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A novel series of arylsulfonylthiophene-2-carboxamidine
inhibitors of the complement component C1s
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Abstract—Inhibiting the classical pathway of complement activation by attenuating the proteolytic activity of the serine protease
C1s is a potential strategy for the therapeutic intervention in disease states such as hereditary angioedema, ischemia–reperfusion
injury, and acute transplant rejection. A series of arylsulfonylthiophene-2-carboxamidine inhibitors of C1s were synthesized and
evaluated for C1s inhibitory activity. The most potent compound had a Ki of 10 nM and >1000-fold selectivity over uPA, tPA,
FXa, thrombin, and plasmin.
� 2006 Elsevier Ltd. All rights reserved.
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The complement cascade is a major component of the
innate immune system in mammals and other vertebrate
species.1 It plays a major role in the destruction of
invading microorganisms and the clearance of immune
complexes. Unregulated complement activation leading
to acute inflammation and tissue damage has been
implicated in the pathology of many disease states.2

Activation of the classical pathway has been implicated
in humorally mediated graft rejection,3 ischemia–reper-
fusion injury (IRI),4 hereditary angioedema (HAE),5

Vascular Leak Syndrome,6 and acute respiratory dis-
tress syndrome (ARDS).7 C1s is a trypsin-like serine
protease that is present as a proenzyme within the first
component of complement in the classical pathway.8

Under normal physiological conditions activated C1s
is inhibited by its endogenous inhibitor, C1 esterase
inhibitor (C1-INH). Pathological conditions result in
excessive activation of complement that is not sufficient-
ly inhibited by C1-INH. Furthermore, C1-INH can be
degraded by other proteases that are released during
complement-mediated inflammation. A small molecule
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inhibitor of C1s would be a useful therapeutic agent in
the treatment of complement-mediated disease.9

We have previously reported the discovery of a novel
series of thiopheneamidine C1s inhibitors (1).10 These
compounds, while having very good selectivity over
thrombin, plasmin, and FXa, had poor selectivity over
the serine protease urokinase plasminogen activator
(uPA). Because the thiopheneamidine moiety appeared
to be a good S1 binding fragment for C1s, several com-
pound libraries containing this moiety were screened for
C1s inhibitory activity. Compound 2 was identified as
an 11 lM inhibitor of C1s, with 2-fold selectivity over
uPA. Substituting the isopropyl residue with a phenyl
residue provided compound 3 with Ki = 0.75 lM for
C1s and 13-fold selectivity over uPA.
HN
NH2

1 K i (uPA) = 0.135 μM; Ki (C1s) = 0.065 μM
The observed selectivity profile for 1 and 3 may be relat-
ed, at least in part, to a difference at Lys614 (Gln192;
C1s numbering, followed by uPA/chymotrypsinogen
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Figure 1. Model of sulfone 3 bound to C1s. This figure shows selected

residues of C1s (PDB ID 1ELV; residue numbering is according to

1ELV; Ser617 is the catalytic serine, Asp548 is the canonical S1 acid

residue of trypsin-like serine proteases), with superposition of the

thiophene amidine as described previously.10 Cys-Cys indicates the

cystine disulfide formed by Cys613 and Cys644, and the dashed lines

indicate key intermolecular electrostatic contacts of the binding model

(see text). In this model, the side-chain conformation of Lys614 has

been adjusted from that described in the published crystal structure,11

to favor interaction with the sulfone moiety of 3. The distance between

Lys614:NZ and the two inhibitor sulfone oxygen atoms is 3.0 and

3.5 Å, respectively.

Table 1. SAR of sulfone substitution

S

MeS
S

R

O O

HN
NH2

Compound R C1s inhibition

Ki (lM)

2 CH2(CH3)2 11.0

3 Phenyl 0.75

4 2-Naphthyl 0.41

5 2-Pyridyl 2.29

6 1-Methylimidazol-2-yl 1.88

7 2-Methylfuran-3-yl 1.79

8 2-Thiopheneyl 2.24

9

H
N

N

Br

0.40

10 Benzyl 2.0
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numbering in parentheses). In the original description of
the C1s structure, Gaboriaud et al.11 noted the potential
of a role for Lys614 in binding specificity. Lys614 of C1s
is adjacent to S1 and is positioned so that it could play a
role in restricting access to S1 and/or the catalytic
region. Our binding models (Fig. 1),10,12 with inhibitors
modeled into S1 of the apo C1s structure, are consistent
with the previously hypothesized importance of Lys614
in active-site binding. We extend this hypothesis to
propose that Lys614 of C1s and the corresponding
uPA residue Gln192 are involved in defining C1s selec-
tivity for compound 3. Figure 1 details some of the
key features of our proposed C1s binding model for 3.
Arg557 and Arg563 are positioned to constrain the side
chain of Lys614 to point in the direction of S1, and
Lys614:NZ can form a hydrogen bond with one or pos-
sibly both of the sulfone oxygen atoms of 3 as it is posi-
tioned in our model. Such interactions cannot be readily
modeled for 1. Additionally, Gln192, the corresponding
residue in uPA, is too short to achieve a similar interac-
tion and also appears to be restricted from leaning into
S1 due to a hydrogen bonding interaction with Lys143
(not shown). Therefore, it seems reasonable to propose
that C1s shows an increased preference for 3 due to
hydrogen bonding interactions with Lys614:NZ.

Several other aryl- and alkyl-sulfonyl derivatives
(Table 1) were synthesized in order to identify a core
fragment with significantly potent inhibitory activity to-
ward C1s. The benzimidazole 9 was chosen as a starting
point for further lead optimization. In this paper, we de-
scribe structure–activity relationships and in vitro bio-
logical results for this series of C1s inhibitors.

Compounds 3–8 and 10 (Table 1) were synthesized
according to Scheme 1. Treating 4-Br-5-NO2-thio-
phene-2-carboxylate 3613 with an appropriate thiol at
�78 �C resulted in substitution at the 4-position to give
the corresponding thioether, which was oxidized to the
sulfone 37 by treating with MCPBA in refluxing
DCM. Treating the sulfone 37 with sodium thiomethox-
ide at �78 �C affords primarily the nitro-displacement
product, which was converted to the amidine 38 by
treating with trimethylaluminum and ammonium chlo-
ride in refluxing toluene.14 When the thiomethoxide
addition was performed at room temperature, mixtures
of nitro and sulfone displacement products were
observed.

Compounds 9, 11, 12, 34, and 35 were synthesized
according to Scheme 2. The diazonium salt of amine
3915 was treated with sulfur dioxide in the presence of
cupric chloride to give the sulfonyl chloride 40.16 Sulfo-
nyl chloride 40 was reduced with sodium sulfite to give
the sulfinate 41.17 Addition of 41 to 5,7-dihalo-benz-
imidazole (42) afforded the sulfone 43.18 Sulfone 43
was reduced with sodium dithionite to 44, which upon
heating with formic acid gave the benzimidazole 45.
Benzimidazole 45 was directly converted to the amidine
to give compound 9. Alkylation of 45 with the appropri-
ate alkylhalide to give the regioisomers 46 and 47, fol-
lowed by amidination, gave compounds 11, 12, 34,
and 35. To overcome the poor yields associated with this
method of benzimidazole synthesis, an alternative route
(Scheme 3) was also pursued.

The sulfinate 48 (R2 = Br) was obtained by converting
the corresponding sulfonamide19 to the sulfonyl chloride
by treating with chlorosulfonic acid,19 followed by
reduction with sodium sulfite. Sulfinate 48 (R2 = H)
was obtained by reducing the commercially available
4-acetylamino-3-nitrobenzenesulfonyl chloride, fol-
lowed by hydrolysis of the acetamide. Addition of 48
to the thiophene 36 gave a mixture of 49 and 50. Thio-
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methoxide addition occurs selectively at the 5-position
of both 49 and 50 to give compound 51.

Reduction of the nitro group followed by heating in for-
mic acid provided the benzimidazole 52.

Benzimidazole 52 (R2 = Br) was converted to the corre-
sponding amidine and BOC-protected to provide a com-
mon scaffold that was alkylated with the respective
alkylhalide and deprotected to provide compounds 15–
20 and 23–30. Benzimidazole 52 (R2 = H) was alkylated
with benzylbromide and converted to the amidine
directly to give compounds 31 and 32.
Compounds 14, 21, 22, and 33 were regioselectively
accessed (Scheme 4) starting from intermediate 51.
Compound 51 was diazotized and halogenated to give
compound 54. Displacement of the halogen with an
appropriate amine followed by reduction and cycliza-
tion in formic acid gave the benzimidazole 55. Com-
pound 45 (R2 = Br) was treated with benzeneboronic
acid in the presence of copper(II)acetate to provide
the N-phenyl derivative,20 which was treated with
trimethylaluminum and ammonium chloride in reflux-
ing toluene to give compound 13. Arylation occurs
regioselectively at the less hindered nitrogen of the
benzimidazole.
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Table 2 lists the Ki values for the inhibition of C1s.21 N-
methylation at either nitrogen (11,12) has minimal effect
on affinity, suggesting that these nitrogens are not in-
volved in a hydrogen bond. Interestingly, when R2 is
bromine the effect of N-alkylmethyl and N-arylmethyl
substitution on affinity varies depending on the nitrogen
that is substituted.

When the N-benzyl substituent is on the nitrogen prox-
imal to the bromine (20), there is a 13-fold improvement
in activity, whereas similar substitution at the distal
nitrogen (19) provides no enhancement in activity. This
pattern holds true for all the N-alkylmethyl and N-
arylmethyl substituents, where compounds 16, 18, 20,
24, 26, 28, and 30 provide 6- to 40-fold improvement
Table 2. SAR of the benzimidazole series

S

SMeS
O O

N

NH2HN

R2

N
R1

R

A B

Compound R2 R1

11 Br Me

12 Br Me

13 Br Ph

14 Br Ph

15 Br Allyl

16 Br Allyl

17 Br

18 Br

19 Br Benzyl

20 Br Benzyl

21 Br (R)-a-Me-B

22 Br (S)-a-Me-B

23 Br 2,6-Dichlor

24 Br 2,6-Dichlor

25 Br 2,6-Difluoro

26 Br 2,6-Difluoro

27 Br 2,5-Difluoro

28 Br 2,5-Difluoro

29 Br 2-Fluoro-5-

30 Br 2-Fluoro-5-

31 H Benzyl

32 H Benzyl

33 H 2-Pyridylme

34 Cl 2,6-Difluoro

35 Cl 2,6-Difluoro
in activity, while the corresponding regioisomers 15,
17, 19, 23, 25, 27, and 29 show only marginal enhance-
ment in activity. Unfortunately, some of the key pieces
of information required to establish a single plausible
binding model that explains the observed SAR is lack-
ing. Most significantly, a structure of an inhibitor or
substrate complex is not available, and key specificity
determining regions of the available apo structure are
disordered.11 Our modeling studies suggest that bound
inhibitors could be making hydrophobic interactions
with the region of loop 322 that is disordered in the
apo structure.11 Nevertheless, our results suggest that
there is a hydrophobic binding site for the N-alkylmeth-
yl and N-arylmethyl substituents that is proximal to the
bromine. Even though further substitution on the aryl
S

SMeS
O O

N

NH2HN

R2

N

1

C1s inhibition Ki (lM)

A B

0.33

0.40

0.18

0.31

0.21

0.07

0.20

0.05

0.4

0.03

enzyl 0.38

enzyl 0.33

obenzyl 0.16

obenzyl 0.02

benzyl 0.17

benzyl 0.04

benzyl 0.24

benzyl 0.01

nitrobenzyl 0.17

nitrobenzyl 0.03

0.42

0.40

thyl 0.58

benzyl 0.10

benzyl 0.10



Table 3. Protease selectivity for compound 28

uPA tPA FXa Thrombin Plasmin Trypsin

Ki (lM)

>10a >10a 11.4 >15a >13a 1.4

a No inhibition observed at this screening concentration.
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group of the arylmethyl substituents does not provide
useful SAR information, the diminished activity of com-
pounds 21 and 22 suggests that substituents on the
methylene group can prevent the benzyl residue from
achieving a conformation that favors a positive interac-
tion with the hydrophobic binding pocket. The observed
loss of activity when the bromine was substituted with
hydrogen or chlorine (cf. 20–32 and 26–35) suggests that
this residue is contributing to affinity through intermo-
lecular hydrophobic contacts.

In conclusion, lead optimization studies around the aryl-
sulfonylthiophene-2-carboxamidine template has result-
ed in a series of N-benzylbenzimidazoles with good C1s
inhibitory potency and >1000-fold selectivity over uPA
(Table 3). Compound 28 also has good selectivity over
tPA, FXa, thrombin, and plasmin.21
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