Identification, SAR Studies, and X-ray Co-crystallographic Analysis of a Novel Furanopyrimidine Aurora Kinase A Inhibitor

Mohane Selvaraj Coumar, ${ }^{[a]}$ Ming-Tsung Tsai, ${ }^{[a, b]}$ Chang-Ying Chu, ${ }^{[a]}$ Biing-Jiun Uang, ${ }^{[b]}$ WenHsing Lin, ${ }^{[\text {a] }]}$ Chun-Yu Chang, ${ }^{[\text {a] }]}$ Teng-Yuan Chang, ${ }^{[a]}$ Jiun-Shyang Leou, ${ }^{[a]}$ Chi-Huang Teng, ${ }^{[a]}$ Yu-Sheng Chao, ${ }^{[a]}$ and Hsing-Pang Hsieh* ${ }^{[a]}$

Abstract

Herein we reveal a simple method for the identification of novel Aurora kinase A inhibitors through substructure searching of an in-house compound library to select compounds for testing. A hydrazone fragment conferring Aurora kinase activity and heterocyclic rings most frequently reported in kinase inhibitors were used as substructure queries to filter the inhouse compound library collection prior to testing. Five new series of Aurora kinase inhibitors were identified through this

strategy, with IC_{50} values ranging from $\sim 300 \mathrm{~nm}$ to $\sim 15 \mu \mathrm{~m}$, by testing only 133 compounds from a database of ~ 125000 compounds. Structure-activity relationship studies and X-ray co-crystallographic analysis of the most potent compound, a furanopyrimidine derivative with an IC_{50} value of 309 nm toward Aurora kinase A, were carried out. The knowledge gained through these studies could help in the future design of potent Aurora kinase inhibitors.

Introduction

The identification of a lead molecule for any given molecular target is an important step in drug discovery programs. Many researchers traditionally use high-throughput screening (HTS) of large compound libraries to identify a lead compound for drug development. However, HTS of large libraries is a timeand resource-consuming process, so for the work presented herein, a faster and more economical knowledge-based approach was used to selectively screen an in-house HTS library consisting of 125000 compounds.

Protein kinases are second only to G-protein-coupled receptors as the most sought-after drug targets, and account for $20-30 \%$ of all drug discovery efforts. ${ }^{[1]}$ Currently more than 500 human protein kinases have been identified. Protein kinases catalyze the transfer of a phosphate group from adenosine triphosphate (ATP) to a tyrosine or serine/threonine residue of the given substrate protein. ${ }^{[2,3]}$ The phosphorylated substrate protein is thus activated for the particular role it plays among various cell-signaling processes; thus, protein kinases act as switches for many cell-signaling processes that regulate cell proliferation and differentiation. Small molecules designed to act as ATP-competitive inhibitors could disrupt protein kinase activity, thereby controlling the cell-signaling process, which is aberrant in many disease states. ${ }^{[3]}$ In particular, aberrant protein kinase activity is linked to the development, progression, and prognosis of various cancers; this has prompted the development of small-molecule inhibitors that target such aberrant protein kinase activity. For example, Bcr-Abl activity is blocked by Imatinib, which is used for the treatment of chronic myelogenous leukemia (CML) and gastrointestinal stromal tumors (GISTs); EGFR kinase activity is inhibited by Gefitinib, which is
used in the treatment of non-small-cell lung cancer (NSCLC). ${ }^{[4,5]}$ Because of the successful launch of eight small-molecule inhibitors that target protein kinases for various cancer therapies (Figure 1), and given that many inhibitors are currently at various stages of clinical trials, the development of protein kinase inhibitors has taken center stage.

All protein kinases for which structural information is so far available adopt the same fold, with N - and C-terminal lobes connected through a short strand of amino acids, referred to as the hinge region. ATP binds to the cleft formed between the two lobes and forms hydrogen bonds with residues of the hinge region. ${ }^{[6]}$ Most of the kinase inhibitors that have been developed, or are under development, are ATP-competitive in-
[a] Dr. M. S. Coumar, ${ }^{+}$M.-T. Tsai, ${ }^{+}$Dr. C.-Y. Chu, Dr. W.-H. Lin, C.-Y. Chang, T.-Y. Chang, J.-S. Leou, Dr. C.-H. Teng, J.-S. Wu, M.-Y. Fang, C.-H. Chen, Dr. J. T.-A. Hsu, Dr. S.-Y. Wu, Dr. Y.-S. Chao, Dr. H.-P. Hsieh
Division of Biotechnology and Pharmaceutical Research
National Health Research Institutes
35 Keyan Road, Zhunan, Miaoli County 350, Taiwan (Republic of China) Fax: (+ 886) 37-586-456
E-mail:hphsieh@nhri.org.tw
[b] M.-T. Tsai, ${ }^{+}$Dr. B.-J. Uang
Department of Chemistry, National Tsing Hua University
101, Sect. 2, Guangfu Road, Hsinchu 300, Taiwan (Republic of China)
[c] Dr. J. T.-A. Hsu
Department of Biological Science and Technology
National Chiao Tung University
1001 University Road, Hsinchu 300, Taiwan (Republic of China)
[${ }^{+}$] These authors contributed equally to this work.
\square Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/cmdc. 200900339.

Figure 1. Eight kinase inhibitors marketed for the treatment of cancer: Imatinib (Novartis, targets Bcr-Abl and cKIT, approved for CML and GISTs); Gefitinib (AstraZeneca, targets EGFR, approved for NSCLC); Erlotinib (Roche, targets EGFR, approved for NSCLC); Lapatinib (GSK, targets EFGR and HER2, approved for breast cancer); Dasatinib (BMS, targets Bcr-Abl and Src, approved for CML); Sunitinib (Pfizer, targets Raf, VEGFR, KIT, and FLT3, approved for renal cell carcinoma (RCC) and GIST); Sorafenib (Bayer, targets Raf, VEGFR-2, VEGFR-3, PDGFR, cKIT, FLT3, and RET, approved for hepatocellular carcinoma (HCC)); and Nilotinib (Novartis, targets Bcr-Abl, approved for CML). Black dots indicate the heterocyclic ring that interacts with the kinase hinge region through one or more hydrogen bonds, as shown by X -ray co-crystallographic studies.
macophore. All the inhibitors developed so far have a hinge binding motif and establish at least one hydrogen bond between the inhibitor and protein kinase. Most of this hydrogen bond acceptor and donor interaction is provided by the heterocyclic portion of the inhibitors (Figure 1). ${ }^{[7-10]}$ In addition to the ATP binding pocket, protein kinases have other hydrophobic and solvent-exposed hydrophilic regions that are not occupied by ATP. The size, shape, and amino acid composition of these regions differ markedly between protein kinases, and interaction between these regions and the inhibitor determines the selectivity of the particular inhibitor for the kinase in question. ${ }^{[7]}$
Aurora kinase isoforms A, B, and C belong to the serine/ threonine subclass of protein kinases and are key regulators of mitosis required for genomic stability. The levels of both Aurora
hibitors in that they bind to the ATP binding pocket of the kinase, mimicking the ATP-kinase interaction (Figure 2). As evidenced from X-ray co-crystal structure data, these kinase inhibitors have specific hydrogen bond acceptor and donor components that interact with the hinge region formed between the two terminal lobes of the kinase; they mimic the hydrogen bonds formed between the kinase and the adenine ring of ATP. This interaction between the kinase hinge region and the inhibitors is essential and is part of the kinase inhibitor phar-

Figure 2. For clear visualization of the protein-ligand interaction, the full structures of ATP and Gefitinib are abbreviated with R^{1} and R^{2} groups. a) Protein kinase-ATP binding through hydrogen bond acceptor and donor elements between the adenine ring of ATP and the kinase hinge region amino acids; ATP binds in the cleft formed between the two lobes of the kinase. b) Typical protein kinase-inhibitor (in this case, EGFR-Gefitinib) binding through hydrogen bond acceptor and donor elements; Gefitinib binds in the cleft formed between the two lobes of the kinase, thereby blocking ATP access to the catalytic site.

Figure 3. Aurora kinase inhibitors at various stages of clinical trials. MK-0457/VX-680 (phase II discontinued, pan-selective: Aurora A, B, C); PHA-739358 (phase II, pan-selective); SNS-314 (phase I, pan-selective); AZD1152 (phase II, Aurora B selective); MLN8054 (phase I discontinued, Aurora A selective); MLN8237 (phase I, Aurora A selective); CYC116 (phase I, pan-selective); PF-3814735 (phase I, Aurora A, B selective); GSK1070916 (phase I, Aurora B, C selective); AT-9283 (phase I/II, Aurora A, B); ENMD 2076 (phase I, Aurora A); R-763 (phase I); VX-689/MK-5108 (phase I). Black dots indicate the heterocyclic ring that interacts with the kinase hinge region through one or more hydrogen bonds, as shown by X-ray co-crystallographic studies.

Herein we present our substructure search strategy to selectively screen a compound library to identify several Aurora kinase inhibitors, including a novel furanopyrimidine inhibitor, compound 8. Structure-activity relationship (SAR) exploration of the hit and X-ray co-crystallographic analysis of the hit in complex with Aurora kinase A are also detailed.

Results and Discussion

Substructure searching

In our effort to develop novel Aurora kinase inhibitors, we recently reported the identification of pyrazole hydrazone 1 as an Aurora kinase inhibitor through virtual screening, and further reported our lead optimization efforts. ${ }^{[21]}$ X-ray crystallographic studies of 1 and related analogues revealed that the pyrazole ring N and NH groups, along with the hydrazone linker NH group, form the essential hydrogen bond interaction with the hinge region amino acids of Aurora kinase. We also identified compound 2, which has a different heterocycle (tetrazole) along with the hydrazone linker, that possesses Aurora kinase inhibitory activity. As it is well known from the vast amount of published data available for kinase inhibitors that certain structural motifs are shared among many of the inhibitors developed, we envisaged that structurally diverse analogues incorporating a hydrazone functionality would bind

Aurora kinases. To test this possibility, we searched our inhouse HTS library of ~ 125000 compounds for a hydrazone fragment by using the substructure query build-in available in ISIS/Base. A total of 1250 compounds containing a hydrazone fragment were retrieved from the HTS library database. Visual examination of all of them revealed that this could be further divided into more than 15 subgroups (~ 500 compounds) based on the heterocyclic fragment $\left(R^{1}\right)$ attached to the hydrazone functionality (Scheme 1). Compounds without heterocyclic components were omitted, as the kinase hinge binding motif is essential for efficacy.

One or two compounds from each subgroup were initially assayed for Aurora kinase inhibitory activity. The selected compounds were representative of that subgroup, with the R^{2} group attached to the hydrazone/benzylidine portion containing either an indole, a dimethoxy- or monomethoxyphenyl group if available, as these groups in the benzylidine part of pyrazole series showed the best activity levels. ${ }^{[21]}$ Compounds were initially screened for Aurora kinase inhibition at two concentrations: 50 and $10 \mu \mathrm{~m}$. Once compounds with inhibitory activity were identified, all other compounds with the same heterocyclic (R^{1}) core structures were also tested for activity. A total of 96 compounds were assessed, out of which four different subgroup compounds possessed $>30 \%$ Aurora kinase inhibition at $10 \mu \mathrm{M}$ (table 1s, Supporting Information), and 3-6 are the most active compounds in each subgroup. Scheme 1

| Select a few compounds kinase A assay

Scheme 1. Knowledge-based rational screening strategy applied to the HTS compound library, leading to the identification of new Aurora kinase A inhibitors 3-6 containing a hydrazone fragment. See the text for details of the screening strategy.
and develop novel kinase inhibitors. ${ }^{[22-25]}$ A recent publication reports the analysis of kinase inhibitor structures (20000 compounds), and the authors identified "kinase-privileged fragments", such as the bisarylanilines, as the most common structural feature of protein kinase inhibitors. ${ }^{[9]}$ They also identified several heterocyclic ring systems such as pyridines, pyrimidines, pyrazoles, quinazolines, and indoles to be present with greater frequency in kinase inhibitor scaffolds than in non-kinase-inhibiting small molecules that all contain one or more heteroatoms such as N, S, or O. ${ }^{[9]}$

Accordingly, we filtered our inhouse compound library using the following criteria: heterocyclic ring, 5 - or 6-membered, mono- or polycyclic containing at least one N, O, or S atom (Scheme 2, Substructure query1). With this filter we generated
gives a schematic overview of the knowledge-based screening process and the most potent Aurora kinase inhibitors 3-6 with a hydrazone fragment identified through this strategy.
Thienopyrimidine compound 3 (Aurora kinase A $\mathrm{IC}_{50}=$ $1.35 \mu \mathrm{M}$) showed the highest potency, which is at least an order of magnitude more potent than the initial leads 1 and 2, upon which the substructure search was executed. The next most active compound is tetrahydroindazole core compound 4, which is at least threefold more active than 1 . Compounds 5 and 6 -with the benzimidazole and pyrazole cores, respectively-possess ranges of activity similar to that of 1 . The most active compounds in each of the four series identified contain a 3-substitued indole ring in the hydrazone part as the R^{2} group, which was also found to be the most preferred substituent in the pyrazole series we investigated previously. ${ }^{[21]}$

With the successful identification of several new Aurora kinase inhibitor lead compounds through a simple substructure search protocol based on two virtual screening leads 1 and 2 , we were interested to know if this strategy could be used to identify a diverse set of compounds without a hydrazone fragment. Several research groups have realized a commonality in protein kinase inhibitors and have found general structural features most common in them; they have used this information to develop various expert systems (kinase-targeted libraries, virtual screening, etc.) that could be employed to identify

Scheme 2. Knowledge-based rational screening strategy applied to the HTS compound library, leading to the identification of novel furanopyrimidine Aurora kinase A inhibitors 7 and 8 . See the text for details of the screening strategy.
which two rings, A and B, are linked through the hydrazone group; next we assumed that replacement of the hydrazone linker with a linker of two to three methylene units would provide a similar type of molecular arrangement necessary for binding to Aurora kinase. With this assumption, we searched the kinase-biased library of ~ 3000 compounds using substructure query-2, in which ring B could be either 5 - or 6-membered aromatic or heteroaromatic. Based on these criteria, 62 compounds were retrieved from the kinase-biased library. Visual inspection of all candidates allowed their division into 10 major groups depending on the heterocyclic ring system (A) present. A total of 21 compounds (figure 1s, Supporting Information) were selected from this set and were submitted to the Aurora kinase assay. This led to the identification of compound 7 as an Aurora kinase A inhibitor, which has a furanopyrimidine core and an IC_{50} value of $3.8 \mu \mathrm{~m}$. With 7 thus identified as an Aurora kinase A inhibitor, compounds with a furanopyrimidine core were retrieved (16 compounds) from the kinase-biased library through substructure query-3 and tested for Aurora kinase inhibition. Most of the tested compounds exhibited varying levels of kinase inhibition (table 2s, Supporting Information); compound 8 was the most potent, with an $I C_{50}$ value of 309 nm (Scheme 2).

Four of the five Aurora kinase inhibitors identified in this study, compounds 3-6, have never been reported as kinase inhibitors. However, the most active compound 8 identified in this study has been reported earlier as a weak inhibitor of Chk1 kinase $\left(\mathrm{IC}_{50} \sim 26 \mu \mathrm{~m}\right)$. ${ }^{[26]}$ It is well known that many kinase inhibitors are active toward more than one kinase due to the close similarity between ATP binding pockets, as discussed above. We were therefore interested to know whether the new compounds identified in this study are selective for Aurora kinase inhibition. For this purpose, we screened 3-6 and 8 at a concentration of $10 \mu \mathrm{~m}$ for inhibition of two tyrosine kinases: epidermal growth factor receptor (EGFR) kinase and FMS-like tyrosine kinase 3 (FLT3), and the results are shown in table 3 s of the Supporting Information. These compounds were found to inhibit EGFR kinase by $<15 \%$; however, they inhibited FLT3, with 4 and 6 showing $\sim 70 \%$ inhibition at $10 \mu \mathrm{~m}$. FLT3 is inhibited by most Aurora kinase inhibitors reported, due to the high degree of similarity in their binding pockets. ${ }^{[16]}$ Inhibition of FLT3 might be beneficial, as FLT3 is also a target for acute myelogenous leukemia (AML). ${ }^{[27]}$ Our present results, along with previ-
ous reports, ${ }^{[26]}$ suggest that the furanopyrimidine hit 8 is a selective Aurora kinase A inhibitor over EGFR kinase, Chk1, PKA, and CDK1, with additional inhibition at FLT3. This prompted us to further explore the potential of the furanopyrimidine series for drug development.

SAR study of furanopyrimidine 8

Structural optimization of the hit 8 was initiated to understand the structure-activity relationship (SAR) in this novel series. Compounds 8-24 were initially synthesized, and their ability to inhibit Aurora kinase A at a concentration of $10 \mu \mathrm{~m}$ was determined; the results are listed in Table 1 and are expressed as percentage inhibition. In addition, for those compounds showing $>90 \%$ inhibition, IC_{50} values were also determined. Initial attempts were made to determine the importance of the two phenyl rings on the furan ring. Removal of either phenyl ring led to loss of activity for compounds 9 and 10. In particular, the phenyl group at the 2-position of the furan ring is more essential for maintaining activity than the 3-position phenyl group, as compound 10 showed complete loss of activity (9: 76.6% inhibition at $50 \mu \mathrm{M}$; 10: 35.2% inhibition at $50 \mu \mathrm{~m}$). Moreover, replacement of these phenyl groups by a bromine atom results in maintenance of activity, as shown by compound 11, which retains the phenyl group at the 2-position of the furan ring, whereas compound 12 is inactive. This clearly demonstrates the importance of the phenyl ring at the 2 -position of the furan ring for interacting with Aurora kinase. Having identified that the 3-position phenyl ring can be re-

Compd	R^{1}		Inhibition [\%] ${ }^{[a, b]}$	$1 C_{50}[\mathrm{~nm}]^{[b]}$
8	Ph	Ph	98.3	309
9	H	Ph	17.3	-
10	Ph	H	0.0	-
11	Br	Ph	90.8	751
12	Ph	Br	36.0	-
13	CH_{3}	Ph	71.0	-
14	$\mathrm{C}_{2} \mathrm{H}_{5}$	Ph	95.8	709
15	$\mathrm{C}=\mathrm{CH}$	Ph	89.6	-
16	4-methoxyphenyl	Ph	68.5	-
17	4-nitrophenyl	Ph	85.7	-
18	4-hydroxyphenyl	Ph	96.1	245
19	4-acetamidophenyl	Ph	95.7	272
20	4-methoxyphenyl	4-methoxyphenyl	93.3	639
21	4-hydroxyphenyl	4-hydroxyphenyl	95.6	159
22		Ph	83.7	-
23		Ph	94.7	732
24			99.7	619

[a] Determined at a compound concentration of $10 \mu \mathrm{~m}$. [b] Values are expressed as the mean of at least two independent determinations and are within $\pm 15 \%$.
placed by a bromo group with only a 2.5 -fold decrease in activity, we further explored other substitutions at this position. Introduction of alkyl groups such as methyl (compound 13) and ethyl (compound 14), or an alkynyl group such as acetylene (compound 15), however, did not improve activity relative to 8.

As only the phenyl group substitution at the 3-position of the furan ring showed maximum activity, and replacement with other groups had thus far led to loss of activity, exploration of the effect of substitution on this phenyl ring was initiated. Thus, the introduction of a 4-methoxy (compound 16) or 4-nitro (compound 17) group led to a slight decrease in activity, whereas the introduction of a 4-hydroxy (compound 18) or 4-acetamido (compound 19) group resulted in retention of Aurora kinase inhibition levels. We next introduced 4-methoxy (compound 20) and 4-hydroxy (compound 21) groups in both phenyl rings and found that compound 21, with two hydroxy groups, has a twofold higher potency than unsubstituted compound 8. However, replacement of either one or both phenyl groups with a heterocyclic ring such as pyridine (compound 22) or furan (compounds 23 and 24) did not improve activity relative to 8.

We next focused our efforts on the effect of replacing the furan ring with thiophene (compound 25) or pyrrole (compound 27) on Aurora kinase inhibition (Table 2). Replacing the oxygen atom with sulfur decreased the activity of $\mathbf{2 5}$, while replacement with an NH group enhanced activity threefold for 27 relative to $\mathbf{8}$. However, the benzyl-protected pyrrole derivative 26 lost activity completely, demonstrating the crucial role of the heteroatom in the bicyclic ring core structure in maintaining Aurora kinase inhibition.

The most potent Aurora kinase A inhibitor identified in this study, compound 27, was evaluated for the ability to inhibit
Table 2. Effect of replacing the furan ring of 8 on Aurora kinase inhibi-
tion.
[a] Determined at a compound concentration of 10 m μ. [b] Values are ex-
pressed as the mean of at least two independent determinations and are
within $\pm 15 \%$.

Aurora kinase isoforms B and C, as well as the structurally related FLT3 kinase; the results are listed in tables $3 s$ and $4 s$ of the Supporting Information. Compound 27 inhibited Aurora kinase A more strongly than either the B or C isoforms, and also showed FLT3 kinase inhibition. As it has been established that both Aurora kinase isoform-selective as well as isoform-nonselective inhibitors possess anticancer activity in preclinical animal models and are also at various stages in clinical trials, ${ }^{[16]}$ the new Aurora kinase inhibitors disclosed herein warrant further study.

Synthesis

Compounds $\mathbf{8}, \mathbf{2 0}$, and $\mathbf{2 4}$, with symmetric substitution on the furan ring, were synthesized from the appropriate benzoins through modification of published procedures. ${ }^{[26,28,29]}$ In brief, cyclization of the appropriate benzoin compounds 28 a-c with malononitrile under basic conditions afforded the required symmetrically substituted furans 29 a-c, which were cyclized and chlorinated to establish the bicyclic furo[2,3-d]pyrimidine ring intermediates 31 a-c. Nucleophilic reaction with 2 -aminoethanol gave the desired compounds 8, 20, and 24. The 4-hydroxy derivative 21 was prepared from the 4-methoxy derivative 20 by demethylation using boron tribromide (Scheme 3).

Scheme 3. Reagents and conditions: a) malononitrile, DMF, $\mathrm{Et}_{2} \mathrm{NH}, \mathrm{RT}, 16 \mathrm{~h}$, $40-67 \%$; b) $\mathrm{HCO}_{2} \mathrm{H}, \mathrm{Ac}_{2} \mathrm{O}, 0^{\circ} \mathrm{C} \rightarrow$ reflux, 16 h ; c) POCl_{3}, neat, $70^{\circ} \mathrm{C}, 3 \mathrm{~h}, 41-$ 60% for two steps; d) 2-aminoethanol, $n \mathrm{BuOH}, \mathrm{MWI}, 175^{\circ} \mathrm{C}, 1 \mathrm{~h}, 63-94 \%$; e) $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 2 \mathrm{~h}, 54 \%$.

For the preparation of compounds 9 and 10 with a bromo substituent at either the 2- or 3-position of the furan ring, a modified reported procedure was used. ${ }^{[30,31]} 2$-Bromoacetophenone (32) or 2-hydroxyacetophenone (33) were condensed with malononitrile, followed by cyclization to afford the furan intermediates $\mathbf{3 4 a , b}$. A reaction sequence similar to that for the synthesis of compound 8 was then followed to construct the bicyclic furanopyrimidine system to give the desired compounds 9 and 10 (Scheme 4).

For the preparation of compounds 11-19, 22, and 23, with various substitutions at the 3-position of the furan ring, the intermediates $36 \mathbf{a}, \mathbf{b}$ were brominated using N-bromosuccinimide to give $37 a, b$, which could be converted into 11 and 12 by reaction with 2 -aminoethanol. Attempts to carry out Suzuki coupling of 37 a with appropriately substituted boronic acids

Scheme 4. Reagents and conditions: a) malononitrile, DMF, $\mathrm{Et}_{2} \mathrm{NH}, \mathrm{RT}, 16 \mathrm{~h}$, $38-71 \%$; b) $\mathrm{HCO}_{2} \mathrm{H}, \mathrm{Ac}_{2} \mathrm{O}, 0^{\circ} \mathrm{C} \rightarrow$ reflux, 8 h ; c) POCl_{3}, neat, $70^{\circ} \mathrm{C}, 3 \mathrm{~h}, 37-$ 75% for two steps; d) 2-aminoethanol, $n \mathrm{BuOH}, \mathrm{MWI}, 175^{\circ} \mathrm{C}, 1 \mathrm{~h}, 64-80 \%$.
failed; however, Suzuki coupling was carried out with amino alcohol 11 to give compounds 16-19, 22, and 23. An acetylene group was introduced at the 3 -position of the furan ring through Sonagashira coupling of trimethylsilylacetylene with 11, followed by TMS deprotection to give acetylene 15. Reduction of the triple bond of $\mathbf{1 5}$ gave the ethyl derivative 14. For the preparation of the methyl derivative 13, TBDMS-protected 38 was cross-coupled with methyl zinc chloride using Negishi coupling ${ }^{[32]}$ (Scheme 5).

Scheme 5. Reagents and conditions: a) NBS, DMF, RT, 3-18 h, 68-85\%; b) $\mathrm{ArB}(\mathrm{OH})_{2}, \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, dioxane, $\mathrm{H}_{2} \mathrm{O}, 100^{\circ} \mathrm{C}, 3 \mathrm{~h}, 42-80 \%$; c) $2-$ aminoethanol, $n \mathrm{BuOH}, \mathrm{MWI}, 175^{\circ} \mathrm{C}, 1 \mathrm{~h}, 28-85 \%$; d) TBDMSCI, imidazole, DMF, RT, $1 \mathrm{~h}, 98 \%$; e) 1. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{CH}_{3} \mathrm{ZnCl}$, THF, reflux, $24 \mathrm{~h}, 52 \%$, 2. TBAF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 16 \mathrm{~h}, 95 \%$; f) 1. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiC}=\mathrm{CH}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, \mathrm{Cul}$, DIPEA, DMF, $66^{\circ} \mathrm{C}$, $16 \mathrm{~h}, 57 \%$, $2 . \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{RT}, 16 \mathrm{~h}, 85 \%$ g $\mathrm{PtO}_{2}, \mathrm{H}_{2}$ (1 atm), EtOAc/MeOH, RT, 1 h, 70%.

For the preparation of thienopyrimidine compound 25, a modified Gewald reaction was used. ${ }^{[33]}$ Briefly, deoxybenzoin 39 was condensed with malononitrile and then cyclized in the presence of sulfur to construct the thiophene compound 40 , which could be further elaborated to give $\mathbf{2 5}$, as in the case of 8 (Scheme 6).

Scheme 6. Reagents and conditions: a) $\mathrm{CH}_{2}\left(\mathrm{CN}_{2}\right)_{2}, \mathrm{~S}_{8}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{EtOH}$, reflux, 16 h , 64%; b) $1 . \mathrm{HCO}_{2} \mathrm{H}, \mathrm{Ac}_{2} \mathrm{O}, 0^{\circ} \mathrm{C} \rightarrow$ reflux, $16 \mathrm{~h}, 2 . \mathrm{POCl}_{3}$, neat, $70^{\circ} \mathrm{C}, 3 \mathrm{~h}, 20 \%$ for two steps; c) 2-aminoethanol, nBuOH, reflux, 16 h, 23%.

For the preparation of pyrrolopyrimidine compounds 26 and 27, benzoin (28 a) was condensed with benzylamine, followed by cyclization with malononitrile, resulting in the construction of pyrrole compound $42 .{ }^{[34]}$ Cyclization with formic acid followed by chlorination gave the bicyclic pyrrolopyrimidine compound 44 , which, upon reaction with 2-aminoethanol, afforded 26. As attempts to debenzylate this compound using aluminum trichloride failed, 44 was debenzylated to give 45 , which was treated with 2-aminoethanol to give the desired pyrrolopyrimidine 27 (Scheme 7).

Scheme 7. Reagents and conditions: a) 1. benzylamine, $\mathrm{HCl}, \mathrm{PhCH}_{3}$, reflux, $24 \mathrm{~h}, 72 \%$, 2. $\mathrm{CH}_{2}(\mathrm{CN})_{2}, \mathrm{PhCH}_{3}$, reflux, $24 \mathrm{~h}, 22 \%$; b) $\mathrm{HCO}_{2} \mathrm{H}$, reflux, $6 \mathrm{~h}, 62 \%$; c) POCl_{3}, reflux, $3 \mathrm{~h}, 46 \%$; d) 2-aminoethanol, $n \mathrm{BuOH}$, reflux, $16 \mathrm{~h}, 25-48 \%$; e) $\mathrm{AlCl}_{3}, \mathrm{PhCH}_{3}$, reflux, $2 \mathrm{~h}, 39 \%$.

X-ray co-crystal analysis of the compound 8-Aurora kinase A complex

Concurrent with the above synthetic explorations, we attempted to solve the structure of the co-crystal complex between compound 8 and the Aurora kinase A protein. Co-crystalliza-
tion was carried out as detailed earlier by our research group, ${ }^{[21]}$ by using an Aurora kinase A construct and the complex structure solved by X-ray crystallography with a resolution of $2.35 \AA$. The complex structure (Figure 4) reveals that the hit

Figure 4. X-ray co-crystal complex of compound 8 with Aurora kinase A (PDB ID: 3K5U). Red lines represent hydrogen bonding interactions between the inhibitor and protein, with distances indicated.

8 binds in the region formed between the C- and N -terminal lobes of the protein and occupies the ATP binding pocket of Aurora kinase A. The furanopyrimidine heterocyclic core forms two essential hydrogen bonds with the hinge region amino acid residues (Ala 213 and Glu211) from N6 nitrogen ($3.26 \AA$ Å) and C7 hydrogen ($3.29 \AA$). In addition to these two hydrogen bonds, another hydrogen bond is observed between the hydroxy group and the side chain of Lys 162 ($3.40 \AA \AA$). In addition to the three hydrogen bonds anchoring the molecule to the protein, extensive hydrophobic interactions with the surrounding amino acid residues was observed. The furanopyrimidine core has hydrophobic interactions with Leu139, Val147, Ala 160, and Leu 263. The alkyl chain bearing the hydroxy group undergoes hydrophobic interactions with Leu210. In particular, the two phenyl groups form strong hydrophobic contacts with residues Leu 139, Gly 140, Val 147, Gly 216, and Thr 217. The X-ray co-crystal structure of $\mathbf{8}$ in complex with Chk1 has already been reported. The main difference between the Aurora and Chk1 structures is that the side chain hydroxy group forms an intramolecular hydrogen bond with N8 of the pyrimidine ring in Chk1 and lacks interaction with the Lys residue. ${ }^{[26]}$

As apparent from the above description, the two phenyl groups of compound 8 show extensive hydrophobic contacts. These contacts explain why compounds 9 and 10 , which lack phenyl groups, are inactive, as such hydrophobic interactions are absent in these cases. Moreover, when the phenyl groups
were replaced with other hydrophobic groups, the inhibitory activity was either impaired or retained, with the exception of compound 21, which showed improved activity (Table 1). As replacement of the furan ring with pyrrole (in 27) resulted in a threefold improvement in activity relative to 8 (Table 2), the Xray co-crystal complex with compound 8 was used to gather structural biology insight into the role played by the NH group. The distance between the oxygen atom in the furan ring of 8 and the oxygen atom in the main chain of the kinase residue Ala 213 is $3.15 \AA$. It is possible that upon replacing the oxygen with an NH group, it forms an additional hydrogen bond with the hinge residue, and this may contribute to the improved activity of $\mathbf{2 7}$ over that of $\mathbf{8}$. This can also explain the inactivity of compound $\mathbf{2 6}$, as the bulky N-benzyl group could effect an unfavorable steric clash between ligand and protein. Notably, our attempts to co-crystallize compound 27 with Aurora kinase A in order to gain direct evidence for the interaction between the NH group and the protein failed.

Conclusions

We used preexisting knowledge to select compounds for screening for inhibitory activity toward Aurora kinase A. This enabled us to identify the potent Aurora kinase A inhibitor compound 8, with an IC_{50} value of 309 nm , by sampling only 133 compounds from a library of ~ 125000 compounds. Substructure searching has been used by medicinal chemists to identify analogues of known active core structures, but has not been documented as a stand-alone tool in the identification of a potent compound with activity in the nanomolar range, particularly in the kinase domain. Application of a similar substructure search strategy for inhibitors of other kinases is therefore possible. For example, EGFR kinase inhibitors (e.g., Gefitinib, Erlotinib, and Lapatinib; Figure 1) are known to have an aniline group attached to a hinge-binding heterocyclic core; ${ }^{[7,8,27]}$ this information can be exploited through an appropriate substructure search. The use of specific structural information gained in-house, such as the hydrazone fragment information for Aurora kinase inhibition in our case, could help in the identification of novel inhibitors. Computer-aided virtual screening, the basis of which is substructure/similarity searching, has been shown to effectively decrease the number of compounds sampled to identify potent lead compounds, relative to highthroughput screening of a large library of compounds. However, the use of virtual screening and related technologies depends on the availability of resources such as specialized hardware and software, and also on having personnel with specialized training in computational chemistry. The approach presented herein could be used by organic and medicinal chemists who are involved in optimizing lead compounds in drug discovery projects using simple, everyday chemistry tools such as ISIS/Draw to identify potential hits more effectively, either separately or in conjunction with other hit identification techniques such as virtual screening.
In summary, the novel Aurora kinase A inhibitors 3-8 identified in this study could be used as starting points for the development of novel Aurora kinase inhibitors as anticancer
agents. To aid in this process, the furanopyrimidine compound 8 was co-crystallized with Aurora kinase A, and the key ligandprotein interactions were mapped. This structural biology insight, along with the SAR information revealed herein, could be used in the further design of potent Aurora kinase inhibitors.

Experimental Section

General methods

All commercial chemicals and solvents were reagent grade and were used without further treatment unless otherwise noted. All reactions were carried out under an atmosphere of dry N_{2}. Reactions were monitored by TLC using Merck $60 \mathrm{~F}_{254}$ silica gel glass backed plates ($5 \times 10 \mathrm{~cm}$); zones were detected visually under UV light ($\lambda 254 \mathrm{~nm}$) or by spraying with phosphomolybdic acid reagent (Aldrich) followed by heating at $80^{\circ} \mathrm{C}$. Flash column chromatography was done using silica gel (Merck Kieselgel 60, No. 9385, 230-400 mesh ASTM). 'H NMR spectra were obtained with a Varian Mercury-300 or Varian Mercury-400 spectrometer operating at 300 and 400 MHz , respectively. Chemical shifts (δ) are reported in parts per million (ppm) relative to the solvent peak or $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$. HRMS data were measured with a Finnigan (MAT-95XL) electron impact (EI) mass spectrometer. LC-MS data were measured on an Agilent MSD-1100 electrospray ionization (ESI)-MS-MS system.

Substructure searching

The in-house HTS compound collection was purchased from ChemDiversity, and the structure information was stored in Accord Enterprise Client database 6.0.0. Using the in-build substructure search option, compounds were retrieved as SDF (structure data file) format, then imported into MDL ISIS/Base 2.5 database and further analyzed before selecting compounds for testing.

Chemistry

2-Amino-4,5-diphenylfuran-3-carbonitrile 29 a. Diethylamine $(13.8 \mathrm{~g})$ was added dropwise over a period of 30 min to a mixture of benzoin ($28 \mathrm{a}, 10.0 \mathrm{~g}, 47.17 \mathrm{mmol}$) and malononitrile (3.8 g , $57.58 \mathrm{mmol})$ in DMF $(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ (the reaction temperature should not exceed $40^{\circ} \mathrm{C}$). After the resulting mixture was stirred at room temperature for $16 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added. The resulting precipitate was filtered, washed with a sufficient amount of $\mathrm{H}_{2} \mathrm{O}$, then with n-hexane, and dried. The solid was recrystallized from EtOH to provide a yellowish-brown solid product of 29 a (6.0 g , 49%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.47-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.28-7.18$ (m, 2H), 4.94 (br, 2H); LC-MS (ESI) m/z: $261.1[\mathrm{M}+\mathrm{H}]^{+}$.

4-Chloro-5,6-diphenylfuro[2,3-d]pyrimidine (31a). A mixture of 29 a ($2.0 \mathrm{~g}, 7.69 \mathrm{mmol}$) and formic acid (24 mL) was cooled to $0^{\circ} \mathrm{C}$, and acetic anhydride (24 mL) was added dropwise. The resulting mixture was stirred for 1 h . The reaction mixture was then warmed to $100^{\circ} \mathrm{C}$ and stirred for 16 h . The reaction mixture was cooled, and $\mathrm{H}_{2} \mathrm{O}$ was added (40 mL). The precipitate was filtered and washed thoroughly with $\mathrm{H}_{2} \mathrm{O}$ and n-hexane to give 30 a (2.1 g , 95%). 'H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.94$ ($\mathrm{s}, 1 \mathrm{H}$), $7.56-7.52(\mathrm{~m}, 4 \mathrm{H})$, 7.46-7.43 (m, 3H), 7.32-7.28 (m, 3H), 7.22 (s, 1 H); LC-MS (ESI) m/z: $289.1[\mathrm{M}+\mathrm{H}]^{+}$. A mixture of $30 \mathrm{a}(3.0 \mathrm{~g}, 10.41 \mathrm{mmol})$ and POCl_{3} $(30 \mathrm{~mL})$ was heated at $70^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was cooled in an ice bath and neutralized by the careful addition of a saturated solution of NaHCO_{3}. The resulting mixture was extracted
with EtOAc; the organic layer was concentrated, and the crude compound was purified by silica gel column chromatography using a mixture of n-hexane/EtOAc ($95: 5$) to give white solid 31 a $(2.0 \mathrm{~g}, 63 \%) .{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.77(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.58$ $(\mathrm{m}, 2 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 3 \mathrm{H})$; LC-MS (ESI) m/z: $307.0[\mathrm{M}+\mathrm{H}]^{+}$.
2-(5,6-Diphenylfuro[2,3-d]pyrimidin-4-ylamino)ethanol 8. 4-Chloro-5,6-diphenylfuro[2,3-d]pyrimidine ($31 \mathrm{a}, 100 \mathrm{mg}, 0.33 \mathrm{mmol}$) and 2 -aminoethanol ($33 \mathrm{mg}, 0.54 \mathrm{mmol}$) in n-butanol (1 mL) were sealed in a microwave tube and subjected to microwave irradiation (MWI) at $175^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was concentrated, and the residue was purified by silica gel column chromatography using a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(40: 1)$ to give $8(80 \mathrm{mg}, 74 \%)$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.41(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.48(\mathrm{~m}, 7 \mathrm{H}), 7.30-$ $7.28(\mathrm{~m}, 3 \mathrm{H}), 5.18(\mathrm{br}, 1 \mathrm{H}), 3.74(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.62-3.58(\mathrm{~m}$, $2 \mathrm{H})$: ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.8$ (C), 157.5 (C), 153.0 (C), 147.8 (C), 132.1 (C), 130.1 (CH), 129.9 (CH), 129.4 (CH), 129.0 (CH), $128.8(\mathrm{CH}), 126.6(\mathrm{CH}), 115.1$ (C), $103.7(\mathrm{C}), 77.4(\mathrm{CH}), 63.1\left(\mathrm{CH}_{2}\right)$, $44.9\left(\mathrm{CH}_{2}\right) ;$ HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}: 331.1321$, found 331.1320.

2-Amino-4,5-bis-(4-methoxyphenyl)furan-3-carbonitrile 29 b. Compound 29b was prepared in 40% yield from bis-4-methoxybenzoin (28b) similar to $\mathbf{2 9}$ a. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-$ 6.91 (m, 8H), 6.80 (br, 2H), 3.85 (s, 3H), 3.80 (s, 3H); LC-MS (ESI) $\mathrm{m} / \mathrm{z}: 321.1[\mathrm{M}+\mathrm{H}]^{+}$.

4-Chloro-5,6-bis-(4-methoxyphenyl)furo[2,3-d]pyrimidine 31 b. Compound $\mathbf{3 1 b}$ was prepared in 41% yield over two steps from $\mathbf{2 9 b}$, similar to $\mathbf{3 1 a}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.71$ (s, 1 H), 7.57-7.52 (m, 2H), 7.38-7.33 (m, 2H), 7.04-7.00 (m, 2H), 6.87-6.22 $(\mathrm{m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$; HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{3}: 366.0771$, found: 366.0758.

2-[5,6-Bis-(4-methoxyphenyl)furo[2,3-d]pyrimidin-4-ylamino]e-
thanol 20. Compound 20 was prepared in 94% yield from $\mathbf{3 1 b}$, similar to 8. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.35(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.44$ (m, 2H), 7.41-7.37 (m, 2H), 7.08-7.03 (m, 2H), 6.83-6.79 (m, 2H), $5.14(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{br}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.74$ (t, J=5.1 Hz, 2H), 3.57 (dt, J=5.4, $5.1 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=164.4(\mathrm{C}), 159.8(\mathrm{C}), 159.7(\mathrm{CH}), 157.7(\mathrm{C}), 153.0(\mathrm{C})$, 147.3 (CH), $131.0(\mathrm{CH}), 127.7(\mathrm{CH}), 124.0(\mathrm{CH}), 122.0(\mathrm{C}), 115.0(\mathrm{C})$, $113.9(\mathrm{CH}), 112.7(\mathrm{C}), 103.4(\mathrm{C}), 62.8\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right), 55.2\left(\mathrm{CH}_{3}\right)$, $44.3\left(\mathrm{CH}_{2}\right)$; HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$: 391.1532, found: 391.1536.

5'-Amino-[2,2';3',2']terfuran-4'-carbonitrile 29 c. Compound 29 c was prepared in 67% yield from 28 c , similar to $\mathbf{2 9 a}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.58$ (dd, $J=1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 (dd, $J=$ $1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88$ (dd, $J=3.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=3.6$, $0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.54 (dd, $J=3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.52$ (dd, $J=3.6,1.8 \mathrm{~Hz}$, 1 H); LC-MS (ESI) m/z: $241.0[\mathrm{M}+\mathrm{H}]^{+}$.

4-Chloro-5,6-difuran-2-ylfuro[2,3-d]pyrimidine (31 c). Compound 31 c was prepared in 41% yield over two steps from 29 c, similar to 31 a. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.76$ (s, 1 H), 7.65 (dd, $J=1.8$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (dd, $J=1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (dd, $J=3.6,0.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.76$ (dd, $J=3.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ (dd, $J=3.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.55$ (dd, $J=3.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}$); LC-MS (ESI) m/z: $287.1[\mathrm{M}+\mathrm{H}]^{+}$.

2-(5,6-Difuran-2-ylfuro[2,3-d]pyrimidin-4-ylamino)ethanol 24. Compound 24 was prepared in 63% yield from 31 c , similar to 8 . ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=8.29(\mathrm{~s}, 1 \mathrm{H}), 7.76$ (dd, $J=1.8,0.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69$ (dd, J=1.8, $0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.98 (dd, $J=3.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (dd, $J=3.6,0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.67 (dd, $J=3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64$ (dd, $J=$ $3.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.69(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=$
165.2 (C), 157.8 (C), 154.1 (CH), 144.8 (C), 144.7 (C), 143.5 (CH), $142.3(\mathrm{CH}), 139.6(\mathrm{C}), 112.4(\mathrm{CH}), 104.9(\mathrm{C}), 104.4(\mathrm{C}), 63.0\left(\mathrm{CH}_{2}\right)$, $44.5\left(\mathrm{CH}_{2}\right) ;$ HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}: 311.0906$, found: 311.0924.

2-[5,6-Bis-(4-hydroxyphenyl)furo[2,3-d]pyrimidin-4-ylamino]ethanol (21). BBr_{3} ($0.36 \mathrm{~mL}, 1 \mathrm{~m}$ solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added, while stirring, to a solution of $20(20 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ cooled to $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to reach room temperature while it was stirred for $2 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to the reaction mixture, and the precipitated material was purified by silica gel column chromatography using a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (95:5) to give 21 ($10 \mathrm{mg}, 54 \%)$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=8.22$ (s, 1H), 7.36-7.27 (m, 4H), 6.99-6.94 (m, 2H), 6.72-6.67 (m, 2H), 3.63-3.52 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=165.1$ (C), 159.4 (C), 159.3 (C), 153.8 (CH), 148.9 (C), 132.2 (CH), 129.0 (CH), 123.7 (C), 122.1 (C), $117.6(\mathrm{CH}), 116.4(\mathrm{CH}), 114.2(\mathrm{C}), 104.7(\mathrm{C}), 61.3\left(\mathrm{CH}_{2}\right), 44.0$ $\left(\mathrm{CH}_{2}\right)$; HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}: 363.1219$, found: 363.1230.

2-Amino-5-phenylfuran-3-carbonitrile 34 a. Compound 34 a was prepared in 38% yield from 2-bromoacetophenone (32), similar to $29 \mathrm{a} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}$, 2H), 7.27-7.25 (m, 1H), $6.54(\mathrm{~s}, 1 \mathrm{H}), 4.86$ (br, 2H); LC-MS (ESI) m/z: $185.0[\mathrm{M}+\mathrm{H}]^{+}$.

4-Chloro-6-phenylfuro[2,3-d]pyrimidine 36 a. Compound 36 a was prepared in 75% yield over two steps from 34 a, similar to 31 a. Compound 35 a : 80% yield from 34 a . ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=9.00$ (br, 1 H), 8.36 (br, 1 H$), 7.67(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.38$ (m, 2H), 7.32-7.25 (m, 1H), $7.10(\mathrm{~s}, 1 \mathrm{H})$; LC-MS (ESI) m/z: 235.0 $[M+\mathrm{Na}]^{+}$. Compound 36a: 94\% yield from 35 a . ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=8.75(\mathrm{~s}, 1 \mathrm{H}), 7.93-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.09$ (s, 1H); LC-MS (ESI) m/z: $231.0[\mathrm{M}+\mathrm{H}]^{+}$.

2-(6-Phenylfuro[2,3-d]pyrimidin-4-ylamino)ethanol 9. Compound 9 was prepared in 80% yield from 36 a , similar to 8 . ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=8.21(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.36$ (m, 3 H), 7.19 ($\mathrm{s}, 1 \mathrm{H}), 3.81-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.68(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=166.6$ (C), 159.1 (C), 154.3 (CH), 153.3 (C), $130.7(\mathrm{C}), 130.0(\mathrm{CH} \times 2), 125.5(\mathrm{CH}), 104.6(\mathrm{C}), 99.0(\mathrm{CH}), 61.7\left(\mathrm{CH}_{2}\right)$, $44.6\left(\mathrm{CH}_{2}\right)$; HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}: 255.1008$, found: 255.0993

2-Amino-4-phenylfuran-3-carbonitrile $\mathbf{3 4 b}$. Compound $\mathbf{3 4 b}$ was prepared in 71% yield from 2-hydroxyacetophenone (33), similar to 29 a . ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.30$ (m, 3H), 6.98 (s, 1H), 4.92 (br, 2H); LC-MS (ESI) m/z: 207.0 $[M+\mathrm{Na}]^{+}$.

4-Chloro-5-phenylfuro[2,3-d]pyrimidine 36 b . Compound 36 b was prepared in 37% yield over two steps from $\mathbf{3 4 b}$, similar to $31 \mathrm{a} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.81$ (s, 1 H), 7.77 (s, 1 H), $7.56-$ 7.47 (m, 5H); HRMS (EI): m/z [M] ${ }^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}: 230.0247$, found: 230.0249.

2-(5-Phenylfuro[2,3-d]pyrimidin-4-ylamino)ethanol 10. Compound 10 was prepared in 64% yield from 36 b , similar to 8 . ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=8.29(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.43$ $(\mathrm{m}, 5 \mathrm{H}), 3.70-3.61(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=167.4$ (C), 159.4 (C), 154.6 (CH), 139.4 (CH), 132.2 (C), $130.5(\mathrm{CH}), 129.6$ $(\mathrm{CH} \times 2), 122.6(\mathrm{C}), 101.3(\mathrm{C}), 61.2\left(\mathrm{CH}_{2}\right), 44.1\left(\mathrm{CH}_{2}\right) ; \mathrm{HRMS}(\mathrm{EI}): m / z$ $[M]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: 255.1008, found: 255.1008.

5-Bromo-4-chloro-6-phenylfuro[2,3-d]pyrimidine 37 a. N-Bromosuccinimide $(1.16 \mathrm{~g}, 6.50 \mathrm{mmol})$ was added portionwise to 4 -chloro-6-phenylfuro[2,3-d]pyrimidine ($36 \mathrm{a}, 1.0 \mathrm{~g}, 4.33 \mathrm{mmol}$) in

20 mL DMF. After the resulting mixture was stirred at room temperature for $3 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added. The resulting precipitate was filtered and washed with $\mathrm{H}_{2} \mathrm{O}$. The crude compound was purified by silica gel column chromatography using a mixture of EtOAc/n-hexane (1:10), to provide 37 a ($1.14 \mathrm{~g}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.75$ (s, 1 H), 8.20-8.16 (m, 2H), 7.55-7.51 (m, 3 H); LC-MS (ESI) m/z: $308.9[\mathrm{M}+\mathrm{H}]^{+}, 310.9[\mathrm{M}+2+\mathrm{H}]^{+}$.

2-(5-Bromo-6-phenylfuro[2,3-d]pyrimidin-4-ylamino)ethanol 11. Compound 11 was prepared in 85% yield from 37 a, similar to 8. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.36(\mathrm{~s}, 1 \mathrm{H}), 8.08-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.52-$ 7.40 (m, 3H), 6.53 (br, 1 H$), 3.94-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.54$ (br, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.0(\mathrm{C}), 157.7(\mathrm{C}), 154.3(\mathrm{CH}), 147.0$ (C), $129.5(\mathrm{CH}), 128.7(\mathrm{CH}), 128.3(\mathrm{C}), 126.6(\mathrm{CH}), 102.7(\mathrm{C}), 88.8(\mathrm{C})$, $62.8\left(\mathrm{CH}_{2}\right), 44.3\left(\mathrm{CH}_{2}\right)$; HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{O}_{2}$: 333.0113, found: 333.0107.

6-Bromo-4-chloro-5-phenylfuro[2,3-d]pyrimidine 37 b . Compound 37 b was prepared in 68% yield from $\mathbf{3 6 b}$, similar to 37 a. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.34(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 5 \mathrm{H})$; HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{BrClN}_{2} \mathrm{O}: 307.9352$, found: 307.9368 .

2-(6-Bromo-5-phenylfuro[2,3-d]pyrimidin-4-ylamino)ethanol 12. Compound 12 was prepared in 28% yield from $\mathbf{3 7 b}$, similar to 8. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=8.28(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 5 \mathrm{H})$, 3.65-3.58 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=167.1$ (C), 158.1 (C), 154.7 (CH), 131.1 (C), $130.5(\mathrm{CH} \times 2), 130.2(\mathrm{CH}), 124.0(\mathrm{C}), 121.0$ (C), 102.9 (C), $61.1\left(\mathrm{CH}_{2}\right), 44.1\left(\mathrm{CH}_{2}\right)$; HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrN}_{5} \mathrm{O}: 333.0113$, found: 333.0116 .
(5-Bromo-6-phenylfuro[2,3-d]pyrimidin-4-yl)-[2-(tert-butyldimethylsilanyloxy)ethyl]amine 38 . Imidazole ($0.51 \mathrm{~g}, 7.50 \mathrm{mmol}$) and tert-butyldimethylsilyl chloride (TBDMSCl, $0.54 \mathrm{~g}, 3.60 \mathrm{mmol})$ were added to a solution of $11(1.0 \mathrm{~g}, 3.00 \mathrm{mmol})$ in DMF (20 mL) at room temperature and stirred for $1 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was added to the reaction mixture, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the organic layer was separated, washed with brine, and concentrated under vacuum. The residue obtained was purified by silica gel column chromatography using a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(30: 1)$ to give 38 ($1.31 \mathrm{~g}, 98 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.38(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.07$ $(\mathrm{m}, 2 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 3 \mathrm{H}), 6.60(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{t}, \mathrm{J}=$ $5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{q}, \mathrm{J}=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H})$; HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{BrN}_{3} \mathrm{OSi}$: 447.0978, found: 447.0996.

2-(5-Methyl-6-phenylfuro[2,3- d]pyrimidin-4-ylamino)ethanol 13. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(35 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{ZnCl}(0.9 \mathrm{~mL}, 2 \mathrm{~m}$ solution in THF) were added to a solution of 38 ($140 \mathrm{mg}, 0.30 \mathrm{mmol}$) in dry THF (5 mL) and held at reflux for $24 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was added to the reaction mixture, which was extracted with EtOAc; the organic layer was separated, washed with brine, and concentrated under vacuum. The residue obtained was purified by silica gel column chromatography using a mixture of n-hexane/EtOAc (4:1) to give [2-(tert-butyldimethylsilanyloxy)ethyl]-(5-methyl-6-phenylfuro[2,3-d]pyrimidin-4-yl)amine ($60 \mathrm{mg}, 52 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.37(\mathrm{~s}, 1 \mathrm{H}), 7.73-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.34(\mathrm{~m}, 3 \mathrm{H}), 5.75(\mathrm{t}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.87(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{q}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H})$, $0.93(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H})$; HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}$: 383.2029 , found: 383.2022 . The above compound ($30 \mathrm{mg}, 0.08 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, to which was added tetra- n-butylammonium fluoride (TBAF, $0.16 \mathrm{~mL}, 1 \mathrm{~m}$ solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); this was stirred at room temperature for $16 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was added to the reaction mixture, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the organic layer was separated, washed with brine, and concentrated under vacuum. The residue obtained was purified by silica gel column chromatography using a mixture of acetone/n-hexane (3:1) to give 13 ($20 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=8.20$
(s, 1H), 7.70-7.67 (m, 2H), 7.50-7.36 (m, 3H), 3.81-3.70 (m, 4H), 2.56 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=165.9$ (C), 159.8 (C), 154.1 (CH), 148.6 (C), 131.2 (C), $129.8(\mathrm{CH}), 129.5(\mathrm{CH}), 128.1(\mathrm{CH})$, 111.1 (C), $105.3(\mathrm{C}), 61.7\left(\mathrm{CH}_{2}\right), 44.4\left(\mathrm{CH}_{2}\right), 11.2\left(\mathrm{CH}_{3}\right)$; HRMS (EI): m/z $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$: 269.1164, found: 269.1170.

2-(5-Ethynyl-6-phenylfuro[2,3-d]pyrimidin-4-ylamino)ethanol 15. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($53 \mathrm{mg}, 0.08 \mathrm{mmol}$), Cul ($14 \mathrm{mg}, 0.08 \mathrm{mmol}$), N, N-diisopropylethylamine (DIPEA, 5 mL), and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiC} \equiv \mathrm{CH} \quad(0.7 \mathrm{~mL}$, 5.1 mmol) were added to a solution of $11(500 \mathrm{mg}, 1.50 \mathrm{mmol})$ in anhydrous DMF (5 mL) and heated at $65^{\circ} \mathrm{C}$ for $16 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was added to the reaction mixture, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the organic layer was separated, washed with brine, and concentrated under vacuum. The residue obtained was purified by silica gel column chromatography using a mixture of n-hexane/EtOAc (1:1) to give 2-(6-phenyl-5-trimethylsilanylethynylfuro[2,3-d]pyri-midin-4-ylamino)ethanol ($301 \mathrm{mg}, 57 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.35(\mathrm{~s}, 1 \mathrm{H}), 8.21-8.18(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.38(\mathrm{~m}, 3 \mathrm{H}), 6.53(\mathrm{t}, \mathrm{J}=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{q}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{br}$, $1 \mathrm{H}), 0.34(\mathrm{~s}, 9 \mathrm{H})$; HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}$: 351.1403, found: 351.1393. The above compound (37 mg , $0.11 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(1 \mathrm{~mL})$, to which $\mathrm{K}_{2} \mathrm{CO}_{3}(44 \mathrm{mg}$, 0.32 mmol) was added, and the mixture was stirred at room temperature for $16 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was added to the reaction mixture, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the organic layer was separated, washed with brine, and concentrated under vacuum. The residue obtained was purified by silica gel column chromatography using a mixture of n-hexane/EtOAc (1:2) to give 15 ($25 \mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.37(\mathrm{~s}, 1 \mathrm{H}), 8.21-8.18(\mathrm{~m}, 2 \mathrm{H}), 7.51-$ $7.40(\mathrm{~m}, 3 \mathrm{H}), 6.43(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{td}$, $J=4.8,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=164.2$ (C), 158.0 (C), 154.5 (CH), 154.4 (C), 129.8 (C), 128.8 (CH), 128.7 (C), 125.7 (CH), 103.0 (C), $94.0(\mathrm{C}), 86.2$ (C), 76.1 (C), $62.7\left(\mathrm{CH}_{2}\right), 44.3\left(\mathrm{CH}_{2}\right) ;$ HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: 279.1008, found: 279.1010.

2-(5-Ethyl-6-phenylfuro[2,3-d]pyrimidin-4-ylamino)ethanol 14. $\mathrm{PtO}_{2}(2 \mathrm{mg})$ was added to a solution of $15(17 \mathrm{mg}, 0.06 \mathrm{mmol})$ in a mixture of $\mathrm{EtOAc} / \mathrm{MeOH}(1: 1,2 \mathrm{~mL})$ and hydrogenated at atmospheric pressure (using a balloon of H_{2} gas) for 1 h at room temperature. The reaction mixture was filtered over Celite, the solvents were removed under vacuum, and the residue obtained was purified by silica gel column chromatography using a mixture of n hexane/EtOAc (1:2) to give 14 ($12 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.34(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.35(\mathrm{~m}, 3 \mathrm{H}), 5.66$ $(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{br}, 1 \mathrm{H}), 3.92(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{q}, J=$ $4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{q}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{t}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.3$ (C), 158.0 (C), $153.4(\mathrm{CH}), 147.3(\mathrm{C}), 129.8$ (C), $128.8(\mathrm{CH}), 128.5(\mathrm{CH}), 126.9(\mathrm{CH}), 115.5(\mathrm{C}), 103.7(\mathrm{C}), 62.6$ $\left(\mathrm{CH}_{2}\right), 44.3\left(\mathrm{CH}_{2}\right), 18.6\left(\mathrm{CH}_{2}\right), 15.4\left(\mathrm{CH}_{3}\right)$; HRMS (EI): m/z [M] ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$: 283.1321, found: 283.1329.

2-[5-(4-Methoxyphenyl)-6-phenylfuro[2,3-d]pyrimidin-4-ylami-

no]ethanol 16. p-Methoxybenzene boronic acid (105 mg , $0.46 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{mg}, 0.04 \mathrm{mmol}), \mathrm{PPh}_{3}(44 \mathrm{mg}, 0.16 \mathrm{mmol})$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.46 \mathrm{~mL}, 2 \mathrm{~m}$ solution) were added to a solution of 11 $(140 \mathrm{mg}, 0.42 \mathrm{mmol})$ in dioxane $/ \mathrm{H}_{2} \mathrm{O}(1: 1,4 \mathrm{~mL})$ mixture under N_{2} and heated at $100^{\circ} \mathrm{C}$ for 3 h . After completion, the reaction mixture was cooled to room temperature, $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added, and the reaction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. Combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuum, and the residue obtained was purified by silica gel column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(30: 1)$ to give 16 $(81 \mathrm{mg}, 53 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.33(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.49$ (m, 2H), 7.38 (d, J=8.1 Hz, 2H), 7.26-7.24 (m, 3H), 7.04 (d, J=
$8.1 \mathrm{~Hz}, 2 \mathrm{H}$), $5.20(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{t}, J=5.4, \mathrm{~Hz}$, $2 \mathrm{H}), 3.57(\mathrm{q}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.5$ (C), 159.9 (C), 157.9 (C), 153.5 (CH), 147.0 (C), 120.8 (CH), 129.4 (C), $128.4(\mathrm{CH} \times 2)$, $126.2(\mathrm{CH}), 123.7$ (C), 115.1 (CH), 114.5 (C), $103.5(\mathrm{C})$, $62.6\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right), 44.2\left(\mathrm{CH}_{2}\right)$; HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$: 361.1426, found: 361.1412.

2-[5-(4-Nitrophenyl)-6-phenylfuro[2,3-d]pyrimidin-4-ylamino]e-
thanol 17. Compound 17 was prepared in 80% yield from p-nitrobenzene boronic acid and 11, similar to $16 .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=8.44(\mathrm{~s}, 1 \mathrm{H}), 8.42-8.37(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.47-$ $7.43(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 3 \mathrm{H}), 5.01(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=$ $4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{q}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=165.1(\mathrm{C}), 157.6(\mathrm{C}), 154.0(\mathrm{CH}), 148.0(\mathrm{C}), 147.9(\mathrm{C})$, 139.4 (C), 130.9 (CH), 129.3 (CH), $128.8(\mathrm{CH}), 128.4(\mathrm{CH}), 126.8(\mathrm{CH})$, $124.8(\mathrm{CH}), 112.9(\mathrm{C}), 102.5(\mathrm{C}), 62.1\left(\mathrm{CH}_{2}\right), 43.9\left(\mathrm{CH}_{2}\right)$; HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4}$: 376.1172, found: 376.1191.

2-[5-(4-Hydroxyphenyl)-6-phenylfuro[2,3-d]pyrimidin-4-ylaminolethanol 18. Compound 18 was prepared in 94% yield from 16, similar to 21. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=8.26(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.48$ (m, 2H), 7.32-7.26 (m, 5H), 6.99-6.95 (m, 2H), 3.62-3.54 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=165.5$ (C), 159.6 (C), 159.2 (C), 154.5 $(\mathrm{CH}), 148.2(\mathrm{C}), 132.1(\mathrm{CH}), 130.8(\mathrm{C}), 129.6(\mathrm{CH} \times 2), 127.3(\mathrm{CH})$, 123.3 (C), $117.7(\mathrm{CH}), 116.8(\mathrm{C}), 104.6(\mathrm{C}), 61.2\left(\mathrm{CH}_{2}\right), 44.0\left(\mathrm{CH}_{2}\right)$; HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}: 347.1270$, found: 347.1266.

2-[5-(4-Acetamidophenyl)-6-phenylfuro[2,3-d]pyrimidin-4-ylamino]ethanol 19. Compound 19 was prepared in 60% yield from p acetamidobenzene boronic acid and 11, similar to $16 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=10.20(\mathrm{br}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.77(\mathrm{~m}$, $2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 3 \mathrm{H}), 5.42(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.70(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.42(\mathrm{~m}, 4 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=168.7$ (C), 164.5 (C), 157.4 (C), $154.0(\mathrm{CH})$, 145.7 (C), 139.9 (C), 130.1 (CH), 129.2 (C), 128.9 (CH), 128.7 (CH), $126.0(\mathrm{CH}), 125.4(\mathrm{C}), 119.7(\mathrm{CH}), 115.2(\mathrm{C}), 102.4(\mathrm{C}), 59.2\left(\mathrm{CH}_{2}\right), 42.8$ $\left(\mathrm{CH}_{2}\right), 24.2\left(\mathrm{CH}_{3}\right)$; HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$: 388.1535, found: 388.1531.

2-(6-Phenyl-5-pyridin-3-ylfuro[2,3- d]pyrimidin-4-ylamino)ethanol 22. Compound 22 was prepared in 53% yield from 3-pyridyl boronic acid and 11, similar to $16 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.74-$ $8.70(\mathrm{~m}, 2 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 3 \mathrm{H})$, $7.30-7.26(\mathrm{~m}, 3 \mathrm{H}), 5.07(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{br}, 1 \mathrm{H}), 3.75(\mathrm{t}, J=$ $5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{q}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 165.0 (C), 157.7 (C), 153.9 (CH), 150.3 (C), 149.9 (CH), 148.1 (C), 137.5 (CH), $129.0(\mathrm{CH}), 128.7(\mathrm{CH}), 128.7$ (C), 126.6 (CH), $124.2(\mathrm{CH})$, $111.0(\mathrm{C}), 102.9(\mathrm{C}), 61.9\left(\mathrm{CH}_{2}\right), 43.8\left(\mathrm{CH}_{2}\right) ;$ HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}: 332.1273$, found: 332.1266 .

2-(5-Furan-2-yl-6-phenylfuro[2,3-d]pyrimidin-4-ylamino)ethanol

23. Compound 23 was prepared in 42% yield from 2 -furanyl boronic acid and 11 , similar to $16 .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.38$ (s, 1H), 7.70-7.67 (m, 2H), 7.62 (dd, J=1.5, $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.36$ $(\mathrm{m}, 3 \mathrm{H}), 6.56(\mathrm{dd}, J=3.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=3.3,0.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.43(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{q}, J=4.8 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.2$ (C), $157.8(\mathrm{C}), 153.9(\mathrm{CH})$, $145.4(\mathrm{C}), 142.8(\mathrm{CH}), 129.4(\mathrm{CH}), 129.1(\mathrm{CH}), 128.6(\mathrm{CH}), 127.3(\mathrm{CH})$, $112.1(\mathrm{CH}), 110.5(\mathrm{CH}), 105.2(\mathrm{C}), 102.1(\mathrm{C}), 62.9\left(\mathrm{CH}_{2}\right), 44.4\left(\mathrm{CH}_{2}\right)$; HRMS (EI): $m / z[M]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$: 321.1113, found: 321.1117.

2-Amino-4,5-diphenylthiophene-3-carbonitrile 40. A mixture of deoxybenzoin ($39,558 \mathrm{mg}, 2.90 \mathrm{mmol}$), malononitrile (198 mg , 3.00 mmol), powdered sulfur ($96 \mathrm{mg}, 3.00 \mathrm{mmol}$), and triethylamine
$(300 \mathrm{mg}, 3.00 \mathrm{mmol})$ in EtOH were held at reflux for 16 h . The solvents were removed under vacuum, $\mathrm{H}_{2} \mathrm{O}$ was added, the mixture was acidified with concentrated HCl , and the solid residue obtained was filtered. The crude product was purified by silica gel column chromatography using n-hexane/EtOAc (3:1) to give 40 ($500 \mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.44-7.35(\mathrm{~m}, 10 \mathrm{H})$ LC-MS (ESI) m/z: $277.1[M+H]^{+}$.

4-Chloro-5,6-diphenylthieno[2,3-d]pyrimidine 41. Compound 41 was prepared in 20% yield over two steps from 40, similar to 31 a ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.88(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 10 \mathrm{H})$; LCMS (ESI) m/z: $323.2[\mathrm{M}+\mathrm{H}]^{+}$.

2-(5,6-Diphenylthieno[2,3-d]pyrimidin-4-ylamino)ethanol 25. Compound 25 was prepared in 23% yield from 41 , similar to 8 . ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.45(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.17(\mathrm{~m}, 10 \mathrm{H}), 3.75$ (bs, 1H), 3.66-3.63 (m, 2H), 3.51-3.46 (m, 2H); LC-MS (ESI) m/z: $348.1[M+H]^{+}$.

2-Amino-1-benzyl-4,5-diphenyl-1H-pyrrole-3-carbonitrile 42. A mixture of benzoin ($1.18 \mathrm{~g}, 5.60 \mathrm{mmol}$), benzylamine (2.12 g , 19.80 mmol), and $\mathrm{HCl}(1 \mathrm{~mL})$ in toluene was held at reflux for 24 h , after which time the solvents were evaporated under vacuum. The residue obtained was purified by silica gel column chromatography using n-hexane/EtOAc (3:1) to give 2-benzylamino-1,2-diphenylethanone ($1.2 \mathrm{~g}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.00-7.43$ (m , 15H), 6.31-6.29 (d, 1H), 4.24-4.09 (m, 2H); LC-MS (ESI) m/z: 302.1 $[\mathrm{M}+\mathrm{H}]^{+}$. A mixture of the above compound ($1.20 \mathrm{~g}, 4.0 \mathrm{mmol}$) and malononitrile ($316 \mathrm{mg}, 4.8 \mathrm{mmol}$) in toluene was held at reflux for 24 h , and the solvents were then evaporated under vacuum. The residue obtained was purified by silica gel column chromatography using n-hexane/EtOAc (3:1) to give 42 ($300 \mathrm{mg}, 22 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.41-7.08(\mathrm{~m}, 15 \mathrm{H}), 4.93(\mathrm{~m}, 2 \mathrm{H}) ;$ LC-MS (ESI) m/z: $350.1[M+H]^{+}$.

7-Benzyl-5,6-diphenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ol 43. A solution of 42 ($300 \mathrm{mg}, 0.90 \mathrm{mmol}$) in formic acid (20 mL) was held at reflux for 6 h . After cooling the reaction mixture, ice $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ was added, and the precipitate was filtered, washed well with $\mathrm{H}_{2} \mathrm{O}$, and dried to give 43 ($200 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz},\left[\mathrm{D}_{6}\right] \mathrm{DMSO}$): $\delta=7.99(\mathrm{~s}, 1 \mathrm{H}), 7.35-6.81(\mathrm{~m}, 15 \mathrm{H}), 5.31(\mathrm{~s}, 2 \mathrm{H}) ;$ LC-MS (ESI) m/z: $378.1[\mathrm{M}+\mathrm{H}]^{+}$.

7-Benzyl-4-chloro-5,6-diphenyl-7H-pyrrolo[2,3-d]pyrimidine 44. A solution of $43(644 \mathrm{mg}, 1.60 \mathrm{mmol})$ in $\mathrm{POCl}_{3}(15 \mathrm{~mL})$ was held at reflux for 3 h . After cooling the reaction mixture, ice $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, and the precipitate was collected by filtration and purified by silica gel column chromatography using n-hexane/EtOAc (3:1) to give 44 ($310 \mathrm{mg}, 46 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=8.74(\mathrm{~s}, 1 \mathrm{H})$, 7.29-6.91 (m, 15H), 5.49 (m, 2H); LC-MS (ESI) m/z: $396.2[M+H]^{+}$.

2-(7-Benzyl-5,6-diphenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)ethanol 26. 2-Aminoethanol ($202 \mathrm{mg}, 3.30 \mathrm{mmol}$) was added to a solution of 44 ($115 \mathrm{mg}, 0.30 \mathrm{mmol}$) in n-butanol (15 mL), and held at reflux for 16 h . The reaction mixture was evaporated, and the residue obtained was purified by silica gel column chromatography using n-hexane/EtOAc (3:1) to give 26 ($30 \mathrm{mg}, 25 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=8.24(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.14(\mathrm{~m}, 15 \mathrm{H})$, 5.38 (s, 2H), 3.65-3.54 (m, 2H), 3.32-3.30 (m, 2H); LC-MS (ESI) m/z: $421.1[M+H]^{+}$.

4-Chloro-5,6-diphenyl-7H-pyrrolo[2,3-d]pyrimidine 45. A solution of $44(202 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathrm{AICl}_{3}(133 \mathrm{mg}, 1.00 \mathrm{mmol})$ in toluene (10 mL) was held at reflux for 2 h . After cooling the reaction mixture, ice $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added, and the separated solid was collected by filtration to give 45 ($60 \mathrm{mg}, 39 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta=8.58(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.24(\mathrm{~m}, 11 \mathrm{H}) ; \mathrm{LC}-\mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}: 306.3$ $[\mathrm{M}+\mathrm{H}]^{+}$.

2-(5,6-Diphenyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)ethanol
27. 2-Aminoethanol ($1 \mathrm{~mL}, 16.60 \mathrm{mmol}$) was added to a solution of 45 ($60 \mathrm{mg}, 0.20 \mathrm{mmol}$) in n-butanol (10 mL) and held at reflux for 16 h . The reaction mixture was evaporated, and the residue obtained was purified by silica gel column chromatography using n hexane/EtOAc (3:1) to give 27 ($31 \mathrm{mg}, 48 \%$) ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta=8.16(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.23(\mathrm{~m}, 10 \mathrm{H}), 3.61-3.48(\mathrm{~m}, 2 \mathrm{H})$, 3.34-3.30 (m, 2H); LC-MS (ESI) m/z: $331.1[M+H]^{+}$.

Enzyme inhibition assay

Aurora kinase A inhibition assays ${ }^{[21,35]}$ and EGFR kinase inhibition assays ${ }^{[36]}$ for the compounds were carried out as described by us previously.

X-ray co-crystal structure determination

Compound 8 was co-crystallized with Aurora kinase A construct, and the complex structure was solved in a manner similar to that described by us before. ${ }^{[21]}$

Acknowledgements

We thank the staff of beamline BL13B1 at the National Synchrotron Radiation Research Centre (NSRRC), Taiwan and SP12B2 at SPring-8, Japan for technical assistance. We thank Mark Swofford for help with the English editing. The authors acknowledge financial support from the National Science Council, Taiwan (Grant Nos. NSC-95-2113M-400-001-MY3 for S.Y.W. and NSC-98-2119M-400-001-MY3 for H.P.H.).

Keywords: aurora kinase inhibitors - hit identification structural biology • structure-activity relationships substructure searches
[1] P. Cohen, Nat. Rev. Drug Discovery 2002, 1, 309-315.
[2] G. Manning, D. B. Whyte, R. Martinez, T. Hunter, S. Sudarsanam, Science 2002, 298, 1912-1934.
[3] D. Fabbro, S. Ruetz, E. Buchdunger, S. W. Cowan-Jacob, G. Fendrich, J. Liebetanz, J. Mestan, T. O’Reilly, P. Traxler, B. Chaudhuri, H. Fretz, J. Zimmermann, T. Meyer, G. Caravatti, P. Furet, P. W. Manley, Pharmacol. Ther. 2002, 93, 79-98.
[4] R. Capdeville, E. Buchdunger, J. Zimmermann, A. Matter, Nat. Rev. Drug Discovery 2002, 1, 493-502.
[5] M. Ranson, W. Mansoor, G. Jayson, Expert Rev. Anticancer Ther. 2002, 2, 161-168.
[6] S. Cheek, K. Ginalski, H. Zhang, N. V. Grishin, BMC Struct. Biol. 2005, 5, 6. [7] J. J. Liao, J. Med. Chem. 2007, 50, 409-424.
[8] M. E. Noble, J. A. Endicott, L. N. Johnson, Science 2004, 303, 1800-1805.
[9] A. M. Aronov, B. McClain, C. S. Moody, M. A. Murcko, J. Med. Chem. 2008, 51, 1214-1222.
[10] I. Akritopoulou-Zanze, P. J. Hajduk, Drug Discovery Today 2009, 14, 291 297.
[11] J. Fu, M. Bian, Q. Jiang, C. Zhang, Mol. Cancer Res. 2007, 5, 1-10.
[12] E. A. Harrington, D. Bebbington, J. Moore, R. K. Rasmussen, A. O. AjoseAdeogun, T. Nakayama, J. A. Graham, C. Demur, T. Hercend, A. Diu-Hercend, M. Su, J. M. Golec, K. M. Miller, Nat. Med. 2004, 10, 262-267.
[13] O. Gautschi, J. Heighway, P. C. Mack, P. R. Purnell, P. N. Lara, Jr., D. R. Gandara, Clin. Cancer Res. 2008, 14, 1639-1648.
[14] C. H. Cheung, M. S. Coumar, H. P. Hsieh, J. Y. Chang, Expert Opin. Invest. Drugs 2009, 18, 379-398.
[15] M. S. Coumar, C. H. Cheung, J. Y. Chang, H. P. Hsieh, Expert Opin. Ther. Pat. 2009, 19, 321-356.
[16] J. R. Pollard, M. Mortimore, J. Med. Chem. 2009, 52, 2629-2651.
[17] G. M. Cheetham, P. A. Charlton, J. M. Golec, J. R. Pollard, Cancer Lett. 2007, 251, 323-329.
[18] D. Fancelli, J. Moll, M. Varasi, R. Bravo, R. Artico, D. Berta, S. Bindi, A. Cameron, I. Candiani, P. Cappella, P. Carpinelli, W. Croci, B. Forte, M. L. Giorgini, J. Klapwijk, A. Marsiglio, E. Pesenti, M. Rocchetti, F. Roletto, D. Severino, C. Soncini, P. Storici, R. Tonani, P. Zugnoni, P. Vianello, J. Med. Chem. 2006, 49, 7247-7251
[19] J. D. Oslob, M. J. Romanowski, D. A. Allen, S. Baskaran, M. Bui, R. A. Elling, W. M. Flanagan, A. D. Fung, E. J. Hanan, S. Harris, S. A. Heumann U. Hoch, J. W. Jacobs, J. Lam, C. E. Lawrence, R. S. McDowell, M. A. Nannini, W. Shen, J. A. Silverman, M. M. Sopko, B. T. Tangonan, J. Teague, J. C. Yoburn, C. H. Yu, M. Zhong, K. M. Zimmerman, T. O’Brien, W. Lew, Bioorg. Med. Chem. Lett. 2008, 18, 4880-4884.
[20] S. Howard, V. Berdini, J. A. Boulstridge, M. G. Carr, D. M. Cross, J. Curry, L. A. Devine, T. R. Early, L. Fazal, A. L. Gill, M. Heathcote, S. Maman, J. E. Matthews, R. L. McMenamin, E. F. Navarro, M. A. O'Brien, M. O'Reilly, D. C. Rees, M. Reule, D. Tisi, G. Williams, M. Vinkovic, P. G. Wyatt, J. Med. Chem. 2009, 52, 379-388.
[21] M. S. Coumar, J. S. Leou, P. Shukla, J. S. Wu, A. K. Dixit, W. H. Lin, C. Y. Chang, T. W. Lien, U. K. Tan, C. H. Chen, J. T. Hsu, Y. S. Chao, S. Y. Wu, H. P. Hsieh, J. Med. Chem. 2009, 52, 1050-1062.
[22] A. M. Aronov, G. W. Bemis, Proteins Struct. Funct. Bioinf. 2004, 57, 36-50.
[23] A. M. Aronov, M. A. Murcko, J. Med. Chem. 2004, 47, 5616-5619.
[24] J. F. Lowrie, R. K. Delisle, D. W. Hobbs, D. J. Diller, Comb. Chem. High Throughput Screening 2004, 7, 495-510.
[25] R. Gozalbes, L. Simon, N. Froloff, E. Sartori, C. Monteils, R. Baudelle, J. Med. Chem. 2008, 51, 3124-3132.
[26] N. Foloppe, L. M. Fisher, R. Howes, P. Kierstan, A. Potter, A. G. Robertson, A. E. Surgenor, J. Med. Chem. 2005, 48, 4332-4345.
[27] C. Ustun, D. L. DeRemer, A. P. Jillella, K. N. Bhalla, Expert Opin. Invest. Drugs 2009, 18, 1445-1456.
[28] K. Gewald, Chem. Ber. 1966, 99, 1002.
[29] M. M. Ali, M. A. Zahran, Y. A. Ammar, Y. A. Mohamed, A. T. Seleim, Ind. J. Hetero. Chem. 1995, 4, 191-194.
[30] Y. Miyazaki, S. Matsunaga, J. Tang, Y. Maeda, M. Nakano, R. J. Philippe, M. Shibahara, W. Liu, H. Sato, L. Wang, R. T. Nolte, Bioorg. Med. Chem. Lett. 2005, 15, 2203-2207.
[31] E. F. DiMauro, J. Newcomb, J. J. Nunes, J. E. Bemis, C. Boucher, J. L. Buchanan, W. H. Buckner, A. Cheng, T. Faust, F. Hsieh, X. Huang, J. H. Lee, T. L. Marshall, M. W. Martin, D. C. McGowan, S. Schneider, S. M. Turci, R. D. White, X. Zhu, Bioorg. Med. Chem. Lett. 2007, 17, 2305-2309.
[32] A. O. King, N. Okukado, E. Negishi, J. Chem. Soc. Chem. Commun. 1977, 683-684.
[33] K. Gewald, E. Schinke, H. Böttcher, Chem. Ber. 1966, 99, 94-100.
[34] P. M. Traxler, P. Furet, H. Mett, E. Buchdunger, T. Meyer, N. Lydon, J. Med. Chem. 1996, 39, 2285-2292.
[35] M. S. Coumar, J. S. Wu, J. S. Leou, U. K. Tan, C. Y. Chang, T. Y. Chang, W. H. Lin, J. T. Hsu, Y. S. Chao, S. Y. Wu, H. P. Hsieh, Bioorg. Med. Chem. Lett. 2008, 18, 1623-1627.
[36] W. H. Lin, J. S. Song, T. Y. Chang, C. Y. Chang, Y. N. Fu, C. L. Yeh, S. H. Wu, Y. W. Huang, M. Y. Fang, T. W. Lien, H. P. Hsieh, Y. S. Chao, S. F. Huang, S. F. Tsai, L. M. Wang, J. T. Hsu, Y. R. Chen, Anal. Biochem. 2008, 377, 8994.

Received: August 17, 2009
Revised: November 24, 2009
Published online on December 28, 2009

