was prepared from 11 by the same procedures described above (Scheme 2).

Results and Discussion

First, we examined the substituent effects on the phenyl group at 7β -position as shown in Table 1.¹³ In the *para*-

0960-894X/00/\$ - see front matter \bigcirc 2000 Elsevier Science Ltd. All rights reserved. PII: S0960-894X(00)00488-1

Figure 1.

substituted phenylacetamide derivatives, unsubstituted compound 3 and hydrophilic substituents 4 and 5 showed approximately the same activity as the lead compound 1. Hydrophobic substituents such as bromine 6 and phenyl 7 remarkably decreased potency. The hydroxy group 1 appears optimal (IC₅₀ $0.25 \,\mu$ M).

Among the methoxy-substituted benzamide derivatives, ortho-substituent 11 was more potent than the corresponding para- 9 and meta-substituents 10. Substituents at the ortho-position, such as chlorine 12, methoxycarbonyl 13 and hydrogen (unsubstituted) 8 decreased the activity moderately. ortho-Methoxy 11 gave the highest IC₅₀ value (0.55 μ M) among the benzamide derivatives.

Next, a substituent at the 4-position was optimized for the 7 β -*para*-hydroxyphenylacetamide as shown in Table 2. Ester derivatives **1**, **15** and **16** were more potent than amide derivatives **17–19**. Especially, esters **1** and **16** displayed 44- and 110-fold increase compared to the corresponding amides **17** and **18**, respectively. Because 4benzyl ester **16** was the most active, we prepared a variety of substituted benzyl esters. Introduction of a methyl group into *meta*-position **21** in 4-benzyl ester derivative resulted in a threefold increase of potency over that of **16**, while introduction into the *para*- and *ortho*-position **20** and **22** led to a mild decrease. With regard to *meta*-

Scheme 1. Reagents and conditions: (a) XCOCl, pyridine, CH_2Cl_2 ; (b) AlCl₃, anisole, CH_2Cl_2 , 99%; (c) (i) sodium 2-ethylhexanoate, MeOH-EtOAc; (ii) RCH₂Br or MeI, DMF; (d) (i) *t*-BuCOCl, Et₃N, THF; (ii) NMM, HNRR'; (e) Mg, CH₂Cl₂-AcOH, **26** (47%), **27** (32%); (f) (i) CCl₃COCl, pyridine, CH₂Cl₂; (ii) Cl₂, CCl₄, hv; (iii) NaHCO₃, H₂O, 100%; (g) ZH, *i*-Pr₂NEt, MeCN.

Scheme 2. Reagents and conditions: (a) AlCl₃, anisole, CH₂Cl₂; (b) (i) sodium 2-ethylhexanoate, MeOH–EtOAc; (ii) BrCH₂C₆H₄-3-Me, DMF; (c) Mg, CH₂Cl₂–AcOH; (d) (i) Cl₂, CCl₄, hv; (ii) NaHCO₃, H₂O; (e) 5-mercapto-1-tetrazoleacetic acid, Et₃N, MeCN.

Table 1. Modifications at 7β-position

Compound	Х	IC ₅₀ (µM)	Compound	Х	IC ₅₀ (µM)
1	CH ₂ C ₆ H ₄ -4-OH	0.25	8	C ₆ H ₅	1.40
3	$CH_2C_6H_5$	0.30	9	C_6H_4 -4-OMe	>10
4	CH ₂ C ₆ H ₄ -4-OMe	0.30	10	C ₆ H ₄ -3-OMe	7.31
5	$CH_2C_6H_4$ -4-NMe ₂	0.41	11	C_6H_4 -2-OMe	0.55
6	$CH_2C_6H_4$ -4-Br	6.80	12	Č ₆ H ₄ -2-C1	1.70
7	$CH_2C_6H_4$ -4-Ph	>10	13	C_6H_4 -2- CO_2Me	3.50

Table 2. Modifications at 4-position

Compound	Y	IC ₅₀ (µM)	Compound	Y	IC ₅₀ (µM)
1	OCHPh ₂	0.25	20	OCH ₂ C ₆ H ₄ -4-Me	0.17
15	OMe	1.60	21	$OCH_2C_6H_4$ -3-Me	0.05
16	OCH ₂ Ph	0.14	22	$OCH_2C_6H_4$ -2-Me	0.43
17	NHCHPh ₂	11.0	23	OCH ₂ C ₆ H ₄ -3-Br	0.07
18	NHCH ₂ Ph	15.6	24	OCH ₂ C ₆ H ₄ -3-CF ₃	0.05
19	$N(CH_2)_4$	>10	25	$OCH_2C_6H_4$ -3- CO_2Me	1.65

substituents, methyl substituent **21** gave approximately the same activity as bromine **23** and trifluoromethyl **24**. Methoxycarbonyl group **25** led to a 33-fold loss of potency versus **21**. *meta*-Methyl **21** showed the best result (IC_{50} 0.05 μ M) among the 4-substituted derivatives. 4-Carboxylate as shown in latamoxef (Fig. 1) is necessary for expression of the antibacterial activity, but also dramatically decreases the potency against human chymase. On the other hand, 4-benzyl ester increased the activity against human chymase and led to loss of antibacterial activity (data not shown).

Finally, in order to enhance the potency of **21**, we modified the 3'-substituents (Table 3). Compound **21** was more active than compounds **27**, **28**, **31** and **32**, but roughly showed the same potency as compounds **29** and **30**. 3'-Thiotetrazoleacetic acid **29** was designed and prepared in order to improve water solubility and consequently facilitate in vivo evaluation.

In order to investigate the inhibitory mechanism of 1oxacephems against human chymase, we performed a series of kinetic studies.¹⁴ Judging from the results of kinetic studies and reports concerning β -lactam inhibitors of human leukocyte elastase,^{15,16} we assumed that the inhibition mechanism of 1-oxacephems against human chymase was as presented in Figure 2 which shows that the active site serine residue (serine 195) in the enzyme approaches the β -lactam ring of 1-oxacephem, followed by generation of an acyl-enzyme.

	но			Y	
Compound	Ζ	$\begin{array}{c} IC_{50} \\ (\mu M) \end{array}$	Compound	Ζ	IC ₅₀ (µM)
21	Me S	0.05	30	CH₂CO₂H S∢ ^{Ň.} Ņ N·Ň	0.08
27	Н	>10	31	S _≺ ^S _≻ N·N	0.44
28	Cl	0.15	32	Me S S N	4.00
29	сн₂с∪₂н S	0.07			

Table 2 shows that amide derivatives 17 and 18 were less potent than 4-ester derivatives 1 and 16. Two reasons can be considered for this: (1) a more electronwithdrawing character of the ester group than the amide group may facilitate the nucleophilic attack of active serine 195 to β -lactam carbonyl and (2) 4-electron-rich amide carbonyl or amide-NH may prevent hydrogen

Figure 2. Proposed mechanism for inhibition of human chymase by 1-oxacephem.

 Table 4.
 Selectivity of 34 as an inhibitor of human chymase compared to other serine proteases

Enzyme	IC ₅₀ (µM)	Enzyme	IC ₅₀ (µM)
Chymase	0.006	Trypsin	0.44
α-Chymotrypsin	0.16	Elastase	>10
Cathepsin G	0.23	Plasmin	>10
Thrombin	0.43		

abstraction of serine 195 by histidine 57 or the approach of serine 195 to β -lactam carbonyl.¹⁷ Figure 2 depicts the mechanism at work when the 3'-substituent Z is a good leaving group. According to Table 3, when 3'-substituent Z was not the leaving group (hydrogen, **27**), no activity was observed. This result supports the proposed mechanism.

Considering the match–mismatch between 3', 4 and 7 β substituents, several hybrid compounds were prepared based on the results presented in Tables 1–3. Fortunately, we found hybrid compound **34** to possess the highest potency (IC₅₀ 6 nM) and to be 40-fold more active than lead compound **1** (Scheme 2). In compound **34**, the combination of substituents at 3', 4 and 7 positions may match synergetically. Enzymatic work showed that **34** was an extremely selective inhibitor, causing weak or no inhibition of several other serine proteases (Table 4).¹⁸ In addition, the Na salt of **34** possessed water solubility (500 mg/mL). Consequently, it was considered to be suitable for in vivo evaluation.

Conclusion

We have described here the synthesis of 1-oxacephem derivatives and their inhibitory activities against human chymase. We found that compound **34** possesses high potency and selectivity against human chymase.

Acknowledgement

We wish to thank Prof. M. Miyazaki, Osaka Medical College, for the kind gift of human chymase.

References and Notes

1. (a) Caughey, G. H. J. Respir. Crit. Care Med. **1994**, 150, S138. (b) Wang, Z.; Walter, M.; Selwood, T.; Rubin, H.; Schechter, N. M. Biol. Chem. **1998**, 379, 167.

2. Ihara, M.; Urata, H.; Kinoshita, A.; Suzumiya, J.; Sasaguri, M.; Kikuchi, M.; Ideishi, M.; Arakawa, K. *Hypertension* **1999**, *33*, 1399.

3. He, S.; Gaca, M. D. A.; McEuen, A. R.; Walls, A. F. J. Pharmacol. Exp. Ther. **1999**, 291, 517.

4. Mizutani, H.; Schechter, N.; Lazarus, G.; Black, R. A.; Kupper, T. S. J. Exp. Med. **1991**, 174, 821.

5. Kofford, M. W.; Schwartz, L. B.; Schechter, N. M.; Yager, D. R.; Diegelmann, R. F.; Graham, M. F. *J. Biol. Chem.* **1997**, *272*, 7127.

6. Fang, K. C.; Raymond, W. W.; Blount, J. L.; Caughey, G. H. J. Biol. Chem. 1997, 272, 25628.

7. (a) Shiota, M.; Fukamizu, A.; Takai, S.; Okunishi, H.; Murakami, K.; Miyazaki, M. J. Hypertens. **1997**, *15*, 431. (b) Hamada, H.; Terai, M.; Kimura, H.; Hirano, K.; Oana, S.; Niimi, H. Am. J. Respir. Crit. Care. Med. **1999**, *160*. 1303. (c) Takai, S.; Yuda, A.; Jin, D.; Nishimoto, M.; Sakaguchi, M.; Sasaki, S.; Miyazaki, M. FEBS Lett. **2000**, *467*, 141.

8. (a) Hayashi, Y.; Iijima, K.; Katada, J.; Kiso, Y. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 199. (b) Groutas, W. C.; Schechter, N. M.; He, S.; Yu, H.; Huang, P.; Tu, J. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 2199. (c) Iijima, K.; Katada, J.; Hayashi, Y. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 413. (d) Fukami, H.; Okunishi, H.; Miyazaki, M. Curr. Pharm. Des. **1998**, *4*. 439 and references therein.

9. Lead compound **1** was prepared as follows: (a) (i) dihydropyrane, TsOH, CH₂Cl₂; (ii) NaOH, acetone, 94% from **35**; (b) (i) POCl₃, CH₂Cl₂; (ii) **2**, pyridine; (iii) HCl-acetone, 76% from **36**.

$$HO \longrightarrow CH_2CO_2Me \xrightarrow{a} THPO \longrightarrow CH_2CO_2H \xrightarrow{b} 1$$

35 36

10. Narisada, M.; Yoshida, T.; Onoue, H.; Ohtani, M.; Okada, T.; Tsuji, T.; Kikkawa, I.; Haga, N.; Satoh, H.; Itani, H.; Nagata, W. *J. Med. Chem.* **1979**, *22*, 757.

11. Uyeo, S.; Kikkawa, I.; Hamashima, Y.; Ona, H.; Nishitani, Y.; Okada, K.; Kubota, T.; Ishikura, K.; Ide, Y.; Nakano, K.; Nagata, W. *J. Am. Chem. Soc.* **1979**, *101*, 4403. 12. Yoshioka, M.; Tsuji, T.; Uyeo, S.; Yamamoto, S.; Aoki,

T.; Nishitani, Y.; Mori, S.; Satoh, H.; Hamada, Y.; Ishitobi, H.; Nagata, W. *Tetrahedron Lett.* **1980**, *351*.

13. The human chymase assay was performed as follows: first, human chymase was purified according to the method of Takai (ref, Takai, S.; Siota, N.; Sakaguchi, M.; Muraguchi, H.; Matsumura, E.; Miyazaki, M. *Clin. Chim. Acta* **1997**, 265, 13). The purified chymase was preincubated with test compounds dissolved in DMSO at 37 °C for 30 min in 0.1 M Tris–HCl (pH 8.0) containing 1.8 M NaCl, after then the chymase reaction was started by adding succinyl-Ala-Ala-Pro-Phe*p*-nitroanilides (Sigma Chemical Co.). The change of absorbance was measured at 405 nm after 2 h incubation at 37 °C. The IC₅₀ value was calculated from the inhibition of *p*-nitroaniline formation at each concentration of the test compound.

14. Detailed data will be reported elsewhere.

15. Mascaretti, O. A.; Boschetti, C. E.; Danelon, G. O.; Mata, E. G.; Roveri, O. A. *Curr. Med. Chem.* **1995**, *1*, 441 and references therein.

16. See ref 8d with respect to the catalytic triad (Ser-195, His-57, Asp-102) in human chymase.

17. Cephalosporin ester and amide sulfones were tested to determine the structure-activity relationships for inhibition of

human leukocyte elastase (ref, Finke, P. E.; Ashe, B. M.; Knight, W. B.; Maycock, A. L.; Navia, M. A.; Shah, S. K.; Thompson, K. R.; Underwood, D. J.; Weston, H.; Zimmerman, M.; Doherty, J. B. J. Med. Chem. **1990**, *33*, 2522).

18. The inhibitory effects of compound **34** on the enzymatic activities of seven serine proteases were evaluated using the purified enzymes and chromogenic substrates. The enzymes and substrates used here were as follows: *N*-succinyl-Ala-Ala-Pro-Phe-pNA (Bachem) for bovine pancreatic α -chymotrypsin (Sigma) and human cathepsin G (Wako); chromozyme TH (Boehringer Mannheim) for human thrombin (Sigma); *N*-suc-

cinyl-Ala-Ala-Phe-Arg-pNA (Bachem) for bovine pancreatic trypsin (Sigma); *N*-succinyl-Ala-Ala-Val-pNA (Bachem) for human neutrophil elastase (Athens Research and Technology, Inc.); chromozym PL (Boehringer Mannheim) for human plasmin (Sigma). The assay buffer used here was as follows: 50 mM Tris–HCl (pH=8.0) containing 2 mM CaCl₂ for α -chymotrypsin, trypsin and elastase; 50 mM Tris–HCl (pH=7.5) containing 2 mM CaCl₂ for cathepsin G; 50 mM Tris–HCl (pH=7.5) containing 50 mM NaCl for plasmin; 0.1 M Tris–HCl (pH=8.0) containing 10 mM CaCl₂ and 0.1 M NaCl for thrombin.