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Abstract

The reaction of g-amino-a,b-unsaturated esters prepared from l-serine with diversely substituted aryl-
cuprates a�ords the corresponding syn-adducts. Transformation of the amino group to an isocyanate,
followed by Friedel±Crafts intramolecular condensation, leads to enantiopure 3,4-disubstituted tetrahydro-
isoquinolin-1-ones, which can be reduced to the corresponding tetrahydroisoquinolines. # 2000 Elsevier
Science Ltd. All rights reserved.
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Isoquinoline alkaloids have been a cornerstone in the large collection of naturally occurring
substances belonging to the alkaloid family and they ®gure prominently in the arsenal of phar-
macologically active compounds.1 Tetrahydroisoquinolines are traditionally synthesized from the
ring closure of iminium intermediates via the well-known Pictet±Spengler2 or Bischler±Napieralski3

reactions. Other methods are also known for the synthesis of 1-substituted 1,2,3,4-tetrahydro-
isoquinolines in racemic and enantiopure forms.1

In contrast, there are fewer methods for the stereocontrolled synthesis of 3- or 3,4-substituted
congeners.4 A recent claim to 3-substituted tetrahydroisoquinolines from N,N-dibenzylamino
alcohols,5 has been repudiated after careful experimentation by another group.6 Such compounds
could be viewed as versatile sca�olds on which to attach pharmacophore-like groups through the
chemical elaboration of existing functionality of the tetrahydroisoquinoline nucleus. An assembly
protocol that also allows for the incorporation of substituents on the aromatic portion would
greatly enhance the versatility of these molecules as potential pharmacologically important
agents, or as probes to study interactions with biological receptors, enzymes, etc.
We report herein a method for the stereocontrolled synthesis of 3,4-disubstituted tetrahydro-

isoquinolin-1-ones and tetrahydroisoquinolines in enantiopure form starting with l-serine7 as seen
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in Scheme 1. The method consists in the stereocontrolled conjugate addition of diarylmagnesio-
cuprates to a readily available a,b-unsaturated ester.8ÿ10 After transformation of the amino group
to the corresponding isocyanate, the products are subjected to a Friedel±Crafts intramolecular
cyclization11 to provide tetrahydroisoquinolin-1-ones.

Thus, l-serine was converted to the a,b-unsaturated ester8ÿ10 2, which is known to react with
organocuprate reagents in the presence of trimethylsilyl chloride to give predominantly syn-
adducts8ÿ10,12 (Scheme 2).

Scheme 1.

Scheme 2.

5000



Extension of this reaction to a variety of o-, m-, and p-substituted diarylmagnesiocuprates led
to the corresponding b-aryl adducts 3 in excellent yields, and diastereoselectivities exceeding 8:1
in favor of the syn-isomer.10 The rationale for the observed stereoselectivity has been discussed in
a previous paper from our group.10 In order to carry out the intramolecular cyclizations en route
to the desired tetrahydroisoquinolin-1-ones 6, it was necessary to introduce functionality and
protective groups that would be compatible with the use of aluminum chloride under Friedel±
Crafts conditions. The adducts 3 were transformed to the bis-pivaloyl esters of generic structure
4 in good overall yields. Removal of the N-Boc group with tri¯uoroacetic acid in the presence of
resorcinol,13 followed by treatment with triphosgene14 led to the corresponding isocyanates15 5.
In general, the Friedel±Crafts reaction gave single products in good to excellent yields (Fig. 1).
In the case of the m-methyl isomer corresponding to 5, the reaction a�orded a 2.2:1 mixture of
the o- and p-methyl cyclization products 17a and 17b which were separable by column chroma-
tography. The corresponding methoxy analog gave the product of p-substitution 19, only, no
doubt due to the activating e�ect of the methoxy group. Interestingly, the m-¯uoro isocyanate
corresponding to 5 also gave the p-substituted product 20 only (Fig. 1).16

In order to further demonstrate the utility of these compounds, we explored reactions taking the
p-methyl analog as a prototype (Scheme 2). Hydrolysis of the pivalate esters, gave the corresponding
diol 7 which was transformed to a diastereomeric mixture of 2-phenyl-1,3-oxazolidine derivatives
8, thus allowing for further elaboration of the distal hydroxyethyl group. In a typical example,
displacement of the mesylate 9with azide gave the corresponding azido derivative 10. The phenylthio
ether 11 was also prepared from 8 following known precedents.17 Acid hydrolysis of 10 and 11
a�orded the selectively functionalized azido and phenylthio derivatives 12 and 13, respectively,
in enantiopure form. A prototypical tetrahydroisoquinoline 14 was prepared by reduction of the
diol 7 with LiAlH4.
The methodology reported in this paper provides access to diversely functionalized enantiopure

3,4-disubstituted tetrahydroisoquinolines with di�erent aromatic substituents. The azido and
phenylthio derivatives 12 and 13 can be subjected to further orthogonally directed chemical
manipulations, thus expanding the versatility of this class of heterocycles not only as sca�olds for
the deployment of pharmacophores, but also as potential bioactive compounds. In this regard,

Figure 1. aYields of chromatographically pure product over three steps as in Scheme 2; b[�]D reported in CHCl3 with
concentration in brackets; call products were adequately characterized by 1H, 13C and HRMS
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recent reports concerning the synthesis of polysubstituted tetrahydroisoquinolines and related
compounds on solid-support and by parallel array are noteworthy.18,19
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